Quantifying Photodamage by Noninvasive Mesoscopic Skin Imaging

Christina E. Borchers, Wright State University

Available at: https://works.bepress.com/christina_borchers/14/
Quantifying Photodamage by Noninvasive Mesoscopic Skin Imaging


Department of Dermatology, Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH
Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH & Dayton Veterans Administration Medical Center

Abstract

Ultraviolet light exposure is the major cause for photodamage. Pathologic effects of UV radiation include precancerous actinic keratosis which can progress into squamous cell carcinoma. UV exposures commonly encountered include sunlight and indoor tanning bed exposure. Actinic necrosis (precancerous actinic keratosis and non-melanoma skin cancer) are highly prevalent in elderly patients with fair skin, and those with lower immune systems. The impact on our healthcare system is substantial, as currently the average annual cost to treat non-melanoma skin cancer is 5 billion dollars [1]. Though often a source of considerable morbidity due to extensive surgical procedures to remove the skin cancers in the normal populations, squamous cell carcinomas are a common source of mortality in immunosuppressed populations, including solid organ transplant recipients. For prevention and accurate intervention planning, it is crucial to predict if patients have actinic neoplasia. In this study, we investigated the change in optical properties and vascular parameters to characterize skin tissue based on photodamage. Through an IRB-approved clinical trial at the Wright State Physician’s Pharmacology Translational Unit, 55 test subjects over the age of 35 years with fair skin and various levels of skin damage were included. Their level of ultraviolet skin damage on their bilateral forearms was photographed and categorized by both practicing dermatologists and by noninvasive mesoscopic imaging technique Spatial Frequency Domain Imaging (SFDI). The SFDI generated maps of absorption, scattering, hemoglobin concentrations, and tissue oxygen saturation. Previously, our group has reported pilot studies that SFDI can be used to identify actinic damage [2]. The Dermatologists scored the same forearm image according to Global Assessment Severity Scale ranging from 0 (less severe) to 9 (the most progressed stage of skin damage) using a validated tool [3]. SFDI was used to assess levels of scattering and hemoglobin concentration in the subjects’ skin. The dermatologists’ scores showed agreement over the extreme stages of skin damage, but in the moderate groupings more variance existed. Further methods to find the best statistical method will be explored, along with different criteria to correlate the SFDI results. Ideally, a non-invasive imaging (such as SFDI) will be used in clinical settings for frequent monitoring of patients at high risk for actinic neoplasia.

Hypothesis

We hypothesized that there is a correlation between the data gathered by the non-invasive mesoscopic imaging and the clinical dermatologists’ skin damage assessment.

Methods

SFDI Imaging

The wide-field, non-contact device gathers data on the basis of multiple parameters: reflectance mode, vascular mode, and fluorescence imaging mode. Maps of absorption and scattering, hemoglobin concentrations, and tissue oxygen saturation were graphed for each subject’s arm (see Table 1). The WSU Engineering Department analyzed results using a custom MATLAB software to fit data at each pixel. A noninvasive imaging apparatus (SFDI)

![Image of a noninvasive imaging apparatus](image1)

Figure 1. Mesoscopic Imaging Apparatus (SFDI)

(a) Schematic diagram of the SFDI apparatus.
(b) SFDI instrument for imaging lesions on patient arm.

Results

Figure 2. Clinical Assessment of Photodamage

Dermatologists scored the same forearm image according to Global Assessment Severity Scale via McKenzie et al guidelines [3]. The Dermatologists scored the same forearm image according to Global Assessment Severity Scale via McKenzie et al guidelines [3]. The Dermatologists scored the same forearm image according to Global Assessment Severity Scale via McKenzie et al guidelines [3]. The Dermatologists scored the same forearm image according to Global Assessment Severity Scale via McKenzie et al guidelines [3].

Figure 3A. (a), (b), (c) Absorption imaging maps for three subjects at 590nm. Red arrows highlight the visible lesion for subject with severe photodamage (P3). (d) Histograms of the absorption parameter for the subjects with mild (P1), moderate (P2), and severe damage (P3) at 590 nm.

Figure 3B. Physiological parameter quantified from absorption maps. (a) shows the spatial map for each parameter for subjects with mild (P1), moderate (P2), and severe (P3) photodamage. Arrows highlight the visible lesion for subject P3. (b) shows the summary histogram of each parameter.

Summary and Conclusions

Dermatologic Analysis

- The Dermatologists’ scores had variance both within their internal controls and also between each other’s assessments. Scores tended towards the middle values (Fig. 2). Thus, their ratings were grouped into low (scores <4), medium (scores >3 and <7), and high (scores >7) levels of photodamage.

SFDI Mapping

- SFDI can provide quantitative maps along the parameters of optical and vascular modes to classify precancerous lesions in humans.

- Photodamage can be correlated to levels of scattering and hemoglobin concentration, and data from A, B, C, D, E, and Stb2 was used.

- To classify the photodamage mesoscopic imaging data an Artificial Neural Network (ANN) was found to provide accuracy that was better than chance.

- Through further quantified monitoring, additional information on the progress of precancerous activity is given to patients.

- We believe this non-invasive technology could be used to not only assess skin damage but also to a tool as a future study field carcinogenesis [4].

Acknowledgments

This research was supported in part by grants from the National Institutes of Health grant HL062996, ES020866, AG048946, AR070010 (JBT), Veteran’s Administration Merit Award S101BX008083 (JBT). We appreciate the assistance of Ms. Elizabeth Cates of the Pharmacology Translational Unit.

References