An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation

Chunping Hu
Xuefeng Yan
An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation

HU Chunping (胡春平) and YAN Xuefeng (颜学峰)**
Automation Institute, East China University of Science and Technology, Shanghai 200237, China

Abstract A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters’ self-adaptation. The performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm and other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury (Hg) oxidation in flue gas, and satisfactory results are obtained.

Keywords differential evolution, immune system, evolutionary computation, parameter estimation

1 INTRODUCTION

Differential evolution (DE) [1] is a new generation evolutionary algorithm (EA) and has been successfully applied to solve a wide range of optimization problems. Differential evolution is stochastic, population-based, and direct search algorithm for globally optimizing functions with real valued parameters. In the first international IEEE Competition on evolutionary optimization, DE proved to be one of the fastest EAs. Storn and Price [1] have compared DE with adaptive simulated annealing [2], the annealed Nelder and Mead approach [3], the breeder genetic algorithm [4], the EA with soft genetic operators [5], and the method of stochastic differential equations [6]. In most instances, DE outperformed all of the above minimization approaches. Vesterstrom and Thomsen [7] applied 34 widely used benchmark problems to evaluate the performance of DE, particle swarm optimization (PSO) [8], and EA. Their study shows that DE generally outperforms the other algorithms. Krink et al. [9] introduced three search approaches [genetic algorithm (GA) [10], PSO, and DE] to develop bank rating systems, respectively, and turned out that DE is clearly and consistently superior compared with GA and PSO both in respect to precision and reliability.

Although previous studies have shown that DE is an efficient, effective, and robust evolutionary optimization method, DE is still in its infancy and can most probably be improved [1]. Differential evolution creates new candidate solutions by combining the parent individual and several other individuals of the same population. A candidate replaces the parent only if it has better fitness value. Differential evolution has three control parameters: amplification factor of the differential variation-F, crossover control parameter-CR, and population size-NP [11]. The effectiveness, efficiency, and robustness of the DE algorithm are sensitive to the settings of control parameters with various degrees [1, 12]. In the original DE, the control variables are kept fixed during the optimization. Finding the optimal value for parameters is a difficult task as the value is problem specific, especially when one wants to strike a balance between reliability and efficiency. As a solution, self-adaptation was incorporated to adjust evolutionary parameters, in which the control parameters are not required to be prespecified.

With population evolution, the parameter settings are gradually self-adapted according to the learning experience. The choice of NP, which is typically regarded as only a “fine tuning parameter” is initially suggested to be NP = 5–10n [13, 14]. Thus, self-adaptation is usually applied to F and CR control parameters.

In recent years, researchers have developed various strategies for adjusting control parameters dynamically. Abbass [15] proposed a self-adaptive Pareto DE (SPDE). In SPDE, the mutation rate is sampled for each individual from a Gaussian distribution, N(0, 1), and turned out that DE is clearly and consistently superior compared with GA and PSO both in respect to precision and reliability.

The crossover rate is first initialized for each individual from a Gaussian distribution, U(0, 1). Then, CR is adapted as

\[CR_1(G) = CR_{r_1}(G) + N(0,1) \times (CR_{r_2}(G) - CR_{r_3}(G)) \]

(1)

where \(r_1 \neq r_2 \neq r_3 \neq i \) and \(r_1, r_2, r_3 \sim U(1, \ldots, \text{NP}) \). This approach is also used in Omran et al. [16] to dynamically adapt the control parameters. In Ref. [16], the mutation operator changes as follows:
where
\[F_i(G) = r_i(G) + N(0, 0.5) \times \left[F_i(G) - F_i(G) \right] \]
in which \(r_i \neq r_i \neq r_i \) and \(r_i, r_i, r_i \sim U(1, \cdots, NP) \). For the crossover rate, \(CR \sim N(0.5, 1.5) \). Liu and Lampinen [12] introduced a fuzzy adaptive DE, which uses fuzzy logic controllers to adapt the search parameters for mutation operation and crossover operation. Yuan et al. [17] proposed a method where chaos theory was applied to obtain self-adaptive parameter settings in DE. Nobakhti and Wang [18] proposed a simple randomized self-adaptive scheme for adjusting the mutation amplification factor \(F \) to improve the DE algorithm.

In self-adaptation control parameter, the idea of an evolutionary search can be used to implement the self-adaptation of search parameters [19]. In other words, the concept of coevolution can be used to adapt the control parameters. Coevolution method is an effective approach to decompose complex structure and achieve better performance. Several applications of coevolution method, which have been proven to be useful, were described in the literatures [20–22]. In this article, the immune concepts and methods are applied to determine the parameter setting of DE. Further, the proposed method, named immune self-adaptive differential evolution (ISDE), is compared with the versions of DE proposed by Price and Storn [23], the SPDE proposed by Abbass [15], and the self-adaptive DE (SDE) proposed by Omran et al. [16].

For illustration, ISDE was applied to develop the kinetic model for homogeneous mercury (Hg) oxidation in flue gas. Homogeneous mercury oxidation in flue gas is a highly nonlinear reaction with reference to optimal operating conditions with many equality and inequality constraints. The kinetic model involves five reactions. Two of these reactions are reversible and three are irreversible. The preexponential factor and activation energy values in the rate constant term for each reaction need to be determined. Then, ISDE was used to determine the kinetic parameters for homogeneous mercury oxidation in flue gas with the data obtained in a laboratory scale apparatus, reported by Agarwal et al. [24, 25], and the kinetic model with good precision for homogeneous mercury oxidation in flue gas was developed.

2 DIFFERENTIAL EVOLUTION ALGORITHM

In order to find the global optimal solution, DE performs a group-based search instead of the point-to-point search. The group, which contains a number of solution points, is named population and represented by \(P(G) \) with \(G \) denoting the number of generations. The current generation \(P(G) \) evolves into the next generation \(P(G+1) \) through the operation principles. In this way, \(P(G) \) continually evolves along with the proceeding of \(G \) till a global or near-global optimal solution is obtained. The solution points in the population, called individuals or chromosomes, are represented by \(x_1^G, x_2^G, \cdots, x_{NP}^G \) with \(NP \) denoting the number of individuals in the population. The value of \(NP \) usually keeps unchanged in the whole evolution process. The individual \(x_i^G \) consists of \(n \) variables, called genes, namely: \(x_{1i}^G, x_{2i}^G, \cdots, x_{ni}^G \).

Assume that the working vector containing \(n \) optimized variables is denoted by \(x \). The elements of the working vector \(x \) are designated as working parameters, denoted by \(x_1, x_2, \cdots, x_n \). Thus, the problem of searching for a minimum could be described as

\[\min f(x_1, x_2, \cdots, x_n) \quad x \in \{x_{low,i}, x_{high,i}\} \]

where \(f \) denotes the function relating the value of optimized variables \(x \) and the dependent variable, which is subject to be optimized. An \(n \)-dimensional space \(S_n \) is defined in the region \(\{x_{low,i}, x_{high,i}\}, i = 1, 2, \cdots, n \} \).

The procedure of executing DE can be described in the following:

(1) Initialization operation: Generate the initial individuals \(x_0^i \), \(i = 1, 2, \cdots, NP \) randomly in \(S_n \). Determine the mutation probability \(F \), the crossover probability \(CR \), and the maximal number of generations \(G_{max} \). Set the current generation \(G = 0 \).

(2) For each individual \(x_0^i \), \(i = 1, 2, \cdots, NP \), do steps 3–5 to produce the population for the next generation \(G + 1 \).

(3) Mutation operation: a perturbed individual \(x_0^{G+1} \) is generated as follows:

\[\tilde{x}_i^{G+1} = x_i^G + F \cdot (x^G_{r_i} - x^G_{r_i}) \]

with \(r_1, r_2, r_3 \in [1, 2, \cdots, NP] \), integer and mutually different, and \(F > 0 \). The integers \(r_1, r_2, \) and \(r_3 \) are chosen randomly from the interval \([1, NP]\) and are different from the running index \(i \). \(F \) is a real constant scaling factor within \([0, 2]\) which controls the amplification of the differential variation \((x^G_{r_i} - x^G_{r_i}) \).

(4) Crossover operation: The perturbed individual \(\tilde{x}_i^{G+1} \) and the current individual \(x_i^G \) are selected by a binomial distribution to perform the crossover operation to generate the offspring \(x_i^{G+1} \), namely

\[x_i^{G+1} = \begin{cases} x_i^G & P_i > CR, \\ \tilde{x}_i^{G+1} & \text{otherwise}, \end{cases} \]

where \(P_i \) is a uniform random number in range \([0, 1]\), and \(CR \) is the crossover constant \(\in [0, 1] \).

(5) Evaluation operation: The offspring \(x_i^{G+1} \) competes one-to-one with its parent \(x_i^G \). The evaluation operation is expressed as

\[x_i^{G+1} = \begin{cases} x_i^{G+1} & f \left(x_i^{G+1} \right) \leq f \left(x_i^G \right) \\ x_i^G & \text{otherwise}. \end{cases} \]
(6) \(G = G + 1 \).

(7) Repeat steps 2–6 as long as the number of generations is smaller than the allowable maximum number \(G_m \) and the best individual is not obtained.

The mutation strategy described above is known as DE/rand/1, meaning that the vector to be perturbed is randomly chosen, and that the perturbation consists of one weighted difference vector. DE/rand/1 is the most successful and the most widely used strategy [14]. Other useful strategies are:

“DE/best/1”:
\[
X_i^{G+1} = x_i^G + F \cdot (x_{\text{best}}^G - x_i^G).
\]

“DE/rand-to-best/1”:
\[
X_i^{G+1} = x_i^G + F \cdot (x_{\text{best}}^G - x_i^G) + F \cdot (x_i^G - x_{j}^G),
\]

“DE/best/2”:
\[
X_i^{G+1} = x_{\text{best}}^G + F \cdot (x_i^G - x_{j}^G) + F \cdot (x_i^G - x_{j}^G).
\]

“DE/rand/2”:
\[
X_i^{G+1} = x_i^G + F \cdot (x_i^G - x_{j}^G) + F \cdot (x_i^G - x_{j}^G),
\]

where \(x_{\text{best}}^G \) is the individual vector with best fitness value in the population at generation \(G \). A more detailed description of each strategy is given in Ref. [13].

3 IMMUNE SELF-ADAPTIVE DIFFERENTIAL EVOLUTION

In self-adaptation parameter control, the idea of an evolutionary search can be used to implement the self-adaptation of search parameters. The parameters to be adapted are coded into the chromosomes that undergo mutation and recombination. Better values for these encoded parameters are supposed to result in better individuals that in turn are more likely to survive and produce offspring and hence propagate better parameter values [19]. In other words, self-adaptation is a strategy in which the idea of an evolutionary search was used to choose the optimal parameters.

Immune system, a highly evolved biological system with learning, memory, and pattern recognition capabilities [26], has been successfully integrated into many other evolution algorithms [27–29]. In our work, the immune concepts and methods into DE is theoretically to use the previous state information of search for seeking the optimal parameters, \(F \) and CR. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters’ self-adaptation. In ISDE, the first initial antibodies are randomly generated within the feasible range. The two parameters of each individual are initialized from a normal distribution within the feasible range. The affinity values of the antibodies are calculated. Then, depending on the

affinity values, the parameters are replaced by antibody with a certain probability defined previously. In each generation, a percentage of antibodies in the antibody population are replaced by created new antibodies. Thus, the coevolution method is established. Differential evolution is used to perform evolution search in spaces of solutions, and immune system is used to perform evolution search in spaces of control parameters. The solutions and control parameters evolve interactively and selfadaptively, and both the satisfactory solutions and suitable control parameters can be obtained simultaneously.

The procedure of executing ISDE can be described in the following:

(1) Initialization operation

Generate the initial individuals \(x_i^0, i = 1, 2, \cdots, NP \) randomly in \(S_0 \). Generate the initial antibodies \(\Psi_j^0, j = 1, 2, \cdots, m \), \(m \) denoting the number of antibodies and \(m = 2NP \), randomly within \([0, 1]^d \). Generate the initial parameters \(\tau_{i1}^0, i = 1, 2, \cdots, NP \), \(\tau_{i1} \) and \(\tau_{i2} \) denote the mutation and crossover rates, respectively, from a normal distribution \((N(0.5, \alpha)) \) within \([0, 1]^d \). Determine the control parameters \(\beta \), the vaccination probability \(P_v \), and the maximal number of generations \(G_m \). Set the current generation \(G = 0 \).

(2) For each individual \(x_i^G, i = 1, 2, \cdots, NP \), do steps 3–5 to produce the population for the next generation \(G + 1 \).

(3) Mutation operation

Generate a perturbed individual \(\tilde{x}_i^{G+1} \) using the mutation operation as
\[
\tilde{x}_i^{G+1} = x_i^G + \tau_{i1}^G \cdot (x_i^G - x_j^G).
\]

(4) Crossover operation

Obtain the offspring \(\bar{x}_i^{G+1} \) from \(x_i^G \) and \(\tilde{x}_i^{G+1} \) using the crossover operation as:
\[
\bar{x}_i^{G+1} = \begin{cases} x_i^G, & P_r > \tau_{i2}^G, \\ \tilde{x}_i^{G+1}, & \text{otherwise} \end{cases}, \quad i = 1, 2, \cdots, n. \tag{9}
\]

(5) Evaluation operation

The offspring \(\bar{x}_i^{G+1} \) competes one-to-one with its parent \(x_i^G \) using the evaluation operation (7) to obtain an individual of the next generation \(x_i^{G+1} \).

(6) Create new antibodies

The affinity values of \(\tau_i^G, i = 1, 2, \cdots, NP \) are calculated as:
\[
A(\tau_i^G) = \begin{cases} f(x_i^G) - f(x_i^{G+1}) & \text{if } f(x_i^{G+1}) < f(x_i^G), \\ f(x_i^{G+1}) & \text{otherwise} \end{cases}, \tag{10}
\]

Depending on the affinity values, the parameters are ranked from best to worst. Here, we choose the first 20% parameters as the new antibodies according to the result of our trials. Then, the new antibodies, \(\Psi_{k}^{G+1} \text{ (new) } , k = 1, 2, \cdots, Q \), \(Q \) denoting the number of
the new antibodies and \(Q = 0.2NP \), are selected from the top of the ranked list and the affinity value of \(\mathbf{v}_i^{G+1} \) (new) is higher than that of \(\mathbf{v}_i^{G+1} \) (new).

(7) Update antibodies

The antibodies in next generation \(\mathbf{v}_j^{G+1} \), \(j = 1, 2, \cdots, m \) are updated as follows:

\[
\mathbf{v}_j^{G+1} = \begin{cases}
\mathbf{v}_j^{G+1} \quad & \text{if } j + Q \leq m \\
\mathbf{v}_j^{G+1} \quad & \text{otherwise}
\end{cases}
\]

(11)

(8) Generate the parameters for next generation

Generate the initial parameters, \(X^0 \), from a normal distribution \([N(0.5, \alpha)]\) within \([0, 1]^3\). Vaccinate the parameters with the antibodies as follows:

\[
X_{iG}^{+1} = \begin{cases}
\hat{X}_{iG}^{+1} \quad & P_i \leq P_o, \\
\tilde{X}_{iG}^{+1} \quad & \text{otherwise},
\end{cases}
\]

where \(P_i \) is a uniform random number in range \([0, 1]\), \(P_o \) is the vaccination probability \([0, 1]\), and \(\hat{X}_{iG}^{+1} \) is an antibody selected from \(X_j^{G+1} \), \(j = 1, 2, \cdots, m \). The probability to choose the \(X_j^{G+1} \) as the \(\hat{X}_{iG}^{+1} \) is defined as

\[
P_i = \frac{j^\beta}{\sum_{j=1}^m j^\beta},
\]

where \(\beta \) is the parameter that controls the probability between different antibodies.

(9) \(G = G + 1 \)

(10) Repeat steps 2–9 as long as the number of generations is smaller than the allowable maximum number \(G_m \) and the best individual is not obtained.

4 BENCHMARK FUNCTION

Nine benchmark functions were used in our experimental studies. These benchmark functions were divided into three classes: functions with single optima, many local minima, and a few local minima. The benchmark functions are given in Table 1. \(n \) stands for the dimension of the function, \(S_o \) denotes their ranges, and \(f_{\min} \) is a function value of the global optimum. A more detailed description of each function is given in Yao et al. [30], Krink et al. [31], and Salman et al [32].

Functions \(f_1 \)–\(f_6 \) (that is, Sphere function, Schwefel’s problem 2.22, Step function, Rosenbrock function, Generalized Schwefel’s problem 2.26, Rastrigin function, Ackley’s function, and Griewank function) are high-dimensional problems. Functions \(f_7 \), \(f_8 \), and \(f_9 \) are unimodal. Function \(f_6 \) is the step function, which has one minimum and is discontinuous. \(f_7 \)–\(f_8 \) are multimodal functions where the number of local optima increases exponentially with the problem dimension. Function \(f_6 \) (Six-hump camel-back function) is a low-dimensional function with only a few local optima [30].

5 EXPERIMENTAL RESULTS

In this section, the performance of ISDE is studied with the use of the nine benchmark problems, and the obtained results are compared with those of the versions of DE proposed by Price and Storn [23], SPDE proposed by Abbass [15], and SDE proposed by

<table>
<thead>
<tr>
<th>Test function</th>
<th>(n)</th>
<th>(S_o)</th>
<th>(f_{\min})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1(x) = \sum_{i=1}^n x_i^2)</td>
<td>30</td>
<td>([-100,100]^n)</td>
<td>0</td>
</tr>
<tr>
<td>(f_2(x) = \sum_{i=1}^n [k_i + \prod_{j=1}^i</td>
<td>k_j</td>
<td>])</td>
<td>30</td>
</tr>
<tr>
<td>(f_3(x) = \sum_{i=1}^n (</td>
<td>x_i</td>
<td>+ 0.95)^2)</td>
<td>30</td>
</tr>
<tr>
<td>(f_4(x) = \sum_{i=1}^n [100(x_2 - x_1^2)^2 + (1 - x_1)^2])</td>
<td>30</td>
<td>([-30,30]^n)</td>
<td>0</td>
</tr>
<tr>
<td>(f_5(x) = \sum_{i=1}^n</td>
<td>x_i \sin (\sqrt{</td>
<td>x_i</td>
<td>})</td>
</tr>
<tr>
<td>(f_6(x) = \sum_{i=1}^n [x_i^7 - 10 \cos (2\pi x_i) + 10])</td>
<td>30</td>
<td>([-5.12,5.12]^n)</td>
<td>0</td>
</tr>
<tr>
<td>(f_7(x) = -20 \exp \left(-0.2 \sqrt{n} \sum_{i=1}^n x_i^2 \right) - \exp \left(1 + \sum_{i=1}^n \cos (2\pi x_i) \right) + 20 + e)</td>
<td>30</td>
<td>([-32,32]^n)</td>
<td>0</td>
</tr>
<tr>
<td>(f_8(x) = -\frac{1}{4000} \sum_{i=1}^n x_i^4 + \sum_{i=1}^n \cos \left(\frac{x_i}{\sqrt{i}} \right) + 1)</td>
<td>30</td>
<td>([-600,600]^n)</td>
<td>0</td>
</tr>
<tr>
<td>(f_9(x) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_2 - 4x_1^2 + 4x_1^6)</td>
<td>2</td>
<td>([-5,5]^n)</td>
<td>-1.03165</td>
</tr>
</tbody>
</table>
5.1 No-noisy benchmark functions

Table 2 summarizes the results obtained by applying the different approaches to the unimodal benchmark functions. The results show that the ISDE performed better than (or at least equal to) the other strategies in all unimodal benchmark functions except the f_4 (Rosenbrock function), where the DE/best/2 and DE/rand/2 found a better solution, respectively. However, even for f_4 (Rosenbrock function), where ISDE’s average is worse than DE/best/2 and DE/rand/2, it is not significantly worse. In addition, ISDE’s average is better than DE/rand/1; this mutation strategy is adopted in ISDE.

Table 3 summarizes the results obtained by applying the different approaches to the multimodal benchmark functions. The results show that the ISDE significantly outperformed (or at least equal to) the other methods in all the multimodal functions.

From above experiments, it can be turned out that ISDE is clearly superior compared with the original DE strategies, SPDE, and SDE in all benchmark functions.

5.2 Noisy benchmark functions

In this subsection, the effect of noise on the performance of ISDE is investigated. The noisy versions of the benchmark functions are defined as:

$$f_{\text{noisy}}(x) = f(x) + N(0, 1)$$

with $N(0, 1) = \text{normal (or Gaussian) distribution with mean 0 and variance 1.}$

Table 4 and Table 5 summarize the results obtained for the noisy problems for the unimodal and multimodal functions, respectively. Table 4 and 5 show that the ISDE was less prone to noise than other DE strategies for all benchmark functions. The ISDE retained its position as the best performer when applied to all benchmark functions even in the presence of noise. The only exception is the noisy Rastrigin’s function where SDE outperformed the ISDE. However, even for the noisy Rastrigin’s function where ISDE’s average is worse than SDE, it is not significantly worse. In addition, the improvement is even more significant for the noisy Ackley’s function, where all strategies were trapped in a local optimum. Hence, compared with the other tested strategies, the ISDE seems to be less badly affected by noise. This is a significant improvement.
over the conventional DE, which is not a good approach to achieve results with high accuracy for noisy functions [31].

5.3 Effect of α, β, and P_o

This section investigates the effect of $\alpha \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$, $\beta \in \{0.2, 0.4, 0.6, 0.8, 1\}$, and $P_o \in \{0.1, 0.2, 0.25, 0.3, 0.5\}$ on the performance of ISDE. Tables 6, 7, and 8 summarize the results obtained using different values of α, β, and P_o. Table 6 shows that smaller values of α are preferable for unimodal functions, whereas $\alpha = 0.3$ yields the best results for multimodal functions. In general, $\alpha = 0.3$ seems to generate the best results when applied to the all benchmark problems. Table 7 shows that the performance of the ISDE is not sensitive to the values of β, and that $\beta = 0.8$ provided the best performance for all the unimodal and multimodal functions. Table 8 shows that smaller values of P_o perform better than higher values for all the functions except for the Rastrigin’s function.

6 APPLICATION

Mercury emissions from coal-fired power plants are highly dependent upon mercury speciation [33]. Mercury in the flue gas is most commonly classified in three forms: elemental mercury (Hg0), oxidized mercury (Hg$^{+2}$), and particulate bound mercury (Hgp). The particulate bound mercury is usually trapped by ash collection devices within power plants, such as electrostatic precipitators, mechanical hoppers, or bag houses. Elemental mercury is relatively inert and difficult to capture because of its nonreactivity. It is also volatile at high temperatures and insoluble in water. In contrast, oxidized mercury is very water soluble and has an affinity for adsorbing onto particulate matter such as fly ash or on metal surfaces in the duct. As a result of these physical and chemical properties of Hg0 and Hg$^{+2}$, the removal of mercury is enhanced when elemental Hg is converted to its oxidized form [34].

In order to better understand the reaction mechanism that takes place in the gas phase, a model needs to be developed where the percentage of mercury oxidized can be predicted based on the concentrations of these flue gas components. The reaction mechanism, proposed by Agarwal and Stenger [34], is a five-reaction system, where two reactions are reversible and three reactions are irreversible. These reactions are listed below:

$$H_2O(g) + Cl_2(g) \rightleftharpoons 2HCl(g) + 1/2O_2(g) \quad (R1)$$

$$Hg(g) + Cl_2(g) \rightarrow HgCl_2(g) \quad (R2)$$

$$2NO(g) + Cl_2(g) \rightarrow 2NOCl(g) \quad (R3)$$

Table 4 Mean and standard deviation (± SD) of the noisy unimodal function optimization results

(The data about DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2, DE/best/2, SPDE, and SDE were reported by Salman et al. [32])

<table>
<thead>
<tr>
<th>Function</th>
<th>Mean (SD) DE/rand/1</th>
<th>Mean (SD) DE/best/1</th>
<th>Mean (SD) DE/rand-to-best/1</th>
<th>Mean (SD) DE/rand/2</th>
<th>Mean (SD) DE/best/2</th>
<th>Mean (SD) SPDE</th>
<th>Mean (SD) SDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwefel problem 2.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosenbrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Mean and standard deviation (± SD) of the noisy multimodal function optimization results

(The data about DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2, DE/best/2, SPDE, and SDE were reported by Salman et al. [32])

<table>
<thead>
<tr>
<th>Function</th>
<th>Mean (SD) DE/rand/1</th>
<th>Mean (SD) DE/best/1</th>
<th>Mean (SD) DE/rand-to-best/1</th>
<th>Mean (SD) DE/rand/2</th>
<th>Mean (SD) DE/best/2</th>
<th>Mean (SD) SPDE</th>
<th>Mean (SD) SDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwefel problem 2.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastrigin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ackley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griewank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camel-back</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The reaction rate equations can be written as follows:

\[r_1 = A_1 \cdot \exp \left(-\frac{E_{1i}}{RT} \right) \cdot \left[\text{HgCl}_2 \right] \cdot \left[\text{SO}_2 \right] \]

(17)

\[r_2 = A_2 \cdot \exp \left(-\frac{E_{2i}}{RT} \right) \cdot \left[\text{Hg} \right] \cdot \left[\text{Cl}_2 \right] \cdot \exp \left(-\frac{17.833 + 17133.1}{T} \right) \]

(15)

\[r_3 = A_3 \cdot \exp \left(-\frac{E_{3i}}{RT} \right) \cdot \left[\text{NO}_2 \right] \cdot \left[\text{Cl}_2 \right] \]

(16)

The goal of this optimization problem is to determine the optimal Arrhenius parameters \(A_i \) and \(E_{1i} \), \(i = 1, 2, 3, 4, 5 \) such that the differences between the percentage of mercury oxidized calculated from Eqs. (14) through (18) and those measured experimentally is minimized. The objective function is therefore expressed by

\[\text{min} \text{EQS} = \frac{1}{m} \sum_{i=1}^{m} (c_i - \bar{c}_i)^2 \]

(18)

in which EQS denotes the average of the squares of the differences; \(\bar{c}_i \) is the Hg conversion calculated from Eqs. (14) through (18); \(c_i \) is the Hg conversion measured experimentally; \(m \) is the number of data points.

Then, ISDE was used to determine the kinetic parameters for homogeneous mercury oxidation in
Table 9: Optimal parameters and objective function values corresponding to reported data [34] and ISDE

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
<th>E_5</th>
<th>EQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. [34]</td>
<td>62.271</td>
<td>0.37688</td>
<td>98.682</td>
<td>138.85</td>
<td>36.113</td>
<td>8.8668</td>
<td>0.089337</td>
<td>23.509</td>
<td>17.638</td>
<td>15.108</td>
<td>88.134</td>
</tr>
<tr>
<td>ISDE</td>
<td>3.6024</td>
<td>0.44288</td>
<td>77.06</td>
<td>8.3261</td>
<td>10.866</td>
<td>3.9994</td>
<td>0.27544</td>
<td>17.442</td>
<td>13.134</td>
<td>13.233</td>
<td>73.746</td>
</tr>
</tbody>
</table>

REFERENCES