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Abstract: We introduce a hybrid Gaussian charge distribution model (HGM) that
partitions the molecular electron density into overlapping spherical atomic do-
mains. The semi-empirical HGM consists of atom-centered spherical Gaussian
functions and discrete point charges, which are optimized to reproduce the elec-
trostatic potential on the molecular surface as well as the number of electrons in
atom-centered and certain off-atom-centered spherical regions as closely as possi-
ble. In contrast, our previous Gaussian charge distribution model [J. Chem. Phys.
129, 014509 (2008)] contained only spherical Gaussian functions and was not re-
quired to reproduce the number of electrons in off-atom-centered regions. Vari-
able vanderWaals (vdW) radii fluctuating around theBondi radii are derived from
the HGM based on the isodensity contour concept and further employed to define
the molecular cavity in our quantum mechanical/Poisson–Boltzmann/surface
area model as well as the polarizable continuum model. The variable vdW radii
produce more accurate solvation free energies for 31 neutral molecules than the
Bondi radii for both continuum solvent models (CSM) consistently. Moreover, for
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H atoms, the linear dependence of the atomic radii on the atomic partial charges
is identified.

Keywords: Continuum Solvent Models, van-der-Waals Radii, Hybrid Gaussian
Charge Distribution Model, Solvent Effects, Force Fields.
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1 Introduction
When a molecule is transferred from vacuum to aqueous solution, its struc-
ture, properties, and reactivity may change significantly. One can choose either
explicit-solvent (see, for example, Reference [1]) or implicit-solvent models (see,
for example, References [2] and [3]) to account for this phenomenon. The latter
approach is more appealing since its computational cost is much lower due to the
elimination of the extensive sampling of solvent configurations required in the
former [3]. Implicit-solvent models are also called continuum solvation models
(CSM) since the solvent is treated as a dielectric continuum [2]. One popular CSM
solves the following Poisson–Boltzmann (PB) equation:

∇ ⋅ [𝜖(r)∇𝜙(r)] − 𝜅
2
(r)𝜙(r) = 𝜌(r), (1)

where 𝜙(r) is the electrostatic potential, 𝜖(r) is the dielectric constant at r, 𝜅(r)
is the Debye-Hückel parameter, and 𝜌(r) is the charge distribution of the solute.
Different numerical methods have been developed to solve the PB equation as
reviewed in Reference [2].

In PB CSM calculations, one needs to define the dielectric boundary between
the solute and the solvent appropriately [2]. A widely used scheme is to use a set
of interlocking spheres to define themolecular cavity. Various schemes have been
proposed to designate the radii of these spheres. They are often taken from the
Bondi radii [4]. In the highly parameterized SMD model, the solute atoms of the
same element adopt a fixed and optimized radius except forO atoms, whose sizes
depend on the solvent but not on their chemical environment [5]. On the other
hand, it is desirable to endow solute atoms with flexible radii since the shape of
the electron cloud associatedwith each atom changeswhen amolecule is formed.
The use of flexible atomic radii can lead to higher precisions [6–8] and can also
to some extent compensate for the failure of the PB equation [Equation (1)] to de-
scribe nonlinear effects [9].
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The simplest scheme for generating flexible atomic radii is probably to as-
sume that atomic radii depend linearly on atomic partial charges [10–12]. It is also
common to use atomic radii specially designed for PB calculations or developed
based on molecular dynamics simulations [6, 7]. These models provide a differ-
ent kind of flexibility in that different atom types are used to ascribe atomic radii.
In the united atom model for Hartree-Fock, atomic radii for heavy atoms are for-
mulated to rely on the detailed chemical environment, such as the number ofH
atomsattached to them, thenature of the chemical groups they arebonded to, and
the hybridization state [8]. Beyond the interlocking spheremodel, one canuse the
constant electron density contour obtained from quantum mechanical (QM) cal-
culations to define the molecular cavity [13, 14]. In this way, additional flexibility
can be gained because the variation in atomic radii is not limited by a finite num-
ber of atom types.

Our previous Gaussian charge distribution model (Gaussian model in short,
GM) provides another variant for generating variable atomic radii [15]. The GM
partitions theQMelectrondensity of amolecule into overlapping spherical atomic
domains. Then, the variable atomic radii can be naturally derived based on the
isodensity contour concept. Note that the way to partition the molecular electron
density is not unique. According to Bader’s atoms in molecules (AIM) theory, the
non-overlapping space enclosed within a zero flux surface surrounding the nu-
cleus defines the shape of an atom unambiguously [16]. From a different perspec-
tive, Hirshfeld introduced auxiliary weight functions to divide the molecular elec-
tron density into overlapping non-spherical atomic domains [17]. Then, the prod-
uct of the weight function and the molecular electron density yields the so-called
stockholder’s atomic domain.

As a semi-empirical model, the GM cannot closely resemble the QM electron
density of a molecule everywhere in space. The deviation is particularly large in
the core region, where the shapes of both the core and valence electron densi-
ties are very spiky. Since the core electrons are less likely to appear in the va-
lence region, they exert little influence on the formation of the atomic domains
in a molecule. Thus, we use only the QM valence electron density to build the
GM [15]. In this way, the stress on the GM to mimic the QM electron density is
lessened to some extent and the GM can better approximate the QM electron den-
sity in the bonding region. Variable van der Waals (vdW) radii were derived from
the GM for the H, C, N, O, S atoms in 31 small neutral molecules [15]. Interest-
ingly, only the sizes of theH atoms fluctuate significantly, while those of the other
heavy atoms showmuch less variations. Although the variable vdW radii from the
GM produce better solvation free energies than the Bondi radii in our quantum
mechanical/Poisson–Boltzmann/surface area (QM/PB/SA) calculations, the im-
provement is small, with the RMS error reduced from 1.71 to 1.38 kcal/mol [15].
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Here, our goal is to improve the GM by introducing point charges and other physi-
callymeaningful constraints for its optimization.Weshow that theaugmentedGM
can produce better variable vdW radii so that the accuracy of the PB CSM calcula-
tions can be further improved. The linear correlation between the variable atomic
radii and the atomic partial charges for different elements is also investigated.

2 Methods

2.1 HGM for deriving variable vdW radii

The central approximation for the GM is a superposition of atom-centered Gaus-
sian functions 𝜌G

𝑖
(r) to represent the molecular electron density,

𝜌(r) ≈

𝑁

∑

𝑖

𝜌
G

𝑖
(r)

=

𝑁

∑

𝑖

𝑞
G

𝑖

(√2𝜋𝜎
𝑖
)3
exp {−

1

2
(
r − R
𝑖

𝜎
𝑖

)

2

} , (2)

where𝑁 is the total number of atoms and R
𝑖
is the position of the 𝑖th nuclei. The

twoparameters, 𝑞G
𝑖
and𝜎

𝑖
give, respectively, themeasures of the electronic charge

associated with an atom and the extent to which the electron density is spread
out. Note that when 𝜎

𝑖
approaches zero, the Gaussian function reduces to the 𝛿

function. Thus, the parameters of the GM condense into a common point-charge
representation. In the following, two strategies are employed to further improve
the GM.

First, we add extra atom-centered point charges 𝑞
𝑖
to the above GM:

𝜌(r) ≈

𝑁

∑

𝑖

𝜌
G

𝑖
(r) + 𝑞

𝑖
(R
𝑖
). (3)

We refer to the modified GM as the hybrid Gaussianmodel (HGM) since it consists
of both diffuse Gaussian functions and discrete point charges. The HGM can de-
scribe the electron density of heavy atoms better as the charges 𝑞

𝑖
can be used

to represent their core electrons. We will show later that this is necessary for el-
ements of the third row and beyond in the periodic table as they possess more
than ten core electrons. Thus, the core electrons can be eliminated from the corre-
spondingGaussian functions. However, for the second-rowelements, the two core
electrons still need to be represented by the Gaussian function as in our previous
work [15]. Otherwise, the Gaussian functions would be electron deficient and be-
come less capable of describing the electron density in the bonding region. The
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total number of variational parameters {𝑞G
𝑖
, 𝜎
𝑖
, 𝑞
𝑖
} is increased to 3𝑁, which ren-

ders the HGMmore flexible than the GM.
For the above HGM, the electrostatic potential (ESP) at a point around the

molecule is given by:

𝑉
G

el
(r) =

𝑁

∑

𝑖

𝑍
𝑖
− 𝑞
𝑖

r − R
𝑖

−

𝑁

∑

𝑖

∫
𝜌
G

𝑖
(r

)

r − r
dr

, (4)

where 𝑍
𝑖
is the nuclear charge of the 𝑖th atom and the integral is over all space.

The deviation of 𝑉G
el
(r) from the QM ESP, 𝑉Q

el
(r), is evaluated in a least square

manner:

𝑅
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𝑘
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, (5)

where r
𝑘
is the position vector of a point between 1.4 times and 2.0 times the

vdW surface of the molecule. 𝑅
1
needs to be minimized for the optimization of

the HGM.
We use another constraint 𝑅

2
to provide extra control on the shape of the

Gaussian functions [15]. We define the following 𝑅
2
to require the number of elec-

trons produced by the HGM in the atom-centered spherical regions to approach
a certain value,

𝑅
2
=

𝑁

∑

𝑖
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𝐶𝑖

𝜌
Q

val
(r) + 𝑞

c,𝑖
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∫
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G
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𝑖
]
2
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𝜌
Q

val
(r)]2

. (6)

Here, 𝜌Q
val
(r) is the valence electron density from the ab initio QM calculations

and 𝐶
𝑖
represents the spherical region centered on the 𝑖th nuclei. We do not use

the QM all-electron density in the above equation since this would generate too
much stress on the HGM as explained in the previous section. For the third-row
elements, we use 𝑞

c,𝑖
, which is set to 10, tomakeup for the number ofmissing core

electrons. However, for the second-row elements, 𝑞
c,𝑖
is set to 0 instead of 2. Other-

wise, the resultingGaussian functionswouldbe too spiky and fail tomimic theQM
valence electron density in the bonding region satisfyingly. Thus, the number of
electrons in the core region would be underestimated by the Gaussian functions
to some extent. However, the sacrifice of the accuracy in the core region would
be compensated by the improved accuracy in the bonding region, which is much
more important for defining the atomic domain. The sizes of the atom-centered
spherical regions 𝐶

𝑖
need to be carefully chosen in order for the two constraints

𝑅
1
and 𝑅

2
to be ideally minimized. Based on numerical tests, for different ele-

ments, we choose the radius of 𝐶
𝑖
to be 40% of their Bondi radii.

Our second strategy for improving the HGMaims at the electron density in the
bonding region. The HGM should appropriately capture the changes occurring
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to the shapes of atomic domains due to the influences from different chemical
environments. To achieve this, we further require the number of valence electrons
in certain off-atom-centered regions to be reproduced by the HGM as closely as
possible. We define the third constraint𝑅

3
to measure the difference between the

HGM and the QM valence electron density within the off-atom-centered regions:

𝑅
3
=

𝑀

∑

𝑖

[∫
𝐵𝑖

𝜌
Q

val
(r) − ∑

𝑁

𝑗
∫
𝐵𝑖

𝜌
G

𝑗
(r)]
2

[∫
𝐵𝑖

𝜌Q(r)]2
, (7)

where𝑀 runs over all the covalent bonds in amolecule. The integral is performed
in a small sphere, 𝐵

𝑖
, somewhere in between the two nuclei. We first position

the 𝐵
𝑖
at the centers of covalent bonds, i. e. the boundary points or bond critical

points between bonded atoms [18–21]. However, this does not lead to substantial
improvements. We try other options and find the minima of the valence electron
densities along bond axes are much better choices for locating off-atom-centered
regions, 𝐵

𝑖
. For the C−O and C−H bonds, such points are closer to the nuclei

of the C atoms, only ca. 0.3 bohr from them (see Figure 4). Based on numerical
tests, the optimal radius of 𝐵

𝑖
is set to 0.36 bohr, much smaller than the radii of

atom-centered regions.
We derive the variable vdW radii from the HGMwith the same strategy as that

in our previous work [15], i. e. using the isodensity contour concept. For atom 𝑖 of
the element 𝐼, the atomic boundary is reached when the Gaussian function 𝜌

G

𝑖
(r)

drops to a fixed isodensity contour value, 𝜌iso
𝐼
:

𝜌
G

𝑖
(r)|
𝑟=𝑟𝑖,𝐼

= 𝜌
iso

𝐼
, (8)

where 𝑟
𝑖,𝐼
is the variable vdW radius of atom 𝑖. Note that the average of the variable

vdW radii derived this way depends on the value of 𝜌iso
𝐼
, i. e. the former would

increase with the decreasing of the latter. We adjust the isodensity contour value,
𝜌
iso

𝐼
, so that the average vdW radius for each element 𝐼 is equal to its Bondi radius:

1

𝑛

𝑛

∑

𝑖

𝑟
𝑖,𝐼

= 𝑟
𝐼,Bondi

. (9)

Here 𝑛 is the total number of atoms belonging to chemical species 𝐼 in a test set
of molecules.

Finally, we emphasize that the gist of our approach is to generate high quality
spherical atomic domains from theQMelectron density. Other spherical functions
maybe used to build themodel to approximate the QMelectron density anddiffer-
ent constraints can be designed for its optimization. The optimal choices for the
spherical functions and constraints depend on the nature of the molecular den-
sity. We summarize the computational protocol for the construction of the HGM
in Figure 1.
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Figure 1: Flowchart indicating the computational protocol used for deriving the HGM.

2.2 Solvation energy calculation

The calculated solvation free energy includes the electrostatic and nonpolar con-
tributions [22, 23],

𝐺
sol

= 𝐺
el
+ 𝐺
np
. (10)

In our QM/PB/SAmodel, the electrostatic energy, 𝐺
el
, is given by:

𝐺
el
= 𝐺
RF

+ 𝐺
wfd

, (11)

where𝐺
RF

is the electrostatic interaction energy between the solute and the reac-
tion field

𝐺
RF

=
1

2
∫ 𝜌(r)𝜙

RF
(r)dr +

1

2
∑

𝑖

𝑍
𝑖
𝜙
RF
(r). (12)
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The reaction field, 𝜙
RF
(r), is calculated as:

𝜙
RF
(r) = 𝜙

solvent
(r) − 𝜙

vac
(r), (13)

where 𝜙
solvent

(r) and 𝜙
vac

(r) are the ESP obtained by solving the PB equation
[Equation (1)] in solvent and in vacuum. The second term, 𝐺

wfd
, in Equation (10)

is the energy associated with the distortion of the wave function in going from the
vacuum to the solution [23]

𝐺
wfd

= ⟨𝜓
s 
𝐻
0
𝜓
s
⟩ − ⟨𝜓

g 
𝐻
0
𝜓
g
⟩ . (14)

Here, 𝛹𝑔 is the gas phase solute wave function, 𝛹𝑠 is the solvated solute wave
function, and 𝐻

0 is the gas phase Hamiltonian. We solve the following Kohn-
Sham (KS) equation (in Hartree a. u.) [24–26],

(−
1

2
∇
2
+ 𝑣
KS

eff
[𝜌](r) + 𝜙

RF
(r)) 𝜓

𝑖
(r) = 𝜖

𝑖
𝜓
𝑖
(r), (15)

where, 𝜖
𝑖
is the eigenvalue of the 𝑖th orbital 𝜓

𝑖
(r) and the KS effective potential

𝑣
KS

eff
[𝜌](r) contains theHartree, the exchange-correlation, and the ion-electronpo-

tentials. The electron density is generated via:

𝜌(r) = ∑

𝑖

𝑓
𝑖

𝜓𝑖(r)


2

, (16)

where𝑓
𝑖
is the occupation number of𝜓

𝑖
(r). The outlying charges are not confined

to the solute cavity and are treated as being immersed in a high dielectricmedia of
solvent water. Since Eqs. (1), (13), and (15) are coupled, we solve them iteratively
until self-consistency is reached [27].

The nonpolar energy, 𝐺
np
, is evaluated as a surface area (SA) dependent

term [22]
𝐺
np

= 𝜎𝐴, (17)

where 𝐴 is the solvent accessible surface area [28] constructed by rolling a probe
sphere of 1.4 Å along the vdW surface and 𝜎 is a surface tension coefficient set
to 0.006 kcal/molÅ−2. This crude nonpolar energy model is much less sensitive
to the variation of the atomic radii than the electrostatic part. Since our goal is
mainly to improve the accuracy of the electrostatic calculations, this model is ad-
equate for our purpose.

3 Computational details
We build the HGM for the 31 small neutral molecules (Figure 2), which were stud-
ied in our previous work [15, 27]. These molecules are selected because their sol-
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Figure 2: The 31 small neutral molecules studied in this work. The number in parenthesis is the
gas-phase dipole moment (debye).

vation free energies have been well measured and they are frequently encoun-
tered in organic, biological, and pharmaceutical chemistry research. Following
Reference [15], the 31molecules are divided into three groups: acyclic compounds
(molecule 1–19), carbocyclic compounds (molecule 20–24), and heterocyclic com-
pounds (molecule 25–31). Within each group, the molecules are ordered by their
dipole moments.
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Table 1: The initial guesses of Gaussian parameters, {𝑞G
𝑖
, 𝜎

𝑖
, 𝑞

𝑖
}, for five elements.𝑍

𝑖
and 𝑞MK

are nuclear charges and Merz–Kollman partial atomic charges.

H C N O S

𝑞
G

𝑖
(e−) 𝑍

𝑖
− 𝑞

𝑖
− 𝑞

MK

𝜎
𝑖
(a.u.) 0.7 1.1 1.0 0.8 1.7

𝑞
𝑖
(e−) 0 0 0 0 10

All geometries were optimized by density functionary theory (DFT) calcula-
tions in gas phase with the 6-31G(d) basis set using the Gaussian09 package [29].
The Becke3LYP functional [30–33] is used for the electron exchange and cor-
relation. The QM charge density and ESP were generated on fine grids of 6−8
points/bohr using the 6-31G(d) basis set and “cubgen” utility of the Gaussian09
suite of programs.

We use the simplex method [34] to minimize the following objective function
in order to optimize the HGM,

𝑅 = 𝛼𝑅
1
+ 𝛽𝑅
2
+ 𝛾𝑅
3
, (18)

where the weights associated with the three constraints 𝛼, 𝛽, and 𝛾 are set to 0.6,
0.4, and 0.5, respectively. The initial values for {𝑞G

𝑖
, 𝜎
𝑖
, 𝑞
𝑖
} for the five elements are

listed in Table 1. During the parameter optimization, 𝑞
𝑖
would fluctuate around 0

and 10 for the second-row and third-row elements, respectively. We find the total
number of electrons in a molecule is well conserved in the optimized HGM.

The variable vdW radii are derived form theHGMusing the isodensity contour
𝜌
iso deduced from Equation (9). Then, they are used to define the molecular cav-

ity in the QM/PB/SA model we developed previously [27]. We coupled a QM code
SIESTA [35] with the PB solver in the University of Houston Brownian dynamics
(UHBD) program [36, 37]. The coupled KS and PB equations are solved iteratively
until the solute electron density and the reaction field are self-consistent [27, 38].
The default double-𝜁 plus single polarization basis set in SIESTA was used and
the grid cutoff was set to 100 Rydberg. The nonpolar energy is calculated using
the UHBD program [36, 37]. These computational details are the same as those in
Reference [15].

We also test the variable vdW radii using the polarizable continuum model
(PCM) as implemented in the Gaussian09 package [29]. We used the 6-31G(d) and
6-311++G(d,p) basis sets for the electrostatic PCM calculations. The scaling factor
𝛼 for the Bondi radii is set to its default value of 1.1 for the two basis sets. For
the variable vdW radii, 𝛼 is set to 1.1 and 1.14 for the 6-31G(d) and 6-311++G(d,p)
basis sets, respectively. In our calculations, the nonpolar part is still calculated
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from the SA based formula [Equation (17)]. We find the SA dependent nonpolar
energy model works quite well for the 31 neutral molecules studied in this work.
We further use the SMD model in the Gaussian09 package [29] for comparison
purpose.

4 Results and discussions

4.1 ESP and electron density: GM vs. HGM

The QM ESP on the molecular surface is well reproduced by the two GMs and the
Merz–Kollman point-charge model [39] as compared in Figure 3 (a). For carbo-
cyclic compounds and heterocyclic compounds, √𝑅

1
is less than 0.2. Larger er-

rors are seen in several acyclic compounds with small dipole moments, such as
butane. The total number of QM valence electrons in the atom-centered regions is
also well reproduced by the two GMs as shown in Figure 3 (b). The largest relative
root mean square (RRMS) errors of the GM and the HGM are ca. 0.27 and 0.25,
respectively. For the former, √𝑅

2
contains large fluctuations, while for the latter

√𝑅
2
is more stable and its average is ca. 0.1.
The RRMS errors of the two GMs for the number of electrons in the off-atom-

centered regions are compared in Figure 3 (c). For the GM, abnormally large√𝑅
3

occurs to molecules 7, 8 and 10, which contain S atoms. This is mainly caused by
themismatchbetween the number of electrons represented by the GM (ca. 16) and
the number of QM valence electrons (ca. 6) for S atoms. For other molecules,√𝑅

3

of the GM are much smaller, with an average ca. 0.5. On the other hand, √𝑅
3
of

the HGM are reduced to ca. 0.25 for all 31 molecules. These results suggest that
the HGM approximates the QM valence electron density better than the GM.

The electron densities generated by the two GMs along the axes of the O−C

bond in acetic acid and theN
2
C=O bond in 1-methyl-uracil are illustrated in Fig-

ure 4. The QM valence electron densities are also depicted for comparison. We
can see that the QM electron density along the double C=O bond is bulkier than
that along the single C−O bond. This is not surprising since there is more build-
up of the electron density in the bonding region for the double C=O bond than
for the single C−O bond. Consequently, the O atom in the C−O single bond is
smaller than that in the N

2
C=O double bond. However, this difference is clearly

underestimated by the GM. In contrast, the HGM adequately differentiate the two
situations, and therefore the difference in the sizes of the two types of O atoms
increases sufficiently.
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Figure 3: RRMS errors of (a) the electrostatic potential, (b) the total number of valence electrons
in atom-centered regions, and (c) the total number of valence electrons in off-atom-centered
regions produced by the Merz–Kollman model (open up triangle), the GM (dark circle), and the
HGM (solid square).

4.2 Variable vdW radii for QM/PB/SA calculations

We extract the variable vdW radii from the HGM and the number of H, C, N, O
atoms in 31 molecules are 197, 114, 29, and 16, respectively. As shown in Table 2,
different isodensity contours need to be used for the four elements in order for
their average radii to approach the Bondi radii. The full width at half maximum
𝑤
𝑖
of the Gaussian function 𝜌

G

𝑖
(r) is proportional to the Gaussian parameter 𝜎

𝑖

[Equation (2)], i. e.𝑤
𝑖
= 2.3548𝜎

𝑖
. For the four elements, the averagewidthof𝜌G

𝑖
(r)

increase in the following order: �̄�
H
< �̄�
O
< �̄�
N
< ̄𝑤
C
. For each element, �̄� and𝜌

iso

from the HGM are slightly lower than those from the GM.
The standard deviation 𝜎 of the variable vdW radii reveals their fluctuation

intensities. For the GM, these variations decrease in the following order: H ≫ C

>O ≃N. Thus, only the sizes of theH atoms contain significant fluctuations. For
the HGM, the largest fluctuation in the atomic radii still occurs to the H atoms,
albeit it decreases by ca. 10%. On the other hand, the fluctuations in the sizes of
both the N andO atoms increase noticeably, almost comparable to that of theH



Variable van der Waals Radii | 693

Figure 4: Electron densities along theO−C bond axis of acetic acid andO=CN
2
bond axis of

1-methyl-uracil produced from (a) the QM model and GM and (b) the QM model and HGM.

Table 2: Bondi radii 𝑟
Bondi

and a comparison of key parameters for the GM and HGM: the average
full width at half maximum �̄� of the Gaussian functions, the isodensity contour 𝜌iso, and the
standard deviations 𝜎 of the variable vdW radii.

H C N O

𝑟
Bondi

(Å) 1.20 1.70 1.55 1.52

GM
�̄� (a.u.) 1.797 2.809 2.312 1.990

𝜌
iso (10−3 a.u.) 1.3 5.7 5.9 2.8

𝜎 (a.u.) 0.210 0.061 0.025 0.028

HGM
�̄� (a.u.) 1.686 2.656 2.141 1.947

𝜌
iso (10−3 a.u.) 0.98 4.6 3.5 2.3

𝜎 (a.u.) 0.188 0.065 0.144 0.142

atoms. Little change occurs to the sizes of theC atoms, whose fluctuation remains
small. In the following, we use vdW-r-GM, and vdW-r-HGM to refer to the variable
vdW radii derived from the GM and HGM, respectively.

The vdW-r-HGM of atoms in the four selected molecules are provided in Table
S1 of the Supporting Information. ForO atoms, their radii are sensitive to their lo-
cal chemical environments, i. e. the coordination number and the bonding atoms.
We can see that the sizes of double-bonded O atoms are usually larger than the
Bondi radius of 1.52 Å, in contrast the radii of single-bonded O atoms are often
less than it. However, theO atom in water molecule is a bit larger than the Bondi
radius. This is mainly because the twoH atoms in a water molecule only have one
electron each. Thus, the repulsion between O andH atoms is relatively week so
that the electron cloud of the former can spread out more in space.
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Table 3: RMS error (in kcal/mol) in the calculated hydration energies of the 31 molecules divided
into three groups. The Bondi radii, the variable vdW radii from the GM, and that from the HGM
are used to define the dielectric boundaries for the QM/PB/SA calculations.

acyclic carbocyclic heterocyclic total

Bondi 1.39 1.69 2.38 1.71

GM 1.38 1.69 1.14 1.38

HGM 1.01 1.52 0.80 1.07

We calculate the solvation free energies for 31 neutral molecules with our
QM/PB/SA model to test the Bondi radii, vdW-r-GM and vdW-r-HGM. The experi-
mental solvation free energies are used to benchmark the QM/PB/SA calculations
using the three sets of atomic radii. The use of the Bondi radii leads to a total RMS
error of 1.71 kcal/mol (Table 3). The largest RMS error of 2.38 kcal/mol occurs to
the heterocyclic compounds. The use of the vdW-r-GM reduces the total RMS er-
ror by 0.33 kcal/mol. However, the vdW-r-GM produces improvement only for the
heterocyclic compounds. It is encouraging that the use of the vdW-r-HGMdoubles
this improvement produced by the vdW-r-GM. With a reduction of 0.64 kcal/mol,
the total RMS error is now only ca. 1.0 kcal/mol. Moreover, the vdW-r-HGM pro-
duces improvements for all three types of molecules, which increase in the fol-
lowing order: carbocyclic < acyclic < heterocyclic. For heterocyclic compounds,
the reduction in the RMS error reaches 1.58 kcal/mol.

The calculated solvation free energy consists of the electrostatic and nonpo-
lar contributions [Equation (10)]. These two contributions calculated from using
the three different radii are compared for the four selected molecules in Table 4.
We see that the electrostatic part dominates the solvation free energy, although
the small positive nonpolar contribution is not negligible. Further inspection dis-
closes that the nonpolar part is only slightly altered by the use of different sets of
atomic radii and the change is within 0.1 kcal/mol. Thus, the improved accuracy
from using the vdW-r-HGM is mainly due to the electrostatic part.

The correlation between the experimental and calculated hydration energies
using the vdW-r-GM and vdW-r-HGM for these 31 molecules is plotted in Figure 5.
When the vdW-r-GM is used, solvation free energies of acyclic compounds are sys-
tematically overestimated (too negative), while those of heterocyclic compounds
are systematically underestimated (too positive). Those systematic errors are sig-
nificantly reduced when the vdW-r-HGM is used. For carbocyclic compounds, the
experimental hydration energies are also better reproduced. The correlation coef-
ficients𝑅 between experimental and calculated hydration energies are 0.971 and
0.985 for the vdW-r-GM and vdW-r-HGM, respectively.
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Table 4: Experimental and calculated hydration free energies from the QM/PB/SA model for the
four selected molecules (in kcal/mol).

molecule model 𝐺
el
𝐺
np

𝐺
sol

exptl

H
2
O Bondi −5.45 0.74 −4.71

GM −5.46 0.74 −4.72 −6.30

HGM −6.22 0.72 −5.50

acetic Bondi −8.94 1.19 −7.75

acid GM −9.24 1.19 −8.05 −6.70

HGM −7.64 1.20 −6.44

4-cresol Bondi −5.81 1.65 −4.16

GM −6.34 1.69 −4.65 −6.13

HGM −8.01 1.63 −6.38

9-methyl- Bondi −21.21 1.97 −19.24

guanine GM −23.06 1.98 −21.08 −22.40

HGM −25.34 1.96 −23.38

Figure 5: Correlation plots between the experimental and calculated hydration free energies for
31 molecules. The variable vdW radii generated from the GM (a) and HGM (b) are employed to
define the molecular cavity in the QM/PB/SA model.

4.3 Charge dependent radii for H atoms

Previous CSM calculations by Tawa et al. suggested that the calculated solvation
free energies of molecules are particularly sensitive to the value of the hydrogen
radius [40]. The variable vdW radii for theH atoms derived from the two GMs are
plotted against theMulliken atomic partial charges in Figure 6. The linear correla-
tion is identified between the two parameters, i. e. the vdW radii decrease almost
linearly with the increasing positive charges. We fit the variable vdW radii 𝑟

𝑖,𝛼
to
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Figure 6: Correlation plot between the Mulliken partial charges and variable vdW radii derived
from the GM and HGM for H atoms in (a) acyclic, (b) carbocyclic, and (c) heterocyclic
compounds.

the Mulliken charges 𝑞M
𝑖,𝛼
with the linear regression model,

𝑟
𝑖,𝛼

= 𝐴
𝛼
+ 𝐵
𝛼
𝑞
M

𝑖,𝛼
, (19)

where 𝛼 refers to the three types of compounds (Table 5). The HGM produces
steeper slopes (more negative 𝐵

𝛼
) than the GM for all three types of compounds.

The discrepancy between the two GMs is particularly large for the heterocyclic
compounds. The correlation coefficients from theHGMare greater than 0.7, mean-
while those from the GM are less than 0.5.

We further divide the H atoms into three groups according to the elements
they are bounded to: oxygen, nitrogen, and carbon. The average radii 𝑟

ave
of the

three types of H atoms and the standard deviations from the GM and the HGM
are compared in Table 6. For both the GM and HGM, H atoms bonded to the less
electronegative C are slightly larger than the Bondi radius, whereas those bonded
to the more electronegative N are smaller than the Bondi radius. However, the
sizes of hydroxyl hydrogens are overestimated by the GM. In our previous work,
we had to rectify this defect by artificially setting the radii of hydroxyl hydro-
gens to 1.08 Å so that the computed solvation energies of alcohol molecules can
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Table 5: The linear regression parameters (Equation 19) for the acyclic, carbocyclic, and
heterocyclic compounds: 𝐴 and 𝐵 are the fitting coefficients and 𝑅 stands for the correlation
coefficient.

GM HGM
𝐴 𝐵 𝑅 𝐴 𝐵 𝑅

acyclic 1.261 −0.313 0.28 1.296 −0.657 0.74

carbocyclic 1.240 −0.320 0.32 1.259 −0.507 0.85

heterocyclic 1.172 −0.143 0.48 1.302 −0.808 0.94

Table 6: Comparison of the GM and the HGM: average atomic radii (𝑟
ave
) ofH atoms that are

bounded toO (H𝑎), N (H𝑏), and C atoms (H𝑐) and the standard deviations (s.d.) from the mean,
which is the Bondi radius.

H𝑎 H𝑏 H𝑐

GM
𝑟
ave

(Å) 1.20 1.14 1.21

s.d. (a.u.) 0.0082 0.21 0.22

HGM
𝑟
ave

(Å) 1.08 1.04 1.23

s.d. (a.u.) 0.04 0.04 0.08

be more accurate [15]. It is encouraging that this optimal size is naturally pro-
duced by the HGM. Thus, the too large sizes of hydroxyl hydrogens from the GM
are mainly caused by its inadequate accuracy in the bonding region. We also see
that the sizes of hydroxyl hydrogens derived from the GM exhibit little fluctuation,
while the variations in the sizes of all three types of H atoms from the HGM are
similar.

4.4 Transferability of variable vdW radii

The development of CSM has a long history and various implementations are
available for solving the PB equation. We further test the transferability of our
variable vdW radii in PCM calculations. However, the nonpolar part of the solva-
tion energy is still evaluated as the SA dependent term [Equation (17)]. The highly
parameterized SMD model is also employed for comparison purpose.

The RMS errors in the solvation energies for the 31 molecules produced
by the four schemes are compared in Table 7. For the Bondi radii, the to-
tal RMS error from the PCM calculations using the 6-31G(d) basis set is a bit
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Table 7: RMS errors (in kcal/mol) in the hydration energies of the 31 molecules obtained from
the PCM and SMD calculations. The Bondi radii, the variable vdW radii from the GM, HGM, and
HGM-𝑙H are used to define the molecular cavity in the PCM.

acyclic carbocyclic heterocyclic total

6-31G(d)
Bondi 1.01 1.19 2.03 1.33

GM 1.32 1.31 1.03 1.26

HGM 1.01 1.33 0.65 1.00

HGM-𝑙H 0.93 1.07 0.98 1.04

SMD 0.84 0.88 1.93 1.18

6-311++G(d,p)
Bondi 1.06 1.18 0.94 1.06

GM 1.05 1.30 1.21 1.13

HGM 0.87 1.20 0.84 0.93

HGM-𝑙H 0.88 0.96 0.83 0.88

SMD 0.63 0.81 0.91 0.73

lower than that from our QM/PB/SA calculations using the double-𝜁 plus sin-
gle polarization basis set (Table 3). The use of the vdW-r-GM produces lit-
tle improvement, i. e. less than 0.1 kcal/mol. In contrast, the vdW-r-HGM sig-
nificantly reduces the total RMS error by more than 0.3 kcal/mol. The im-
provement mainly comes from the heterocyclic compounds. This is consistent
with the results from the QM/PB/SA calculations. The SMD model is very ac-
curate for the acyclic and carbocyclic molecules. However, the RMS error is
a bit large for the heterocyclic molecules. With the use of the 6-31G++(d,p) ba-
sis set, the RMS errors from using the Bondi radii are significantly lowered.
The vdW-r-GM becomes slightly worse than the Bondi radii, however the vdW-
r-HGM remains superior to the Bondi radii, especially for the acyclic com-
pounds. The SMD model produces the most accurate results for all three types
of compounds.

There are two ways to apply the variable vdW radii in the CSM calculations.
For the direct use of our approach, one needs to construct the HGM for the tar-
get molecules following the protocol designed in this work. Alternatively, one can
avoid the efforts of building the HGM and simply use the resulting variable vdW
radii. This will be highly desirable for large molecules, for which the construction
of the HGM can be very expensive. Then, it is necessary to relate the variation of
atomic radii to some chemical descriptor. ForH atoms, the atomic partial charge
turns out to be a good chemical descriptor. We can take advantage of the linear
relationship between the atomic radii and atomic partial charges forH atoms.We
assign the charge-dependent radii to H atoms based on Equation (19). For other
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heavy atoms, we still use the Bondi radii to define their sizes since a good chem-
ical descriptor linked to the variation of atomic sizes is yet to be found. We re-
fer to this scheme as HGM-𝑙H to emphasize the fact that only the H atomic radii
are flexible. Based on our numerical tests, the linear regression model from the
GM is better for acyclic molecules, while for carbocyclic and heterocyclic com-
pounds, the linear regression model from the HGM is superior (Table 5). The fi-
nal HGM-𝑙H model is also examined in the PCM calculations. As shown in Ta-
ble 7, for the 31 molecules studied here, the atomic radii from the HGM-𝑙H are
of similar quality as those from the HGM when the small 6-31G(d) basis set is
used. For the large 6-311++G(d,p) basis set, the former is slightly better than the
latter.

5 Conclusions
We developed a semi-empirical model, HGM, to incorporate flexibility into the
Bondi radii. This approach involves partitioning themolecular density into spher-
ical atomic domains and taking advantage of the iso-density contour concept. The
improvement of the HGM over the GM mainly stems from its more accurate de-
scription of the electron density in the bonding region. The variable vdW radii
from the HGM are superior to those from our previous GM as demonstrated by
their applications in our QM/PB/SA calculations as well as in the PCM calcula-
tions. The HGM produces variable vdW radii for not onlyH atoms but alsoN and
O heavy atoms. However, a linear correlation between the variable vdW radii and
the atomic partial charges is only identified for theH atoms.
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