Skip to main content
Article
Multitrait-multimethod change modeling
AStA – Advances in Statistical Analysis
  • Christian Geiser, Utah State University
  • Michael Eid, Freie Universität Berlin
  • Fridtjof W. Nussbeck, Bielefeld University
  • Delphine S. Courvoisier, University of Geneva
  • David A. Cole, Vanderbilt University
Document Type
Article
Publisher
Springer
Publication Date
6-1-2010
DOI
10.1007/s10182-010-0127-0
Abstract
Geiser (Multitrait-multimethod-multioccasion modeling, 2009) recently presented the Correlated State-Correlated (Methods-Minus-1) [CS-C(M−1)] model for analysing longitudinal multitrait-multimethod (MTMM) data. In the present article, the authors discuss the extension of the CS-C(M−1) model to a model that includes latent difference variables, called CS-C(M−1) change model. The CS-C(M−1) change model allows investigators to study inter-individual differences in intra-individual change over time, to separate true change from random measurement error, and to analyse change simultaneously for different methods. Change in a reference method can be contrasted with change in other methods to analyse convergent validity of change.
Citation Information
Christian Geiser, Michael Eid, Fridtjof W. Nussbeck, Delphine S. Courvoisier, et al.. "Multitrait-multimethod change modeling" AStA – Advances in Statistical Analysis Vol. 94 Iss. 2 (2010) p. 185 - 201
Available at: http://works.bepress.com/christian-geiser/39/