Skip to main content
Article
Impact of Large-Scale Climate Extremes on Biospheric Carbon Fluxes: An Intercomparison Based on MsTMIP Data
Global Biogeochemical Cycles (2014)
  • Jakov Zscheischler
  • Anna M. Michalak
  • Christopher Schwalm, Northern Arizona University
  • Miguel D. Mahecha
  • Deborah N. Huntzinger, Northern Arizona University
  • Markus Reichstein
  • Gwenaëlle Berthier
  • Philippe Ciais
  • Robert B. Cook, Oak Ridge National Laboratory
  • Bassil El-Masri, University of Illinois at Urbana-Champaign
  • Maoyi Huang, Pacific Northwest National Laboratory
  • Akihiko Ito
  • Atul Jain, University of Illinois at Urbana-Champaign
  • Anthony King, Oak Ridge National Laboratory
  • Huimin Lei, Tsinghua University
  • Chaoqun (Crystal) Lu, Auburn University Main Campus
  • Jiafu Mao, University of Illinois at Urbana-Champaign
  • Shushi Peng
  • Benjamin Poulter, Montana State University
  • Daniel Ricciuto, Oak Ridge National Laboratory
  • Xiaoying Shi, University of Illinois at Urbana-Champaign
  • Bo Tao, Auburn University Main Campus
  • Hanqin Tian, Auburn University Main Campus
  • Nicolas Viovy
  • Weile Wang
  • Yaxing Wei, University of Illinois at Urbana-Champaign
  • Jia Yang, Auburn University Main Campus
  • Ning Zeng, University of Maryland - College Park
Abstract

Understanding the role of climate extremes and their impact on the carbon (C) cycle is increasingly a focus of Earth system science. Climate extremes such as droughts, heat waves, or heavy precipitation events can cause substantial changes in terrestrial C fluxes. On the other hand, extreme changes in C fluxes are often, but not always, driven by extreme climate conditions. Here we present an analysis of how extremes in temperature and precipitation, and extreme changes in terrestrial C fluxes are related to each other in 10 state-of-the-art terrestrial carbon models, all driven by the same climate forcing. We use model outputs from the North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). A global-scale analysis shows that both droughts and heat waves translate into anomalous net releases of CO2 from the land surface via different mechanisms: Droughts largely decrease gross primary production (GPP) and to a lower extent total respiration (TR), while heat waves slightly decrease GPP but increase TR. Cold and wet periods have a smaller opposite effect. Analyzing extremes in C fluxes reveals that extreme changes in GPP and TR are often caused by strong shifts in water availability, but for extremes in TR shifts in temperature are also important. Extremes in net CO2 exchange are equally strongly driven by deviations in temperature and precipitation. Models mostly agree on the sign of the C flux response to climate extremes, but model spread is large. In tropical forests, C cycle extremes are driven by water availability, whereas in boreal forests temperature plays a more important role. Models are particularly uncertain about the C flux response to extreme heat in boreal forests.

Keywords
  • extreme events,
  • model intercomparison,
  • spatiotemporal,
  • MsTMIP,
  • climate extremes
Publication Date
June, 2014
Publisher Statement
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Citation Information
Jakov Zscheischler, Anna M. Michalak, Christopher Schwalm, Miguel D. Mahecha, et al.. "Impact of Large-Scale Climate Extremes on Biospheric Carbon Fluxes: An Intercomparison Based on MsTMIP Data" Global Biogeochemical Cycles Vol. 28 Iss. 6 (2014)
Available at: http://works.bepress.com/chaoqun_lu/28/