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We show that double-charge discrete optical vortices may be completely stable in hexagonal photonic
lattices where single-charge vortices always exhibit dynamical instabilities. Even when unstable the double-
charge vortices typically have a much weaker instability than the single-charge vortices, and thus their breakup

occurs at longer propagation distances.
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I. INTRODUCTION

Some of the most spectacular experiments in the field of
nonlinear light propagation in periodic photonic potentials
relate to the properties of vortices and vortex flows [1]. Self-
trapped phase singularities of optical fields have been ob-
served experimentally in the form of single-charge discrete
optical vortices in square photonic lattices [2—4]. In addition,
many of the theoretical and experimental studies demon-
strated that higher-charge discrete vortices are unstable, simi-
lar to the well-studied homogeneous nonlinear systems [1].

In this work, we study single- and double-charge discrete
optical vortices in nonsquare periodic photonic lattices
[5-11]. In particular, in the framework of the continuous
nonlinear model of optically induced lattices generated in
saturable nonlinear media, we analyze the existence, stabil-
ity, and dynamical properties of discrete optical vortices for
the case of hexagonal optical lattices. We obtain the some-
what counterintuitive result that double-charge discrete vor-
tices in such lattices appear to be far more robust and struc-
turally stable than single-charge vortices, in agreement with
similar findings for Bessel lattices [11]. We verify this find-
ing by demonstrating numerically the generation of a double-
charge vortex with realistic experimental parameters.

It is particularly important to highlight that, although our
results will be given with a view toward applications in pho-
torefractive crystals, they are not only relevant to that setting
but also directly applicable to two-dimensional hexagonal
waveguide arrays (e.g., in glass), showcased in recent experi-
ments (see, e.g., [12] and references therein). Furthermore,
they are likely to have direct implications to other areas of
physics, such as Bose-Einstein condensates in triangular lat-
tices, the first experiments on which have just been realized
[13], or even Debye crystals in dusty plasmas [14]. Another
key aspect of the generality of our results is that they should
also apply to honeycomb lattices. Hence, the findings pre-
sented herein have a bearing on two of the most fundamental
nonsquare lattice two-dimensional configurations.

II. THEORETICAL SETUP

We study beam propagation through a self-focusing non-
linear medium in the presence of a two-dimensional hexago-
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nal lattice by employing the continuum model with a satu-
rable nonlinearity. To render our setting completely
amenable to the experimentally accessible regime, we use
the theoretical model of a photorefractive nonlinear medium,
which is known to exhibit strong saturable nonlinearity [8].
Polarization anisotropy of the nonlinear photorefractive re-
sponse enables one to optically imprint various types of re-
fractive index modulation (optical lattice) which can then be
probed by an external beam [15]. Then the propagation of
this beam in the presence of an optically induced hexagonal
refractive index pattern is governed by the normalized evo-
lution equation

u
i~ + DA u-—— 0,
dz 1+1,(x,y) + |u|

(1
where u(x,y;z) is the normalized amplitude of the electric
field, z is the propagation coordinate, A | denotes the trans-
verse Laplacian with respect to (x,y), D is the relevant dif-
fraction coefficient, and vy is the material parameter, which is
positive or negative depending on whether the nonlinearity is
of focusing or defocusing character. The function

1,(x,y) = I|exp(ikx) + exp(— ikx/2 — iky V312)
+expl(— ikx/2 + iky3/2)|?

represents the three-wave interference pattern that induces
the hexagonal lattice. The lattice and beam intensities are
normalized in units of the dark irradiance of the crystal, I,.
Throughout this work we use the following experimentally
realistic values for the system parameters: D=zs)\/(417n0xf)
=18.015 (for laser wavelength in vacuum A=532 nm, and
average refractive index of the medium ny=2.35), y=2.36,
Ig=0.49, k=4m/3d with a lattice period d=30 um, and
where the dimensions (x,y;z) are in units of x,;=y,=1 um
and z,=1 mm, respectively (see Ref. [7] for further details).

We look for stationary solutions in the form u(x,y;z)
=U(x,y)exp(iBz)exp(imep), where U is real, B is the propa-
gation constant, ¢ is the vortex phase, and m is the vortex
charge. We solve the resulting nonlinear equation numeri-
cally, and the major results are summarized in what follows.
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FIG. 1. (Color online) Example of an always unstable single-
charge discrete optical vortex for 8=-0.76 (marked by a circle in
Fig. 2). (a) Intensity (top) and phase (bottom); (b) real (top) and
imaginary (bottom) components; (c) absolute value of the corre-
sponding Fourier transforms; (d) spectrum of the linearized equa-
tion displaying the linear instability of the configuration due to the
presence of positive real parts in the eigenvalues \ in the spectrum.

III. NUMERICAL RESULTS

We begin by considering the simplest six-site vortex
structure, that of a single-charge (m=1) discrete vortex. Fig-
ure 1 illustrates a typical example, while Fig. 2 shows the
single-charge vortex linear stability (top) and power (bottom)
as a function of the propagation constant in the semi-infinite
band gap of the periodic potential. A positive real part of an
eigenvalue in the linear stability spectrum leads to exponen-
tial growth of the corresponding linear excitation mode, and
therefore to instability of the vortex. Somewhat surprisingly
we can see in Fig. 2 (top) that the single-charge vortex has an
eigenvalue with a positive real part across its entire region of
existence, and therefore the single-charge vortex is always
unstable.

In contrast we find that double-charge vortices may be
stable [see Fig. 3(a)], and even where unstable the instability
is weaker than in the single-charge case (see Fig. 4). In fact,
as we can see in Fig. 4 (top), the double-charge vortex has a
wide parametric interval where it is completely stable (from
-0.92< 3<-0.65), while outside this range it is unstable
due to weak oscillatory instabilities [complex unstable eigen-
values, as evidenced by the spectrum in Fig. 3(b)]. We note
that neither the single- nor the double-charge discrete vortex
families degenerate into a linear Bloch mode, as one can
observe from the saddle-node bifurcation that occurs close to
the edge of the first band of the linear spectrum in both Fig.
2 and Fig. 4. The various unstable single- and double-charge
vortices which occur along the upper dashed branch in each
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FIG. 2. (Color online) Family of single-charge vortices vs
propagation constant 3. Top: maximum real part of the linear sta-
bility spectrum. Bottom: power P=J-U?dx dy. The circle corre-
sponds to the discrete vortex given in Fig. 1. The dashed line indi-
cates another unstable branch which, for larger B, bifurcates into
different configurations.
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FIG. 3. (Color online) Examples of (a) stable and (b) unstable
double-charge discrete optical vortices for f=-0.76 and —0.96, re-
spectively (marked, respectively, by the circle and square in Fig. 4).
The layout of the panels is the same as in Fig. 1.

figure are not discussed here. The typical evolution of the
stable and unstable vortices is illustrated in Figs. 5(a) and
5(b). Even though the single-charge vortex is lower in power
than the double-charge vortex, breakup of the former into
single-site fundamental discrete solitons occurs around gz
=50, while the double-charge vortex has been propagated to
z=1000 with no sign of instability.

To further our theoretical understanding, we employ a dis-
crete model. In the latter the analytically tractable anticon-
tinuum limit can be used, for which discrete vortex solutions
can be explicitly constructed and a detailed stability analysis
can be performed, as has been done for square lattices [16].
In such a setting we consider the six-site configuration with
topological charge m over the contour, which takes the form
uj=exp(i¢,)exp(iz), where ¢;=2mjm/6 and j=1,...,6 for
the six sites constituting the relevant contour. It is straight-
forward to see that this configuration yields nontrivial phase
profiles for m=1 and 2. For these structures, according to the
framework of [16], the fundamental vortex will be unstable
due to two double real eigenvalue pairs and a single real
eigenvalue pair whereas the m=2 configuration may be
stable. These general results may also be physically under-
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FIG. 4. (Color online) Family of double-charge vortices vs
propagation constant 3. Top: maximum real part of linear stability
spectrum (when nonzero, this denotes instability). Bottom: power
P=[%U?dx dy. The circle and square correspond to the stable and
unstable discrete vortex configurations shown in Figs. 3(a) and 3(b),
respectively. The dashed line indicates an unstable branch which,
for larger B, bifurcates into different configurations.
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FIG. 5. (Color online) Top three panels (a) depict the evolution
of a stable double-charge vortex configuration after a random per-
turbation with amplitude 5% of the initial amplitude. Bottom three
panels (b) show the evolution of a single-charge vortex configura-
tion. In both cases B=-0.7. The color bar on the right provides a
scale of the intensity [note that the intensities of the single-charge
vortex are lower relative to (a) initially and saturated on this scale
after breakup].

stood as a consequence of the one-dimensional (1D) modu-
lational instability (MI) results [17] along the 1D (with peri-
odic boundary conditions) six-site contour of the vortex.
Such MI considerations predict that configurations where ad-
jacent sites have less than a 77/2 phase difference (i.e., a
single-charge vortex) will be unstable, while those with more
than a 7r/2 phase difference (the double-charge case) will be
stable.

It is important to point out here that, as the above discrete
1D contour analysis suggests, our results can qualitatively be
extended to other cases where there exists a six-site closed
contour, as, €.g., in the so-called honeycomb lattice in which
each index maximum has three neighboring maxima instead
of six. A typical example of a stable double-charge vortex in
a honeycomb lattice is presented in Fig. 6. Furthermore, by
extending our consideration of the 1D six-site contour to the
case of a defocusing nonlinearity, one can apply a so-called
staggering transformation along the contour, U;=u;(-1)".
Substitution of this expression in the discrete equation trans-
forms the model from defocusing to focusing (and vice
versa). This amounts to translating the phase of every other
node along the contour by 7 and, hence, transforming an
m=1 (m=2) focusing vortex to an m=2 (m=1) defocusing
vortex, respectively, suggesting a corresponding stability ex-
change.
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FIG. 6. (Color online) Same set of panels as in Fig. 1 except for
a stable double-charge vortex in a honeycomb lattice.
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FIG. 7. (Color online) (a) Input beam intensity profile relative to
the lattice (position of lattice intensity maxima are shown as rings).
The intensity is given by the color bar on the immediate right.
Appearance of the beam at z=60 mm with different initial vortex
phases (intensity not to scale of color bar): (b) single-charge vortex,
(c) double-charge vortex. Top panels: intensities; bottom panels:
phase.

IV. EXPERIMENTAL PROPOSAL

Finally, we consider the generation of double-charge vor-
tices and suggest parameters for their experimental observa-
tion. For our particular lattice parameters we find that gen-
eration of stable double-charge vortices is possible over a
wide range of input beam intensities and profiles, at least
within our isotropic medium approximation. We consider a
Laguerre-Gaussian input beam with the profile shown in Fig.
7, kept as constant as possible as the input phase is changed,
with maximum intensity ~1.8/,. In the subsequent evolution
we see breakup of the beam into single-site discrete solitons
if the initial phase corresponds to a single-charge vortex [Fig.
7(b)], while with an initial double-charge vortex phase we
see stable generation of the discrete double-charge vortex
[Fig. 7(c)]. Output at z=60 mm is shown; however, we have
seen no sign of instability in the generated double-charge
vortex at a distance of z=500 mm.

Based on the above considerations, we believe that inputs
of the type associated with m=2 should be sustained during
propagation not only by hexagonal crystals in photorefrac-
tive media, but also by two-dimensional hexagonal wave-
guide arrays (e.g., in glass), showcased in recent experiments
[12]. Importantly also, similar results are theoretically ex-
pected and have been numerically confirmed (data not shown
here) to be valid in the case of honeycomb lattices in such
media.

V. CONCLUSIONS AND OUTLOOK

We have studied the existence, stability, dynamics, and
generation of single- and double-charge discrete optical vor-
tices in two-dimensional hexagonal optical lattices in the
framework of a continuum nonlinear model for photorefrac-
tive nonlinearity. We have found that, in contrast to square
lattices, double-charge vortices can be stable, while single-
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charge vortices are always unstable. Our main finding con-
stitutes a general result for both hexagonal and honeycomb
lattices that we expect to be verified experimentally.

There are numerous directions along which it would be
interesting to continue the present study. For example, it
would be relevant to extend our analysis to the defocusing
case for which our discrete theory predicts that the results
should be inverted (i.e., that the m=1 case should be poten-
tially stable, while the m=2 will be unstable). Another direc-
tion of interest would be to attempt to generalize such studies
to genuinely three-dimensional, nonsquare lattice settings
(e.g., in fec, bee, or hep crystals) and observe how three-
dimensional excitations may behave in these classes of mod-

PHYSICAL REVIEW A 79, 025801 (2009)

els. Some of these directions are under present consideration
and will be reported in future presentations.
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