Skip to main content
Charge Transfer Assisted by Collective H-Bonding Network Dynamics
Angewandte Chemie International Edition (2009)
  • Omar F Mohammed, California Institute of Technology
  • Christina M Othon, Wesleyan University
  • Oh-Hoon Kwon, California Institute of Technology
  • Ahmed H Zewail, California Institute of Technology

Although there have been numerous studies of solvation, the role of solvent specific and collective interactions, especially for charge-transfer processes, remains difficult to unravel. Here, we report, using femtosecond fluorescence up-conversion and steady-state spectroscopic measurements, studies of well-designed single-sited formylperylene (FPe) in binary solvents. One of the solvents (methanol, MOH) can selectively hydrogen (H) bond to the carbonyl (C=O) site, while the other (acetonitrile, ACN) cannot, but both have similar polarity ( for MOH and for ACN). The results reveal that ultrafast charge transfer from the perylene unit to the carbonyl group of FPe is facilitated by site-specific H-bonding interactions between the carbonyl oxygen of the excited moiety and the protic solvent networks. The time scales involved are 13 ps for the reformations, including rearrangements, of H-bond networks and 35-60 ps, depending on MOH mole fraction, for the bimolecular diffusion. This notion of direct involvement of solvent networks and delocalization of charges on the solvent is not apparent in a continuum dielectric description of solvation, and is relevant to other chemical and biological processes involving charge separation.

Publication Date
Summer July 19, 2009
Citation Information
Omar F Mohammed, Christina M Othon, Oh-Hoon Kwon and Ahmed H Zewail. "Charge Transfer Assisted by Collective H-Bonding Network Dynamics" Angewandte Chemie International Edition Vol. 48 Iss. 34 (2009)
Available at: