Skip to main content
Article
Integrated Geophysical and Hydrothermal Models of Flank Degassing and Fluid Flow at Masaya Volcano, Nicaragua
Geochemistry, Geophysics, Geosystems
  • S. C.P. Pearson, GNS Science
  • K. Kiyosugi, University of South Florida
  • H. L. Lehto, University of South Florida
  • J. A. Saballos, University of South Florida
  • Charles B. Connor, University of South Florida
  • W. E. Sanford, U.S. Geological Survey
Document Type
Article
Publication Date
5-1-2012
Keywords
  • CO2 flux,
  • TOUGH2 modeling,
  • magnetics,
  • self-potential
Digital Object Identifier (DOI)
https://doi.org/10.1029/2012GC004117
Disciplines
Abstract

We investigate geologic controls on circulation in the shallow hydrothermal system of Masaya volcano, Nicaragua, and their relationship to surface diffuse degassing. On a local scale (∼250 m), relatively impermeable normal faults dipping at ∼60° control the flowpath of water vapor and other gases in the vadose zone. These shallow normal faults are identified by modeling of a NE-SW trending magnetic anomaly of up to 2300 nT that corresponds to a topographic offset. Elevated SP and CO2 to the NW of the faults and an absence of CO2 to the SE suggest that these faults are barriers to flow. TOUGH2 numerical models of fluid circulation show enhanced flow through the footwalls of the faults, and corresponding increased mass flow and temperature at the surface (diffuse degassing zones). On a larger scale, TOUGH2 modeling suggests that groundwater convection may be occurring in a 3–4 km radial fracture zone transecting the entire flank of the volcano. Hot water rising uniformly into the base of the model at 1 × 10−5 kg/m2s results in convection that focuses heat and fluid and can explain the three distinct diffuse degassing zones distributed along the fracture. Our data and models suggest that the unusually active surface degassing zones at Masaya volcano can result purely from uniform heat and fluid flux at depth that is complicated by groundwater convection and permeability variations in the upper few km. Therefore isolating the effects of subsurface geology is vital when trying to interpret diffuse degassing in light of volcanic activity.

Citation / Publisher Attribution

Geochemistry, Geophysics, Geosystems, v. 13, issue 5, art. Q05011

Citation Information
S. C.P. Pearson, K. Kiyosugi, H. L. Lehto, J. A. Saballos, et al.. "Integrated Geophysical and Hydrothermal Models of Flank Degassing and Fluid Flow at Masaya Volcano, Nicaragua" Geochemistry, Geophysics, Geosystems Vol. 13 Iss. 5 (2012)
Available at: http://works.bepress.com/charles_connor/111/