Skip to main content
Article
Diffusion of degenerate minority carrier in a p-type semiconductor
Physics
  • Christopher P. Weber, Santa Clara University
  • Eric A. Kittlaus
Document Type
Article
Publication Date
2-7-2013
Publisher
American Institute of Physics Publishing
Abstract

We report ultrafast transient-grating experiments on heavily p-type InP at 15 K. Our measurement reveals the dynamics and diffusion of photoexcited electrons and holes as a function of their density n in the range 2  ×  1016 to 6  ×  1017 cm−3. After the first few picoseconds, the grating decays primarily due to ambipolar diffusion. While, at low density, we observe a regime in which the ambipolar diffusion is electron-dominated and increases rapidly with n, it appears to saturate at 34 cm2/s at high n. We present a simple calculation that reproduces the main results of our measurements as well as of previously published measurements that had shown diffusion to be a flat or decreasing function of n. By accounting for effect of density on charge susceptibility, we show that, in p-type semiconductors, the regime we observe of increasing ambipolar diffusion is unique to heavy doping and low temperature, where both the holes and electrons are degenerate; in this regime, the electronic and ambipolar diffusion are nearly equal. The saturation is identified as a crossover to ambipolar diffusion dominated by the majority carriers, the holes. At short times, the transient-grating signal rises gradually. This rise reveals cooling of hot electrons and, at high photocarrier density, allows us to measure ambipolar diffusion of 110 cm2/s in the hot-carrier regime.

Comments

Copyright © 2013 American Institute of Physics Publishing. Reprinted with permission.

Citation Information
Weber, C. P., & Kittlaus, E. A. (2013). Diffusion of degenerate minority carriers in a p-type semiconductor. Journal of Applied Physics, 113(5), 053711. https://doi.org/10.1063/1.4790275