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Abstract

Purpose
Surveillance magnetic resonance imaging (MRI) is routinely used to detect recurrence in pediatric central
nervous system (CNS) tumors. Frequency of neuroimaging surveillance varies with no standardized
approach.

Methods
We sought via a single institution retrospective cohort study to evaluate the frequency of recurrence
identi�ed by surveillance neuroimaging versus those detected clinically.

Results
This study included 476 patients; the majority diagnosed with a low-grade glioma (LGG) (n = 138; 29%),
high grade glioma (HGG) (n = 77; 16%), ependymoma (n = 70; 15%) or medulloblastoma (n = 61; 13%).
Patients with LGG, HGG and ependymoma more commonly had multiply recurrent disease (p = 0.08), with
those with ependymoma demonstrating two or more relapses in 49% of cases. Recurrent disease was
identi�ed by imaging more often than clinical symptoms (65% vs 32%; p = < 0.01). Mean time to �rst
relapse and subsequent relapse for the entire cohort was 30 months (range 1 day − 24.8 years) and 19.5
months (range 1 week-19.6 years), respectively. Patients diagnosed with meningioma demonstrated the
longest mean time to �rst relapse (74.7 months), whereas those with Atypical Teratoid Rhabdoid Tumor
(ATRT) and Choroid plexus papilloma tended to have the shortest time to relapse (8.9 months and 5.5
months, respectively). Overall, 22 patients sustained the �rst relapse > 10 years from initial diagnosis (9
LGG, 4 medulloblastoma, 3 meningioma, 2 germ cell tumor, 1 pineoblastoma, 1 craniopharyngioma, and
2 other).

Conclusion
With a higher tendency towards detection of tumor recurrence/progression on MRI surveillance in
comparison to clinical progression, surveillance imaging should be considered in routine follow up of
pediatric CNS tumor survivors. With some relapses > 10 years from initial diagnosis, imaging beyond this
time point may be useful in particular tumor types.

INTRODUCTION
Pediatric central nervous system (CNS) tumors encompass both low- and high-grade neoplasms, with the
latter being malignant tumors more commonly associated with an inferior prognosis. Magnetic
resonance imaging (MRI) is routinely used as a surveillance tool in patents with central nervous system
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(CNS) tumors though the timing of imaging is arbitrary [1–4]. While standardized treatments exist for
many CNS tumors, surveillance imaging following completion of therapy, particularly beyond 10 years is
lacking. Surveillance imaging is utilized to assess response to treatment, obtain baseline evaluations
following treatment to aid in detecting asymptomatic recurrent disease, and to assess for late effects of
therapy [5]. With earlier detection, treatment of recurrent disease may improve outcome, although this
tends to vary based on tumor type. With evolution in treatment approaches, it is di�cult to extrapolate the
ideal interval of surveillance imaging from prior studies. Furthermore, some older studies used both CT
and MRI for surveillance [1, 3, 4, 6–11]. Therefore, con�icting evidence exists regarding optimal timing of
surveillance imaging and whether it leads to increased progression free and overall survival (OS). The
imaging frequency for surveillance is loosely based on the biological characteristics of the tumor type
which considers the aggressiveness or grade of tumor, risk of recurrence, pattern of local or metastatic
recurrence and prior treatments utilized. As con�icting evidence exists regarding optimal timing of
surveillance imaging, it is often left to the discretion of the primary team.

Controversy exists in the use of surveillance imaging in detecting recurrent CNS tumors in pediatrics.
Some studies have demonstrated that asymptomatic recurrences are detected in a minority of cases and
early detection may not necessarily improve outcomes especially in patients with high-grade neoplasms
[12, 13]. Whereas others have shown that surveillance imaging is bene�cial in detecting recurrent or
progressive CNS tumors in asymptomatic children and permits more opportunities for salvage therapy
[8]. Furthermore, late recurrences tend to encompass one of the leading causes of mortality and can be
identi�ed 5–20 years from diagnosis [14, 15].

Surveillance imaging is not perfect though. It has been associated with false positive results which may
lead to additional imaging, added costs and worry amongst the patient/family [5, 16, 17]. Imaging may
also provide an unclear result with the complexity of treatment changes, radiation necrosis, and pseudo-
progression confusing the interpretation. Through this study we aimed to determine how often tumor
recurrence was identi�ed by surveillance neuroimaging versus clinically from symptomatic presentation
at relapse via a retrospective chart review.

METHODS
A retrospective cohort study was conducted at Lurie Children’s Hospital. Lurie Children’s Hospital IRB
approved this study. Data was extracted from EPIC and collected in REDCap. Data collected included
race, gender, age at diagnosis, diagnosis by histology, date of diagnosis, type of treatment received, date
of recurrence, mode of detection at recurrence, presentation at recurrence, location of recurrence,
intervention after recurrence, survival status, and time to recurrence. Pediatric patients (birth to age 21
years of age) diagnosed with a primary CNS tumor between 1988 and 2011 treated at Lurie Children’s
Hospital Neuro-Oncology Program were included.

Statistical analysis
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Descriptive methods were used to present demographics, tumor histology and age at diagnosis.
Continuous variables were reported as mean, standard deviation, median and ranges. Categorical
variables were described by frequency and percentage. Characteristics were compared with Z-tests of
proportions and T-tests, where appropriate.

RESULTS
During the study period (1988–2011), 476 patients met inclusion criteria and had complete chart
information including time to relapse and were included in the study. Of those patients included, 745
recurrences were detected. The majority of patients were Caucasian (n = 204, 42.5%), followed by
Hispanic/ Latino (n = 56, 12%) or African American (n = 20, 4%). More than half (n = 261, 55%) were male.
Low grade gliomas (LGG) accounted for 29% (n = 138) of the cohort, 16% had a diagnosis of high-grade
glioma (HGG) (n = 77), 15% ependymoma (n = 70) and 13% medulloblastoma (n = 61) (Table 1). At
diagnosis, 58% (n = 233) of patients were treated with a multimodality approach to therapy and 42% (n = 
170) were treated with a single line of therapy. Of those, 31% (n = 126) were treated with surgery alone,
10% (n = 40) chemotherapy alone and 1% (n = 4) radiation only. In contrast, 25% (n = 99) were treated with
a multimodality approach to therapy including surgery, chemotherapy and radiation, 18% (n = 72) with
surgery and chemotherapy, 12% (n = 48) surgery and radiation, and 3.5% (n = 14) chemotherapy and
radiation. Whereas at time of recurrence/relapse, 57% (n = 180) patients were treated with one line of
therapy and 38% (n = 119) received a combination approach to therapy (Table 1).
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Table 1
Patient Characteristics

Patient Characteristics    

  # of Patients %

Race    

Caucasian 204 42.5

Hispanic or Latino 56 11.7

Black or African American 20 4.1

Native American or American Indian 1 0.2

Asian/Paci�c Islander 12 2.5

Other 12 2.5

Unknown 175 36.4

Gender    

Male 261 55

Female 217 45

Diagnosis    

Low Grade Glioma 138 29

High Grade Glioma 77 16.2

Medulloblastoma 61 12.8

ATRT 6 1.3

Pineoblastoma 10 2.1

Ependymoma 70 14.7

Craniopharyngioma 26 5.5

PNET 15 3.4

Choroid Plexus Papilloma 3 0.6

Choroid Plexus Carcinoma 2 0.4

Germ Cell Tumor 19 4.0

Meningioma 11 2.3

Other 38 8
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Patient Characteristics    

  # of Patients %

Race    

Treatment (at relapse) (n = 316)    

Surgery 69 21.7

Surgery + Chemotherapy 59 18.6

Surgery + Radiation 34 10.7

Surgery + Chemotherapy + Radiation 26 8.2

Chemotherapy 84 26.4

Radiation 27 8.5

Radiation + Chemotherapy 19 6.0

Sixty �ve percent of relapses were detected with imaging, in comparison to 32% due to clinical symptoms
(p < 0.01)(Table 2). Furthermore, 2% were identi�ed with both clinical symptoms and imaging features
consistent with relapse/progression. Overall based on diagnosis, imaging tended to detect relapse more
often than clinical presentation (p = 0.05) (Table 2).
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Table 2
Mode of detection of relapse.

Mode of Detection of Relapse        

Total # of Patients %    

Clinical 235 31.5 P < 0.01  

Imaging 483 64.8    

Both (clinical and imaging features) 17 2.3    

Unknown 10 1.3    

Diagnosis (p = 0.05) Clinical (%) Imaging (%) Both (%) Unknown (%)

Low Grade Glioma 67 (34.5) 122 (62.9) 5 (2.6) 0

High Grade Glioma 44 (41.5) 55 (51.9) 5 (4.7) 2 (1.9)

Medulloblastoma 29 (35.8) 47 (60.5) 2 (2.5) 1 (1.2)

ATRT 1 (14.3) 5 (71.4) 1 (14.3) 0

Pineoblastoma 4 (22.2) 14 (77.8) 0 0

Ependymoma 33 (21.3) 113 (72.9) 2 (1.3) 7 (4.5)

Craniopharyngioma 10 (23.8) 31 (73.8) 1 (2.4) 0

PNET 6 (22.7) 17 (77.3) 0 0

Choroid Plexus Papilloma 1 (25) 3 (75) 0 0

Choroid Plexus Carcinoma 0 (0) 2 (100) 0 0

Germ Cell Tumors 7 (25.9) 20 (74.1) 0 0

Meningioma 10 (33.3) 20 (66.7) 0 0

Other 23 (39.7) 34 (58.6) 1 (1.7) 0

Patients with LGG, HGG and ependymomas were more commonly found to have multiply recurrent
disease (p = 0.08), with those diagnosed with an ependymoma demonstrating two or more relapses in
49% of cases. Patients with meningiomas and ependymoma were more likely to have four or more
relapses (17% and 14%, respectively) (Table 3).
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Table 3
Number of Relapses by Diagnosis

Number of Relapses by diagnosis (P = 0.08)* 1

n(%)

2

n(%)

3

n(%)

≥ 4

n(%)

Low Grade Glioma (n = 140) 101 (72%) 28 (20%) 6 (4%) 5 (4%)

High Grade Glioma (n = 76) 58 (76%) 13 (17%) 2 (3%) 3 (4%)

Medulloblastoma (n = 61) 49 (80%) 8 (13%) 1 (2%) 3 (5%)

ATRT (n = 6) 5 (83%) 1 (17%) 0 0

Pineoblastoma (n = 12) 7 (58%) 1 (8%) 0 2 (17%)

Ependymoma (n = 71) 37 (52%) 13 (18%) 11 (15%) 10 (14%)

Craniopharyngioma (n = 24) 18 (75%) 9 (38%) 0 1 (4%)

PNET (n = 15) 10 (67%) 2 (13%) 1 (7%) 1 (7%)

Choroid Plexus Papilloma (n = 3) 2 (67%) 1 (33%) 0 0

Choroid Plexus Carcinoma (n = 2) 2 (100%) 0 0 0

Germ Cell Tumors (n = 19) 13 (68%) 5 (26%) 0 1 (5%)

Meningioma (n = 12) 5 (42%) 2 (17%) 3 (25%) 2 (17%)

Other (n = 37) 29 (78%) 4 (11%) 2 (5%) 2 (5%)

*ANOVA p < 0.001

Mean time to �rst relapse for the entire cohort was 2.5 years (range 1 day-24.8 years), with a median of
1.3 years (range 1 week- 2.3 years). Overall 24% (117/485) of the �rst relapses occurred within 6 months
of initial diagnosis and 43% (207/485) within 12 months. Given the heterogeneous diagnoses, as
expected variations existed in average time to relapse, with the longest mean time to �rst relapse of 6.2
years (median 2.1 years, range 1.5 months-24.8 years) in meningioma patients, followed by 3.4 years
(median 2.5 years, range 0.36 months- 14.1 years) in LGG patients, 3 years (median 1.6 years, range 0.36
months-20.3 years) in medulloblastoma, 2.7 years (median 1.3 years, range 0.53 months- 16.8 years) in
germ cell tumor (GCT), and 2.7 years (median 1.4 years, range 1.8 months- 16.9 years) in pineoblastoma
patients. The shortest mean time to �rst relapse was amongst choroid plexus papilloma (CPP) (5.5
months; median 4.4 months, range 2.8–9.4 months), followed by ATRT (8.9 months, median 4.2 months,
range 0.72 months- 2.7 years) (Table 4).
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Table 4
Time to relapse by Diagnosis

Time to Relapse By
Diagnosis

Time to relapse
from diagnosis
(months)*

Minimum
(months)

Maximum
(yr)

Mean time
to �rst
relapse
(months)*

Mean time to
subsequent
relapse
(months)

All diagnosis 39.75 0.03 27.6 30.19 19.5

Low Grade Glioma 53.4 0.36 25.1 41.2 32.6

High Grade Glioma 19.5 0.03 19 13.6 16.7

Medulloblastoma 36.3 0.36 20.3 36.5 17.5

ATRT 8.5 0.72 2.7 8.9 5.6

Pineoblastoma 28.1 1.84 16.9 32.5 6.7

Ependymoma 39.7 1.38 11.1 21.7 11.4

Craniopharyngioma 37.9 1.74 21.9 27.6 32.3

PNET 22.4 0.72 7.7 20.2 5.0

Choroid Plexus
Papilloma

11.0 2.79 2.2 5.5 24.7

Choroid Plexus
Carcinoma

14.3 12.85 1.3 14.3 0

Germ Cell Tumors 32.8 0.53 16.7 32.9 10.6

Meningioma 90.2 1.51 27.6 74.7 34.9

Other 31.6 0.99 13.6 27.1 11.1

*ANOVA p < 0.001

The maximum time to �rst relapse was over 10 years in several tumor types including, LGG,
medulloblastoma, pineoblastoma, craniopharyngioma, GCT, and meningioma. Of those who had �rst
relapse > 10 years from diagnosis, 9 were diagnosed with a LGG with mean time to relapse 11.9 years
from diagnosis (range: 10.7–14.1 years), 4 medulloblastoma with mean time to relapse 14.3 years from
diagnosis (range 10.6–20.3 years), 1 pineoblastoma relapsed at 16.9 years from diagnosis and 1
craniopharyngioma relapsed 10.4 years from initial diagnosis. Three patients with meningioma relapsed 
> 10 years from diagnosis (mean 16.3 years; range 11.4–24.8 years) and two GCT relapsed > 10 years
(mean 13.9 years, range 10.9–16.8 years). When selecting out for those who sustained �rst relapse 5 or
more years from diagnosis, it is important to note, this included 33 patients with a LGG (mean time to �rst
relapse 8.2 years, median 7.6 years, range 5.1–14.1 years), 11 patients with medulloblastoma (mean time
to �rst relapse 10.1 years, median 9.3 years, range 5.9–20.3 years), 8 ependymoma (mean time to �rst
relapse 6.7 years, median 6.6 years, range 5.1–8.7 years), 5 craniopharyngioma (mean 7.5 years, median
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6.9 years, range 5.2–10.2 years), 4 meningioma (mean 14.3 years, median 12 years range 8.5–24.8
years), 3 GCT (mean 11.4 years, median 10.9 years, range 6.5–16.8 years), 2 HGG (mean/median time 6
years, range 5.3–6.7 years), and 1 PNET (relapse at 7.7 years).

DISCUSSION
CNS tumors are a diverse group of diseases, with time to relapse differing based on histological type.
Although the use of surveillance MRI is standard practice in management of children with CNS tumors,
challenges exist with frequency of monitoring being dependant on tumor type, disease status, metastatic
potential and prior treatments received. Furthermore, factors such as pseudo-progression or radiation
necrosis may complicate interpretation of imaging. Despite this, pediatric CNS tumors are at a risk of
recurrence and as demonstrated surveillance imaging both in the immediate post treatment phase as well
as late surveillance (> 5 years post completion of therapy) are necessary. We demonstrate an
overwhelmingly higher tendency towards detection of tumor recurrence or progression earlier by MRI
surveillance in comparison to clinical progression (65% in comparison to 32%) for CNS tumors with an
overall median time to �rst relapse of 1.3 years, with the earliest relapse noted at 1 week in a HGG patient
and the latest at 24.8 years in a patient diagnosed with meningioma.

Prior meta-analysis examined the utility of surveillance neuroimaging in high grade and low-grade CNS
tumors [4, 10]. Most recurrences (65–100%) within these studies were identi�ed by imaging in
asymptomatic patients in comparison to up to 35% detected by clinical symptoms [10]. Furthermore,
most recurrences were within 5 years of treatment and prompted additional intervention or treatment
within the low-grade cohort [10]. Whereas, amongst high-grade tumors, the �ndings were diverse with
evidence lacking guiding the effectiveness of MRI surveillance given the uncertainty of whether earlier
detection is bene�cial [4]. These prior studies are consistent with our �nding where most relapses were
detected by imaging, with 63% of the LGG patients and 52% of the HGG recurrence appearing on imaging,
although our study demonstrates the continued tendency for relapse beyond 5 years, necessitating
further imaging.

Similar to the low-grade cohort published previously, we identi�ed that a large portion of LGG patients
tend to develop tumor recurrence within the �rst 5 years from end of treatment with a mean time to
recurrence of 3.4 years (median 2.5 years; range 0.36 months-14 years). In our cohort, 33 (24%) of the
LGG patients sustained their �rst relapse 5 or more years from diagnosis, the remainder (76%) had a �rst
relapse within 5 years from diagnosis. This is slightly lower than the previously reported 90% by 5 years
in prior studies [10]. With prior studies demonstrating that 56% of tumor recurrences occur within the �rst-
year post treatment, and more speci�cally 46% within the �rst 6-months, our results point to a slightly
longer time to recurrence with 24% and 43% within the �rst 6 and 12 months, respectively.

Most treatment protocols for high-grade pediatric CNS tumors suggest routine follow‐up imaging for up
to 10 years post treatment. Some studies have suggested that regular follow up within this 10-year period
is necessary, but regular imaging beyond 10 years in malignant pediatric CNS tumors, namely
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medulloblastoma, ependymoma, primitive neuroectodermal tumor (PNET)/pineoblastoma, ATRT, HGG
and diffuse intrinsic pontine glioma (DIPG) may not be needed unless clinical symptoms are present as it
has been suggested that recurrences are rare or even non-existent beyond 10 years [18]. In contrast to
this, we demonstrate maximal time to relapse exceeding 10 years in several tumor types, including those
with high grade feature such as, medulloblastoma, pineoblastoma, and GCT. Although late relapses are
less common, imaging beyond 10 years is necessary to capture these patents.

Prior studies demonstrated the longest latency period for relapse in standard risk medulloblastoma being
7.9 years [18, 19], whereas within our cohort the longest time to �rst relapse was 20 years in a
medulloblastoma patient, although the median time to �rst relapse was 1.6 years. While most would
expect earlier recurrences, discontinuation of surveillance imaging beyond 10 years in these patients
would miss those with very late recurrences. On the contrary, shorter duration of surveillance imaging
may capture most of the relapses in other more aggressive CNS tumors, such as HGG. Representing up to
20% of all CNS tumors in childhood and adolescents, HGG are one of the leading causes of mortality
amongst CNS tumors. With most previously reported recurrences (up to 75%) occurring within 1 year of
diagnosis (21), our results are consistent with median time to recurrence of 8 months (mean 13.6
months) in HGG patients.

Low grade CNS tumors tend to act as a chronic disease, at times necessitating multiple lines of therapy
and posing a risk of late recurrences. Consistent with our �ndings, surveillance neuroimaging in this
population tends to aid in detecting recurrence/progression in the absence of clinical signs and
symptoms with > 65% of LGG recurrences identi�ed by imaging in various studies [11, 13, 20, 21]. Early
detection in patients without symptoms may translate into tumor detection at a stage that may have less
disease bulk and in turn more responsiveness or options for treatments. Prior studies have reported
average time to recurrence post initial treatment of 0.33 [11] to 2.33 [13] years for low grade tumors. This
is slightly earlier than our reported mean time to relapse of 3.4 years in the LGG cohort. This discrepancy
may be in part due to initial treatment strategies, a trend to delayed recurrences in low grade tumors in
whom initial surgery achieved gross total resection (GTR) in comparison to those with subtotal resection
(STR) is possible. With median times to recurrence in GTR low grade CNS tumors reported in three studies
as 0.53 [22], 1.0 [21] and 1.9 [20] years respectively, whereas median time solely by resection reported as
0.64 years in GTR and 0.42 years in STR [23]. With 41 (30%) patients in our LGG cohort treated up front
with surgery alone, it is probable that these patients had extensive resections of tumor with little to no
residual disease. Thus, the median time to recurrence of 3.4 years may be more in keeping with reports
previously published. Continued surveillance post treatment would be bene�cial to detect recurrences in
these patients.

The bene�t to survival of detecting recurrences on imaging is controversial and is likely tumor histology
based. A medulloblastoma study found that median OS increased by over 15 months in those patients in
whom recurrence was found by imaging, although all patients with recurrence died of their disease [24].
Whereas another study demonstrated a survival advantage in some patients in whom medulloblastoma
relapse was identi�ed by imaging in comparison to those who presented with symptoms with a median
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survival of 44 months in those detected by imaging and 5 months in those presenting with symptoms
[25]. Of those detected with surveillance imaging, four remained alive at 44–75 months [25]. The authors
also demonstrated a tendency to less advanced disease in those detected by imaging alluding to the
possibility of the disease being more amenable to salvage treatment [25]. In contrast, earlier detection of
ependymoma recurrence with surveillance imaging was found to be associated with improved second
progression free survival, a tendency towards higher probability of survival and increased opportunities
for salvage therapy [26]. Aligning with other studies, asymptomatic relapse detected by surveillance
imaging was more common amongst patients with ependymoma. Prior studies demonstrated 65% of
ependymoma relapses to be found on surveillance imaging in comparison to 32% by clinical symptoms
[26], this is consistent with our results with 73% of ependymoma relapse detected with imaging and 21%
clinical symptoms. Surveillance imaging more often identi�es relapses in ependymoma patents, and thus
permits salvage therapy options as asymptomatic recurrences are more commonly associated with
reduced disease burden making the disease more amendable to surgical or other salvage therapy options
in those with localized recurrences. It is common that patients with symptomatic recurrent ependymoma
present with more widespread disease or greater disease burden making them less amendable to salvage
therapies [26–28]. Although the effect on OS is unclear; earlier detection of relapse may provide patients
and families with added treatment options and more importantly quality of time together. Unfortunately,
survival data was limited in our study, as such, we are unable to make comments pertaining to relapse
detection and outcomes.

Asymptomatic recurrence rates have been found to be higher in ependymoma and medulloblastoma
patients compared to other tumor types [8, 26]. This suggests that surveillance imaging may be bene�cial
in these patients although there is not compelling evidence to suggest any improvement in OS in those
whom asymptomatic recurrence was detected on imaging compared to those with symptomatic
recurrences [8]. Within our cohort, 61% of medulloblastoma patients and 73% of ependymoma
recurrences were detected by imaging, supporting that imaging is bene�cial for early detection of relapse
prior to development of clinical symptoms. Whether this correlates to improved outcomes is unknown.

Although the focus of this study was to discuss the risk of tumor recurrence post treatment, one must
also be aware of the added risk of secondary malignancies, meningiomas or HGG in the latter time
period. Radiotherapy, a common treatment utilized in many pediatric CNS tumors, is a known risk factor
for development of secondary malignancies in the radiated �eld. The Childhood Cancer Survivor Study
(CCSS) demonstrated that the risk of secondary malignancy increased over time, with a cumulative
incidence of 3.3% at 25 years and 3.5% at 30 years [29, 30]. Imaging following cancer therapy should
adjust focus to account for the second malignancy risk, as risk of tumor recurrence decreases as
additional time passes post therapy of childhood CNS tumors.

This study has several limitations relating to it being a single institutional retrospective review. As a
retrospective review, we recognize this paper is subject to patient selection and information bias. As a
heterogenous group of tumors, although we analyzed and reported details of each histological type and
rate of recurrence identi�ed with imaging or clinically, the small sample size limits our ability to interpret
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the effect of surveillance imaging on OS or speci�c responses to treatment based on diagnosis.
Furthermore, with limited information on outcomes, we are unable to comment on survival status and the
effect of surveillance imaging on disease outcomes.

CONCLUSION
Pediatric CNS tumors are a diverse group of neoplasms, with variation in the likelihood of recurrence
dependant on tumor type, location, and treatment regimen. It could be argued that surveillance imaging
may be more bene�cial for some tumors that are salvageable with known successful treatment
approaches at relapse or progression in comparison to those where e�cacious recurrent treatment
approaches are lacking. Currently, surveillance imaging is institution dependent. Surveillance
neuroimaging detects a large proportion of asymptomatic relapses, and may provide lead time for other
therapies or investigational trials. Even if that does not translate into increased OS, it may lead to more
quality and quantity of life for patients and families.
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