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Abstract Increases in global aquaculture production, com-
pounded with limited availabilities of fish meal for fish feed,
has created the need for alternative protein sources. Twin-
screw extrusion studies were performed to investigate the
production of nutritionally balanced feeds for juvenile yellow
perch (Perca flavescens). Five isocaloric (~3.06 kcal/g)
ingredient blends, adjusted to a target protein content of
36.7% db, were formulated with 0%, 10%, 20%, 30%, and
40% distillers dried grains with solubles (DDGS) at an initial
moisture content of 5–7%db, with appropriate amounts of
fish meal, fish oil, whole wheat flour, corn gluten meal, and
vitamin and mineral premixes. During processing, varying
amounts of steam (6.9–9.7 kg/h) were injected into the

conditioner and water (6.7–13.1 kg/h) into the extruder to
modulate the cohesiveness of the final extrudates. Extrusion
cooking was performed at 226–298 rpm using a 1.9 mm die.
Mass flow rate and processing temperatures generally
decreased with progressively higher DDGS content. Mois-
ture content, water activity, unit density, bulk density,
expansion ratio, compressive strength and modulus, pellet
durability index, water stability, angle of repose, and color
were extensively analyzed to quantify the effects of varying
DDGS content on the physical properties of the final
extrudates. Significant differences (P<0.05) among the
blends were observed for color and bulk density for both
the raw and extruded material, respectively, and for the unit
density of the extruded product. There were also significant
changes in brightness (L), redness (a), and yellowness (b)
among the final products when increasing the DDGS content
of the blends. Expansion ratio and compressive strength of
the extrudates were low. On the other hand, all extruded diets
resulted in very good water stability properties and nearly all
blends achieved high pellet durability indices. In summary,
each of the ingredient blends resulted in viable extrudates.

Keywords Aquaculture . DDGS . Extrusion . Physical
properties . Protein . Twin-screw extruder

Introduction

As a consequence of changes in energy policies based on
moving the US towards greater energy independence from
fossil fuels, renewable biofuel production is steadily
growing. Amongst others, the production of conventional
ethanol derived from corn starch reached 10.6 billion
gallons in 2009 and will steadily grow up to a level of
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15 billion gallons by 2015 (ACE 2010; RFA 2010a). Viewed
globally, the US produced almost half of the world’s fuel
ethanol production (RFA 2010b). Production of these
enormous amounts of fuel also generated high quantities of
coproducts, of which the major proportion was distillers
grains with solubles (DDGS). In 2009, up to 30.5 million
tons of distiller grains was produced (RFA 2010a). During
the fermentation process, starch is converted to alcohol and
carbon dioxide; consequently, DDGS contains approximately
three times the amount of most nutrients, such as protein,
fiber, minerals and fat, compared to corn (Spiehs et al. 2002;
Jacques et al. 2003) and is therefore a suitable ingredient for
many animal diets. Traditionally, it has been used for
ruminant nutrition, and currently it is also being utilized as
protein supplements in other terrestrial animal feeds (Ham et al.
1994; USDA 2006; Lim et al. 2009; De Godoy et al. 2009;
Saunders and Rosentrater 2009). Beyond that, other research
has been examining DDGS as a food ingredient for humans
(Rosentrater and Krishnan 2006).

Theworld’s increasing demands for seafood products makes
aquaculture one of the fastest growing animal food-producing
sectors, with a worldwide production of about 51.7 million tons
in 2006 (FAO 2009). With an annual growth rate of 6.9%
from 1970 to 2006, it exceeded by far the world’s annual
population growth rate of 1.5% between 1975 and 2009, and
will soon supply the market with higher quantities of farmed
fish food than the harvest yield of capture fisheries (FAO
2009; UN 2007). Great amounts of feed are required to
produce these large quantities of seafood. Fish diets predom-
inantly contain fish meal, which is commonly used to provide
proteins that are essential for metabolism. In 2006, about
20.2 million tons of raw fish were consumed as bulk for fish
meal; about 3.06 million tons (56%) of the global fish meal
production was used by the aquaculture industry (FAO 2009),
the remaining 44% were utilized in livestock and other animal
feed. These high demands on fish meal and seafood have
increasingly lead to reductions of wild fish stocks in the
ocean, and will eventually reach the limit of available natural
sources for seafood and fish meal (Naylor and Burke 2005).
As a result, fish feed represents the largest aquaculture
operating cost, in which fish derived protein is the most
expensive part, and aquaculturists have begun looking for
alternative, less-expensive dietary proteins (El-Sayed 1998;
Webster et al. 1999; Tidwell et al. 2000; Sardar et al. 2009).

Much research has been pursued to find sustainable, cost
efficient, and compatible alternatives with high protein
availability for fish. In recent years, studies on plant protein
sources, such as peas (Carter and Hauler 2000; Schulz et al.
2007), lupins (Glencross et al. 2006; Farhangi and Carter
2007), rapeseed meal (Przybyl et al. 2006; Wu et al. 2006),
corn gluten meal (Goda et al. 2007; Guimarães et al. 2008),
and cottonseed meal (Mbahinzireki et al. 2001; Robinson
and Li 2008), have been successful in using these

ingredients as partial replacements for fish meal. Based on
low palatability, potential presence of anti-nutritional
factors, low protein content or imbalances in amino acids
in certain plant feedstocks (Carter and Hauler 2000; Hansen
et al. 2007), high inclusion levels of plant proteins in fish
feed are often only achievable with supplementations of
essential amino acids (such as methionine and lysine), and
preprocessing of the plant materials (Francis et al. 2001;
Oliva-Teles and Gonçalves 2001).

DDGS presents another potential alternative for protein. In
contrast to other plant-derived nutrient sources, such as
soybean meal (SBM; which is one of the most studied and
widely used protein supplements in fish diets) DDGS contains
none of the anti-nutritional factors found in most plant protein
sources (US Grains Council 2008), and is less expensive than
SBM on a per unit protein basis (Garcia and Taylor 2006;
Lim et al. 2007). However, lysine and methionine must be
supplemented when using DDGS in fish diets (Cheng and
Hardy 2004; Stone et al. 2005). In preceding studies, DDGS
supplemented with vitamins and minerals could be success-
fully integrated in diets for several fish species, such as
channel catfish, including 30–40% DDGS or up to 70%
DDGS with 0.4% crystalline L-lysine supplementation
(Webster et al. 1991; Robinson and Li 2008; Lim et al.
2009), rainbow trout, with 22.5% DDGS inclusion level or
up to 75% DDGS supplemented with lysine and methionine
(Cheng and Hardy 2004), and Nile tilapia, including 20%
DDGS, 30% with an animal-based protein or up to 40%
DDGS inclusion level supplemented with lysine (Coyle et al.
2004; Lim et al. 2007).

Yellow perch (Perca flavescens) is a fish species that is
widespread in North America (Pierron et al. 2009), and
historically, most of the commercial food fish supply had
been provided from capture fisheries in the Great Lakes
region. Currently, aquaculture for yellow perch is increas-
ing to meet the demands (Malison 2000). After being
trained to accept prepared food, pellets can be used for their
diet (Heidinger and Kayes 1986). To date, only a few
nutritional studies have been conducted on yellow perch.
Recommended dietary crude protein requirements are in the
range of 21–27% (Ramseyer and Garling 1998). Kasper et
al. (2007) performed formal evaluations of alternative
proteins in diets for yellow perch. They concluded that
yellow perch are able to utilize solvent-extracted dehulled
SBM and expelled-extruded SBM as main feed ingredients
to replace fish meal, and suggested levels of 300 g/kg diet.

Extrusion cooking is the primary method of aquafeed
production. It can improve feed physical properties as well as
fish growth performance and digestibility (which is influenced
by starch content and anti-nutritional factors) of feed containing
commonly used plant protein sources (Booth et al. 2002; Allan
and Booth 2004; Barrows et al. 2007; Sørensen et al. 2009).
Investigating the use of DDGS in fish diets notwithstanding,
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few studies have been conducted to analyze the processing
aspects of DDGS feeds. Previous single- and twin-screw
extrusion studies were conducted to produce floating feeds for
tilapia and channel catfish, respectively, and to investigate the
effects of various levels of DDGS, die dimensions, screw
speeds, barrel temperatures, ingredient moisture contents, and
protein contents, respectively, on various extruder processing
parameters and extrudate physical properties (Chevanan et al.
2007a, b, c; 2008; 2009; 2010; Kannadhason et al. 2009a,
2009b, 2010; Rosentrater et al. 2009a, 2009b). So far,
examination of the processing of DDGS-based feeds for
yellow perch has only been conducted by Ayadi et al. (2009a,
b). They determined that using single screw extrusion diets
containing between 10% and 50% DDGS could result in
viable extrudates, depending upon processing conditions used.

Single-screw food extrusion was established in the 1940s
to produce macaroni and cereal pellets. Single-screw
extruders are high-temperature, short-time bioreactors that
can process a wide range of raw materials (Harper 1989).
Twin-screw extruders started to be used in the 1970s and
have the advantages handling wider varieties of ingredients
due to their self-wiping properties and greater conveying
angles (Harper 1989). Compared to single-screw extruders,
twin-screw extruders can use two co-rotating or counter-
rotating screws in the barrel. In contrast to counter-rotating
extruders, where high localized pressures and large separa-
tion forces can appear, and limitations in operational screw
speeds exist, co-rotating screws rotate in the same directions
and are generally preferred (Brent 1989). More information
about extrusion processing can be found in Mercier et al.
(1989), Kokini et al. (1992), Chang and Wang (1998), Riaz
(2000), and other literature sources. Combining heat and
pressure generally leads to better digestibility of food, and
can be used to sterilize the feedstock; this enhances the shelf
life of the final product. Extrusion of fish feed often results in
fewer problems with disease and requires fewer quantities to
increase weight gain (Kiang 1998). Furthermore, extrusion
cooking allows control of pellet density, greater water
stability, enhanced durability, and better production efficien-
cy and versatility (Kiang 1998; Brent 1989).

The objectives of this study were: (1) to develop feed for
juvenile yellow perch using DDGS as an alternative protein

source and (2) to examine the effects of varying DDGS
content on the physical properties of the extrudates and on
extruder processing behavior.

Materials and Methods

Feed Blend Preparation

Five isocaloric (3.06 kcal/g) ingredient blends (Fig. 1)
with a similar protein content of 36.7% db, each with
increasing contents of DDGS (0%, 10%, 20%, 30%, and
40%db) and decreasing amounts of herring fish meal,
varying amounts of Celufil and menhaden oil, but a nearly
constant ratio of whole wheat flour, corn gluten meal,
vitamin and mineral mix (Table 1), were used to prepare
nutritionally balanced diets for juvenile yellow perch.
Table 2 shows the physical properties of the raw feed
blends. Approximately 23 kg of each blend were extruded.
DDGS was provided by Poet Nutrition (Sioux Falls, SD,
USA) and were ground with a pilot-scale mill (Model DA
506, Fitzpatrick Co., Elmhurst, IL, USA) to a particle size
of 500 μm, in order to achieve uniformity before
extrusion. Herring fish meal was obtained from Lortscher
Agri Service, Inc. (Bern, KS, USA). The Celufil (used as a
fiber source) was purchased from USB Corporation
(Cleveland, OH, USA); menhaden fish oil from Omega
Protein, Inc. (Houston, TX, USA); whole wheat flour from
Bob’s Red Mill Natural Foods, Inc. (Milwaukie, OR,
USA); corn gluten meal from Consumers Supply Distrib-
uting Company (Sioux City, IA, USA); vitamin C from
DSM Nutritional Products France SAS (Village-Neuf,
France); vitamin mix and mineral mix from Lortscher
Agri Service, Inc. (Bern, KS, USA). The corn gluten meal,
the menhaden fish oil, and the whole wheat flour were
mixed (Model 600, Hobart Corporation, Troy, OH, USA)
for about 3 min until the fish oil dispersed well into the
mixture; then the mineral and vitamin mix were added to
the mixture; this premix was then added to the rest of the
ingredients and mixed in a twin shell dry blender (The
Patterson-Kelley Co. Inc., East Stroudsburg, PA, USA) at
60 rpm to produce a homogeneous bulk.

0% DDGS 10% DDGS 20% DDGS 30% DDGS 40% DDGS 

20 mm 

Fig. 1 Raw blends
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Extrusion

Extrusion was performed using a co-rotating, fully inter-
meshing, self-wiping, twin-screw extruder (Wenger TX-52,
Sabetha, KS, USA), with a feed hopper and preconditioner.
The extruder had 52 mm diameter twin screws, with a
barrel length of 1340 mm, and a 25.5:1 barrel length-to-
diameter ratio. The screw speed could operate from 100 to
1,800 rpm, and the barrel temperatures could be adjusted
from 60°C to150°C. The screw had 25 individual sections
(Fig. 2), and the configuration from the feeding section
down the length of the barrel to the die section consisted of:
four conveying screws, three shear locks, one conveying
screw, one conveying screw backward, three conveying
screws, one conveying screw backward, four conveying
screws, one shear lock, one interrupted flight conveying
screw, one conveying screw, one interrupted flight convey-
ing screw, one shear lock, and one cone-shaped screw at the
end. The raw material was scooped in the feed hopper and
conveyed by screws into the preconditioner. The condi-
tioner was an intermediate unit operation of the extruder,
where the feedstock was heated and water at rates between
6.72 and 11.10 kg/h and steam at rates between 6.86 and
9.70 kg/h was added to adjust the blends to specific
temperature and moisture contents. The conditioned ingre-
dients were conveyed into the extruder at a feeder speed
varying between 12 and 16 rpm (1.3 and 1.7 rad/s). The
screw speed was maintained at levels varying between 226
and 298 rpm (23.7 and 31.2 rad/s). Between the feeding
zone and the die section the barrel was divided into eight
different temperature zones that were maintained at varying
temperature combinations (15–90°C; see Table 3 for the
process settings used during processing) depending on the
actual temperature of the temperature zones and the final

Table 1 Ingredient components (g/100 g) in the feed blends and their
compositions (dry basis) used in the study

Ingredients (% db) Diet 1 Diet 2 Diet 3 Diet 4 Diet 5

Dry weight of ingredients (g/100 g)

DDGSa 0.00 9.98 19.98 30.00 40.05

Fish meal (herring)b 40.35 30.30 20.22 10.12 0.00

Corn gluten mealc 25.75 25.78 25.81 25.84 25.87

Whole wheat flourd 14.99 15.01 15.02 15.04 15.06

Celufile 9.96 9.31 8.57 7.92 8.31

Menhaden oilf 5.54 6.21 6.97 7.64 7.27

Vitamin/mineral premixg 2.92 2.93 2.93 2.93 2.94

Vitamin C mixh 0.50 0.50 0.50 0.50 0.50

Total 100.00 100.00 100.00 100.00 100.00

Diet composition (% db)

Protein 42.66 39.70 36.74 33.78 30.82

Fat 10.12 10.36 10.70 10.94 10.08

Crude fiber 2.40 3.16 3.92 4.68 5.44

Ash 5.25 4.41 3.57 2.73 1.89

All blends were formulated on a dry basis
a Dakota Gold HP DDG, Poet Nutrition (Sioux Falls, SD, USA)
b Lortscher Agri Service, Inc. (Bern, KS, USA)
c Corn gluten meal, Consumers Supply Distributing Company (Sioux
City, IA, USA)
dWhole wheat flour, Bob’s Red Mill Natural Foods, Inc. (Milwaukie,
OR, USA)
e Celufil-Non Nutritive Bulk, USB Corporation (Cleveland, OH, USA)
f Omega Protein, Inc. (Houston, TX, USA)
g Lortscher Agri Service, Inc. (Bern, KS, USA)
h Rovimix Stay-C 35, DSM Nutritional Products France SAS
(Village-Neuf, France)

Table 2 Physical properties of the raw feed blends

Properties Diet (% DDGS)

0 10 20 30 40

MC raw (% db) 4.98a (0.16) 5.80ab (0.42) 5.86ab (0.35) 6.55b (0.80) 6.63b (0.72)

aw (−) 0.37a (0.01) 0.39b (0.01) 0.39b (0.00) 0.4d (0.01) 0.41d (0.00)

BD (kg/m3) 381.55a (3.85) 356.08a (4.63) 401.74b (4.10) 409.65c (2.14) 440.71d (1.54)

k (W/(m °C)) 0.06a (0.01) 0.07bc (0.01) 0.07ab (0.01) 0.07ab (0.00) 0.08c (0.00)

α (mm²/s) 0.14b (0.01) 0.13ab (0.01) 0.13ab (0.01) 0.13ab (0.00) 0.13a (0.01)

L (−) 36.70a (0.18) 39.09b (0.54) 40.37bc (0.53) 41.3c (1.64) 45.76d (0.22)

a (−) 7.08a (0.04) 7.79b (0.02) 9.06c (0.07) 10.59d (0.31) 11.92e (0.16)

b (−) 16.41a (0.04) 18.05b (0.16) 19.78c (0.17) 21.47d (0.52) 23.98e (0.06)

Means followed by similar letters for a given dependent variable are not significantly different at P<0.05, LSD. Values in parentheses are
standard deviation

MC moisture content, aw water activity, BD bulk density, k thermal conductivity, α thermal diffusivity, L, a, b Hunter color parameters
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product property. In addition, depending on extrudates
physical characteristics, the amount of water entered the
extruder was applied at levels between 9.00 and 13.14 kg/h.
The two dies each had circular openings of 1.9 mm. A
rotating cutter with three blades was positioned at the end
of the dies and was adjusted to specific speeds to cut the
exiting extrudates to desired lengths. Furthermore, during
extrusion processing, the moisture (% db) content at the die
was monitored, and the temperatures (°C) of the raw
material, the blend in the preconditioner, and the extrudates
exiting the extruder, were measured with an infrared
thermometer (Model 42540, Extech Instruments Corpora-
tion, Waltham, MA, USA). Table 4 shows the behavior
during processing for each blend.

Processing Behavior

Mass flow rate (MFR) was determined by collecting two (n=2)
samples of extrudates exiting the die. Extrudates were
collected at intervals of 30 s during extrusion processing and
weighed on an electronic balance (Defender 3000 Series,
Ohaus, Pine Brook, NJ, USA).

Moisture content (MC) was determined according to AACC
method (2000) using a laboratory oven (Thelco Precision,

Jovan, Wincester, VA, USA) at 135°C for 2 h. Moisture
content of three (n=3) raw blend samples, exiting the
preconditioner, and extrudates exiting the die were measured.

After the prepared blends were extruded, they were
cooled for 72 h at room temperature (21±1°C), and they
were then dried in a laboratory oven (Model TAH-500, The
Grieve Corporation, Round Lake, IL, USA) for 24 h at 45°C,
and then subjected to extensive physical property testing.

After cooling, triplicates (n=3) were then analyzed for
moisture content (% db), water activity (−), bulk density
(kg/m3), pellet durability index (%), water stability (min),
angle of repose (mm), and color (−); length and diameter
(mm), unit density (kg/m3), expansion ratio (−), compres-
sive strength (MPa), and compressive modulus (MPa) were
determined with n=10 replications.

Moisture Content and Water Activity

The moisture content of the raw materials and extrudate
samples for each blend were determined using a laboratory
oven (Thelco Precision, Jovan, Wincester, VA, USA) at
135°C for 2 h according to AACC (2000).

The raw material and extrudate samples from each
treatment were analyzed for water activity (aw) with a

Interrupted Flight 
Conveying Screw

Conveying Screw

Shear Lock

Drive Shaft

Cone Shaped 
Screw

DIRECTION OF FLOW

Fig. 2 Screw profile used
in the extruder

Parameters Diet (% DDGS)

0 10 20 30 40

Conditioner steam (kg/min) 6.86 (0.18) 6.88 (0.20) 6.96 (0.25) 9.70 (0.02) 7.13 (0.14)

Extruder Water (kg/h) 9.15 (0.21) 11.10 (0.00) 13.14 (0.00) 6.72 (0.00) 9.60 (0.00)

Set Temperatures (°C)

Head 2 zone 1 25.00 25.00 25.00 25.00 25.00

Head 3 35.00 35.00 35.00 10.00 10.00

Head 4 zone 2 15.00 15.00 15.00 15.00 15.00

Head 5 zone 3 65.00 65.00 65.00 15.00 15.00

Head 6 zone 4 65.00 65.00 65.00 15.00 15.00

Head 7 zone 5 90.00 90.00 90.00 15.00 37.50

Head 8 80.00 80.00 80.00 81.50 65.00

Head 9 zone 6 80.00 80.00 80.00 81.50 65.00

Table 3 Process settings used
during extrusion of each diet

Values in parentheses are
standard deviation
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water activity measuring system (aw Sprint TH-500,
Novasina, Pfäffikon, Switzerland). A sample bowl was
filled with each sample and then placed in the measuring
chamber of the instrument for analyzing the water activity.

Expansion Ratio and Unit Density

Extrudates at approximate lengths of 25.4 mm were
weighed on an analytical balance (Adventurer™, Item No:
AR 1140, Ohaus Corp. Pine Brook, NJ, USA) and
measured with a digital caliper (Digimatic caliper, Model
No: CD-6”C, Mitutoyo Corp., Tokyo, Japan) to determine
their diameter. According to Rosentrater et al. (2005) the
unit density (UD) was calculated as the ratio of the mass M
(kg) to the volume V (m3) of each measured and weighed
sample, assuming a cylindrical shape for each extrudate:

UD ¼ M

V
ð1Þ

The ratio of the diameter of the dry extrudates, measured
with a digital caliper (Digimatic caliper, Model No: CD-
6”C, Mitutoyo Corp., Tokyo, Japan), to the diameter of the
die nozzle (1.9 mm) was used to determine the expansion
ratio (ER). The results were displayed as the mean of ten
measurements.

Bulk Density

Bulk density (BD) was determined as the ratio of the mass
of extrudates and raw material, respectively that they filled
up to a given bulk volume and measured using a standard
bushel tester (Seedburo Equipment Company, Chicago, IL,
USA) following the method recommended by USDA
(1999).

Compressive Strength and Modulus

For each treatment, the extruded samples of equal length were
tested for their compressive strength and modulus (i.e.,
stiffness) using a dual column universal materials testing
machine (Model No. 5564, Instron, Canton, MA, USA).

Pellet Durability Index

The pellet durability (PDI) index was determined according
to Method S269.4 (ASAE 2004). Approximately 100 g
extrudate samples of each blend were manually sieved
(USA standard testing, ASTM E-11 specification, Daigger,
Vernon Hills, IL, USA) for about 10 s and then tumbled in
a pellet durability tester (model PDT-110, Seedburo
Equipment Company, Chicago, IL, USA) for 10 min.
Afterwards, the samples were again sieved for approxi-
mately 10 s and weighed on an electronic balance (Explorer
Pro, Model: EP4102, Ohaus, Pine Brook, NJ, USA). For
blend 1–4 sieve No. 7 (2.80 mm) was used, but for blend 5
and 6 sieve No. 8 (2.36 mm) was used. Relating the
extrudates sample weights before and after tumbling, the
PDI was calculated as

PDI ¼ Ma

Mb

� �
� 100 ð2Þ

where, Ma was the mass (g) after tumbling and Mb was the
sample mass (g) before tumbling.

Water Stability

For extrudates of each blend, a 1-g sample was placed in
200 mL of distilled water and stirred with a magnet stirrer
(PMC No. 524 C, Barnstead International, Dubuque, IA,
USA) at low speed until the extrudates broke to determine
the stirred water stability. In the case of still water stability
(WS), the same process was used without stirring. Water
stability of aquafeeds gives conclusions about the overall
performance of the extrudates. It represents one of the most
important properties of the feed, since water stability
determines how much time it takes before an extrudate
breaks and, therefore, is no longer available for the fish. In
addition, disintegration of extrudates involves leaching of
nutrients into water. There were two methods used to draw
conclusions about WS: (1) to determine how long extru-
dates were stable when spun around and (2) how long
extrudates were stable when they were not moved, as

Table 4 Treatment effects on the measured processing behavior

Parameters Diet (% DDGS)

0 10 20 30 40

MC conditioner (% db) 31.66d (1.21) 35.22e (1.14) 20.46c (0.72) 15.61a (0.78) 17.71b (0.98)

MFR (kg/min) 1.08c (0.06) 1.08c (0.00) 0.98b (0.03) 0.90ab (0.03) 0.82a (0.03)

MC die (% db) 51.84c (0.62) 62.03d (2.14) 47.96b (1.23) 34.93a (0.44) 32.96a (0.23)

Means followed by similar letters for a given dependent variable are not significantly different at P<0.05, LSD. Values in parentheses are
standard deviation

MC moisture content, MFR mass flow rate
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compared to the act of sinking to the ground tank bottom
when not being consumed by fish.

Angle of Repose

Angle of repose was determined by letting an extrudate
sample fall onto a 99-mm circular plate, using a standard
bushel tester (Seedburo Equipment Company, Chicago, IL,
USA) with the measuring cup turned upside down. Angle
of repose (AOR) was determined by calculating the tan−1 of
(the height of the pile/radius of its base (49.5 mm)).

Color

A spectrophotometer (LabScan XE, HunterLab, Reston,
VA, USA) was used to determine the extrudate color, where
L* quantified the brightness/darkness, a* the redness/
greenness and b* the yellowness/blueness of the samples.
Likewise, the color was tested on the raw material blends.

Thermal Properties

Each raw blend was analyzed for thermal conductivity
(k) and thermal diffusivity (α). From each blend, raw
material was placed in a 250 mL beaker. The sensor
needle of the thermal properties analyzer (KD2 Thermal
Properties Analyzer, Decagon Devices, Inc., Pullman,
WA, USA) was inserted into the medium, and the
thermal conductivity and thermal diffusivity were mea-
sured three times on three different positions in the
material at room temperature (21±1°C).

Statistical Analysis

All data were analyzed with SAS (1999) software (SAS
Institute, Cary, NC, USA), using a type I error rate (α) of
0.05 by analysis of variance, to determine if there were
significant differences between treatments and, if differ-
ences existed, post hoc least significant difference (LSD)
tests were used to determine where they occurred. Pearson
linear correlation analyses were also conducted among all

independent and dependent variables to test for linear
relationships.

Results and Discussion

DDGS level influenced both the processing behavior as well
as the resulting extrudate characteristics, both externally
(Fig. 3, which shows that the extrudates changed in texture
and appear to be more homogeneous with increasing DDGS
levels), and internally (Fig. 4, which illustrates cross sections
of the final extrudate samples at a magnification of ×60).

Moisture Content

Extrudate physical properties were impacted by the level of
DDGS (Table 5). Moisture content has a major impact on
the extrusion process. It does not only affect most of the
extrusion processing parameters such as mass flow rate and
color (Chevanan et al. 2007a), but it is also a determining
factor for the cohesiveness of the final product. Variations
in steam and water may result in soft, brittle or, as desired,
cohesive extrudates. Another important effect of MC on
extrudates’ texture is that water plasticizes proteins (Zhang
et al. 2001) and makes the final product less brittle and
fragile. Analyzing the moisture content of the raw materials
(on a dry basis), a slight increase in MC occurred when
adding more DDGS to the diets. The levels varied between
4.98% MC for the control diet and 6.63% MC for the blend
including 40% DDGS. Similar observations for increases in
MC of the raw blends with higher DDGS levels were made
in different extrusion studies (Chevanan et al. 2007c, a, b;
Ayadi et al. 2009a, b). Regarding the samples taken from
the conditioner and samples taken directly when exiting the
die, no clear pattern of changes in MC could be observed.
MC for the samples from the conditioner showed signifi-
cant differences between all blends. The blend including
30% DDGS resulted in the lowest MC of 15.61%, and the
blend with 10% showed the highest MC at 35.22%. These
findings are not consistent with the amount of steam added
to the conditioner cylinder. The largest amount of steam,

0% DDGS 10% DDGS 20% DDGS 30% DDGS 40% DDGS 

20 mm 

Fig. 3 Resulting extrudates
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9.70 kg/min, was added to the blend that yielded the lowest
amount in MC. The remaining blends were supplied with
6.86 and 7.13 kg/min of steam.

Similar effects in MC of the product exiting the die
could be observed when injecting varying amounts of water
into the extruder barrel. The blend at the lowest die MC
(32.96%) had a water injection with 9.60 kg/h and the
blend at the highest die MC (62.03%) was supplied with
11.10 kg/h of water. The blend with 20% DDGS was
supplied with the largest amount of water (13.14 kg/h) and
yielded a die moisture content of 47.96%; no clear relation
to the water supply could be determined.

MC of the final extrudates showed differences that were
similar to the raw materials. An almost constant increase in
MC together with an increase in DDGS could be
determined, except that the blend containing 20% DDGS
had the lowest MC (1.10%). The blend containing 40%

yielded the highest MC (3.70%). Similar results were
obtained by Ayadi et al. (2009a, b).

As expected, extrudates MC was lower compared to the
raw material. On the one hand, this was due to an extensive
flashing-off of internal moisture at the die exit caused by
the sudden pressure drop from high values inside the
extruder to atmospheric levels outside. On the other hand,
the long time period of drying the final products at room
temperature and additionally in an oven, resulted in the low
extrudate MC. This is in agreement with results discussed
by Ayadi et al. (2009a, b).

Water Activity

Water activity is defined as the ratio between the pressure
of a solution to that of pure water under the same condition
(Koop et al. 2000). It measures the free water existing in a

0% DDGS 10% DDGS 20% DDGS 30% DDGS 40% DDGS 

1 mm 

Fig. 4 Cross-sections of the resulting extrudates (magnification of ×60)

Table 5 Treatment effects on the extrudate physical properties

Properties Diet (% DDGS)

0 10 20 30 40

MC extrudate (% db) 1.32a (0.43) 1.64a (0.81) 1.10a (0.05) 2.50b (0.43) 3.70c (0.22)

aw (−) 0.11a (0.01) 0.13b (0.00) 0.14bc (0.00) 0.14c (0.00) 0.12a (0.00)

ER (−) 1.43b (0.02) 1.35a (0.05) 1.35a (0.03) 1.44b (0.03) 1.36a (0.04)

UD (kg/m3) 855.31a (47.42) 917.05b (65.74) 911.19b (52.98) 867.89ab (64.10) 990.09c (59.77)

BD (kg/m3) 427.59a (5.54) 447.19c (2.72) 463.89d (1.68) 434.00b (0.52) 470.29e (0.24)

Compressive strength (MPa) 1.13a (0.29) 1.51ab (0.33) 1.91b (0.43) 1.58b (0.19) 3.00c (0.86)

Compressive modulus (MPa) 12.39a (4.60) 17.27a (4.15) 17.68a (10.64) 14.11a (10.64) 61.05b (25.49)

PDI (%) 93.35b (0.36) 96.26c (0.37) 96.77c (0.54) 89.89a (0.89) 96.27c (0.12)

WS stir (min) >30 (0.00) >30 (0.00) >30 (0.00) >30 (0.00) >30 (0.00)

WS still (min) >30 (0.00) >30 (0.00) >30 (0.00) >30 (0.00) >30 (0.00)

AOR (°) 36.28c (0.43) 35.77c (0.44) 35.51c (1.17) 33.15b (0.47) 31.78a (0.48)

L (−) 39.51c (0.39) 40.16c (0.11) 39.73c (0.55) 34.26b (0.64) 30.16a (0.45)

a (−) 4.38a (0.03) 4.87b (0.09) 5.61c (0.05) 8.10d (0.13) 10.30e (0.09)

b (−) 15.51a (0.16) 16.17b (0.08) 16.62c (0.17) 17.07d (0.27) 15.76a (0.21)

Means followed by similar letters for a given dependent variable are not significantly different at P<0.05, LSD. Values in parentheses are
standard deviation

MC moisture content, aw water activity, ER is expansion ratio, UD unit density, BD bulk density, PDI pellet durability index, WS water stability,
AOR angle of repose, L, a, b Hunter color parameters
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material that is not bound to molecules and therefore
available for the growth of microorganisms, such as
bacteria, molds, and yeast. Hence, products with a low aw
have a lower chance for spoilage, whereas materials with a
high aw are at a greater risk for quick spoilage; water
activity determines the shelf life of a product and is
generally considered to guarantee a stable product with
long storage stabilities at levels below 0.6 (Lowe and
Kershaw 1995).

Water activities of the raw materials varied between 0.37
and 0.41 and partially increased with higher DDGS levels
in the blend. The water activity of the extrudates showed no
significant differences between all blends and varied
between 0.11 for the blend with 0% DDGS to 0.14 for
the blends with 20% and 30% DDGS content. The values
for aw were very low and can be traced back to the fact that
extrudates were air- and oven-dried post extrusion. Thus,
they all had high expected shelf-life properties. Likewise, it
can be said that the raw materials had a low-water activity
that allows long storage times without the risk of fast
spoilage.

Expansion Ratio

The degree of expansion determines the structure and
therefore the texture of the extrudates. During expansion,
water is nucleated and forms bubbles in the extruded
material upon die exit (Arhaliass et al. 2009). The
internal structure of the expanding melt is affected by the
radial expansion that occurs at the die exit and results in
different textures of the extrudates (Arhaliass et al. 2003).
ER is generally inversely related to the unit density
(Bhatnagar and Hanna 1996). The levels of expansion
ratio were calculated between 1.35 and 1.44 and hence
were very low. Diets including 10%, 20%, and 40%
showed no significant differences to each other in ER; the
control diet showed no significant difference to the blend
with 30% DDGS. Contrary to the initially mentioned
assumption, there was no noticeable relation determined
between UD and expansion ratio. Similarly, Ayadi et al.
(2009a, b) observed almost no significant differences in
expansion ratio when performing single-screw extrusion
studies on yellow perch.

Expansion depends on the flashing of water vapor and
flow properties of molten starch (Colonna et al. 1989).
High expansion ratios were not expected due to the fact that
DDGS naturally has low starch contents that vary between
4.7% and 5.9% (Rosentrater and Muthukumarappan 2006)
and that the present diets were designed for fish feed,
accordingly, containing high amounts of protein. Further-
more, expansion ratios were only calculated based upon
radial expansion, neglecting longitudinal and volumetric
expansions.

Unit Density

Extrudates decreased in length as DDGS level increased
(Fig. 3). Unit density measures the mass of individual
extrudates to their volume. In contrast to bulk density, unit
density quantifies the density for a single extrudate,
whereas BD relates to the volume occupied by a given
mass. Unit density is related to the floatability of the feed,
and is therefore a decisive factor in aquaculture feeds.
Values for UD varied from 855.31 kg/m3 for the control
diet to 990.09 kg/m3 for the blend including 40% DDGS
content, which was an overall increase of 15.8%. Blends
with 10%, 20%, and 30% DDGS content showed no
significant differences among each other. Furthermore,
there was no significant difference between the control diet
and the blend containing 30% DDGS; only the diet with the
40% DDGS level, which had the highest UD, was
significantly different from all other blends. In other
studies, Chevanan et al. (2007b) observed an increase of
159% in unit density when increasing the DDGS content
from 20% to 60% in twin-screw extrusion for fish feed.
Studies in single-screw extrusion for yellow perch feed
determined an increase of 17% when raising DDGS levels
from 10% to 50% (Ayadi et al. 2009a, b). Hence, it can be
assumed that changes in UD can be related to the amounts
of DDGS and fish meal added to the ingredients, since the
remaining ingredient quantities were not altered. Although
all extrudates were found to be below the density of water
(1,000 kg/m3), none of the samples floated and instead sank
slowly to the bottom of the beaker. The same reaction of
non-floating DDGS extrudates with lower UD than water
was observed by Ayadi et al. (2009a, b). This behavior
could be ascribed to the porous structure of the pellet,
which might have rapidly absorbed the water and let them
slowly sink.

Bulk Density

Bulk density is a key parameter in the design and utilization
of storage reservoirs (Rosentrater 2006). It determines the
size of the storage volumes that are needed for extrudates
and feedstocks. At the final step of the extrusion process,
small voids inside the extrudate’s texture are formed by
expansion and hence, affect the bulk density. Likewise, the
space between extrudates and particles of the feedstock
affects the size of storage space.

With increasing DDGS inclusion levels from 10% to
40%, the values for BD of the raw material increased
from 356.08 to 440.71 kg/m3 and resulted in a steady
increase of 23.8%. Regarding the extrudates, similarly, a
significant increase of 10.0% in bulk density from 427.59
to 470.20 kg/m3 could be observed when raising the
DDGS content from 0% to 40% (except in the diet
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including 30% DDGS, which did not conform, and
showed the second lowest BD of 434.00 kg/m3).
Chevanan et al. (2007b) determined an increase of 61.4%
in bulk density for extrudates when raising the DDGS
content from 20% to 60% in twin-screw extrusion of
aquaculture feed. Since the fishmeal was constantly
lowered in the initial ingredient blends with increasing
levels of DDGS, and the amount of fish oil added was
enhanced for the diets, it can be assumed that the bulk
density increased due to the higher DDGS and/or fish oil
levels.

Compressive Strength and Modulus

Compression tests were performed to determine the
capacity of the extrudates to resist forces without
breaking or deforming. Tests were completed when
extrudate samples reached the yield point (i.e., when
changes in the structure of the material were permanent,
which occurred when the first force peak was reached).
The values for compressive strength ranged from 1.13 to
1.91 MPa for diets containing 0–30% DDGS. The diet
containing 40% reached the highest value of 3.00 MPa.
This significant difference from all other blends could be
ascribed to the significantly higher MC of the diet, since
the moisture content in a material generally affects the
hardness (in this case the fracturability) of the extruded
product (Ding et al. 2005; Li et al. 2005). Water
plasticizes the starch and protein and reduces its viscosity
(Zhang et al. 2001; Li et al. 2005). Therefore, the high
value of the compressive strength could be ascribed to the
lower porosity of the extrudates’ texture. This could also
be supported when comparing the compressive strength
with the UD: the higher the UD, the higher the values for
the compressive strength. Regarding all the values,
however, the levels for the compressive strength were
very low and showed that the extrudates did not resist high
forces and broke quickly. Similar observations were
determined by Ayadi et al. (2009a, b) who also noted
low levels for compressive strength between 3.06 and
4.28 MPa for DDGS-based yellow perch feeds, which
varied with the moisture content.

Compressive modulus gives indicated the stiffness of
the material. Except for the diet containing 40% DDGS,
which achieved 61.05 MPa, there were no significant
differences among the other diets for compressive
modulus; the other values varied between 12.39 and
17.68 MPa. The diet with 40% DDGS achieved the
highest level and had the highest standard deviation,
which can be one factor for the large variation towards
the other blends; another reason could again be attributed
to the significantly higher MC, which resulted in a more
highly plasticized product.

Pellet Durability Index

High quality fish feed extrudates should be durable and
made to last during transportation, stacking, and feeding.
This property of extrudates is a decisive factor for the
tumbling economics of aquafeeds. Durability is quantified
by the amount of fines returned from a batch under
standardized tumbling conditions (Hansen and Storebakken
2007). The values for durability for the blends containing
DDGS ranged between 89.89% and 96.77%, and all were
significantly higher than the control diet (93.35%) except
for the blend containing 30% DDGS (which had a PDI of
89.89%). These levels indicated high durability, and thus
very good resistance against destructive forces. In preced-
ing single-screw extrusion studies on yellow perch feeds,
likewise, high levels of PDI (up to 96%) were determined
when including DDGS in the diets (Ayadi et al. 2009a, b).
Overall, no clear pattern between amounts of DDGS
included in diets affecting PDI of extrudates were observed.

Water Stability

Water stability is another measurement for quality of fish
feed, and is defined as the amount of time a pellet
requires before breaking up after it has been placed in
water. WS quantifies the dissolving period and loss of
nutrients once they are exposed to water. Generally, long
times for WS demonstrate high physical stabilities of
extrudates. Besides, the time fish need to consume their
rations is decisive for the duration of feed’s stability in
water.

All times for WS were above 30 min, irrespective of
whether samples were rotated or unmoved. These results
indicate excellent water stability properties for all extruded
diets, and were similar to the values that Ayadi et al.
(2009a, b) determined; they observed times for WS
between 24 and 30 min for extrudates containing DDGS.

Angle of Repose

AOR provides information about the storage behavior of
extrudates and feed ingredients. It quantifies how easily the
material flows and how much storage space is required.
Low AOR values are advantageous because they indicate
better flowability, improve dispersion, and therefore need
less room for storage. Additionally, increased flowability
results in better filling properties. Angle of repose varied
between 36.28° and 31.78° and decreased with higher
DDGS levels. Hence, diets with higher amounts of DDGS
showed a better flowability, which is desired. The differ-
ences in values for AOR may be attributed to the surface
and shape irregularities of the extrudates and occurring
friction and other forces.
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Color

Extrudates became browner and darker in color with higher
DDGS amounts (Fig. 3). Presently, color of fish feed plays
no tangible role in the aquaculture feed sales market.
However, it may provide an indication about the loss of
lysine in the extruded product, which is an essential amino
acid for fishes. The Maillard reaction, favored by high
temperatures in combination with low water content, causes
reduction of sugars and free amino groups in proteins, and
decreases the protein digestibility and availability of amino
acids, particularly lysine (Björck et al. 1985). Cromwell et
al. (1993) determined that DDGS with lighter color tended
to have the highest concentrations of lysine compared to
dark colored DDGS.

DDGS is generally golden brown and lighter in color
than fish meal, the level of which was reduced from 40% to
0% with increasing amounts of DDGS in the raw blends.
These raw blends became lighter and more yellow, red
brownish in color with increasing DDGS levels. This was
confirmed in changes in the raw materials’ color: a
significant increase in brightness (Hunter L), redness
(Hunter a), and yellowness (Hunter b) of 24.7%, 68.4%,
and 46.1%, respectively, was observed with increasing
DDGS levels from 0% to 40%. Regarding the visual
differences in the final product, the color became darker
and more red brownish as DDGS increased. Analyzing
color instrumentally, there were no significant differences
in brightness among blends containing 0%, 10%, and 20%
DDGS; diets with 30% and 40% DDGS had significant
lower values in brightness than all blends and were also
significantly different to each other. Yellowness of the
extrudate samples showed the lowest values for the blends
with 0% and 40% DDGS; blends containing 10%, 20%,
and 30% DDGS were significantly different from all other
blends.

Comparing the color of the raw material with the final
extrudates, only changes in redness conformed to the
differences of the raw material color. Likewise, redness
increased steadily and significantly with rising DDGS
levels; all values for redness were lower than the raw
material, which thus resulted in greener extrudates.
Changes in brightness and yellowness of the extruded
products were not in accordance with behavior in color
changes of the raw product. Diets with 0% and 10% DDGS
of extrudates had higher values for L than the raw
ingredients, and resulted therefore in brighter extrudates.
Diets containing 20–40% DDGS had lower values for
brightness for the extruded product and were therefore
darker than the raw materials. All extruded blends had
lower values for yellowness and hence, resulted in bluer
extrudates. Comparing the changes in brightness among the
raw material and the extruded product for the blends

without DDGS and with 10% DDGS an increase of
7.66%, and 2.76%, respectively, and for the diets contain-
ing 20%, 30%, and 40% DDGS a decrease of 1.57%,
16.92%, and 34.08%, respectively, was observed.

Summing up, it can be assumed that for diets with 20%,
30%, and 40% DDGS, processing conditions related to the
Maillard reaction could have caused a darker product. In
future studies, the loss of lysine should be evaluated by
additional laboratory nutrient analysis.

Thermal Conductivity and Thermal Diffusivity

Thermal conductivity governs the heat transfer through a
material by conduction. The values for all blends varied
between 0.06 W/m·°C (for the control diet) and 0.08 W/m·°C
(for the blend containing 40% DDGS). A significant increase
occurred between the control diet, the diets containing 10–
30% DDGS, and the diet with 40% DDGS could be observed
with increasing levels of DDGS. The values for all raw
materials were low and characterized the blends as materials
with poor heat transfer properties.

The thermal diffusivity is defined as the ratio of the
thermal conductivity to the volumetric heat capacity. It
indicates the heat storage ability of a given sample
(Kawasaki and Kawai 2006) and is basically a measure of
the heating time in that material, i.e., the lower the thermal
diffusivity the longer the heating time (Arámbula-Villa et
al. 2007). The measured values for thermal diffusivities for
all diets varied between 0.13 and 0.14 mm2/s. This has
negative effects on heating and cooling processes, since
small variations in temperature require more time to be
readjusted. Then again, it can be assumed that the thermal
properties of the feedstock did not interfere with the intense
mechanical shear that can break covalent bonds in
biopolymers during extrusion processing (Asp and Björck
1989); and consequently the thermal properties of the
dough may not have affected chemical reactions, residence
time, and the viscosity during extrusion cooking.

Mass Flow Rate and Processing Behavior

The amount of extrudates produced and the performance of
the extruder during processing was quantified by the mass
flow rate. MFR is influenced by the screw speed, the
diameter of the die (Kannadhason et al. 2010), the shear
rate, levels of DDGS, moisture content, and viscosity of the
dough (Chevanan et al. 2008). The highest MFR was
achieved at a level of 1.08 kg/min for the blends with 0%
and 10% DDGS. MFR for the following blends slowly
decreased with increasing levels of DDGS; the lowest MFR
was recorded at 0.82 kg/min for the diet including 40%
DDGS. A significant decrease in extruder throughput with
increasing DDGS level was observed. These results are
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contradictory to the conclusions of Chevanan et al. (2008)
and Ayadi et al. (2009a, b), who determined an increase in
MFR when DDGS levels increased.

The temperature distribution throughout the extrusion
process (Fig. 5) for each ingredient blend at the different
head zones indicated that there were some differences
between the blends. The temperature entering the extruder
increased noticeable due to steam injection for adjusting the
blends to the desired temperatures; temperatures in the head
2 zone 1 decreased because water was injected to the
extruder. For the blends containing 0%, 10%, and 20%
DDGS, the temperature zones were maintained at the same
temperature combinations, whereas the temperature combi-
nation for blends with 30% and 40% DDGS varied for some
head zones. Hence, the variations in temperature recordings
occurred were based on settings, but can also be attributed to
the nutrient composition and the particle size of the varying
blends. As observed in Figs. 3 and 4, the different blends
altered in texture. Regarding the blend containing 40%
DDGS, the temperature setting was the lowest. Hence,
higher temperature values than the other blends could be
ascribed to the significantly higher recording for thermal
conductivity compared to the other blends. Furthermore,
temperature fluctuations, particularly in the final zones, can
be ascribed to higher friction caused by less available free
water due to further processing and cooking.

Extrudate Nutrient Analysis

The values for the protein content in the extrudates showed
high variances. Since the diets were initially designed to have
similar protein levels, it can be concluded that discrepancies in

the analysis of protein contents of the extrudates were caused
by faults in formulations and experimental error. The fat
content hardly showed differences among the different blends,
whereas fiber increased by 127% and ash contents decreased
by 64% with increasing DDGS levels. The increasing fiber
values can be related to the higher fiber in DDGS compared to
the other ingredients. Similar conclusions for changes in fiber
content in DDGS-based fish feed were made by Kannadhason
et al. (2010).

Property Correlations

Pearson linear correlation analysis results can be found in
Table 6. Many correlations with r values >0.80 and ≤0.8
were detected among the various properties, of which most
were anticipated based on previous studies conducted, for
example, by Chevanan et al. (2007a) and Kannadhason et
al. (2009a). In this study, the majority of DDGS properties
showed high correlations, and which have already been
discussed. Hunter color values of the raw blends were
strongly positively related to all of the raw properties (with
r values >0.84), except for thermal diffusivity; mass flow
rate was strongly, negatively related to Hunter color values
of the raw feed blends, with r values ≤0.93. These
correlations can be ascribed to the DDGS content of the
raw blends, which showed similar correlations.

Conclusions

Extrusion studies were performed using a twin-screw
extruder with the intention of producing nutritionally
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balanced diets for juvenile yellow perch using increasing
levels of DDGS. The initial feed MC (5–7%) was
modulated with varying amounts of steam (6.9–9.7 kg/h)
and water (6.7–13.1 kg/h) during processing to obtain
extrudates with adequate cohesive properties. With increas-
ing DDGS levels, significant differences were detected for
color on the raw and extruded material. The changes in
extrudate color can be ascribed to the processing conditions
and to the composition of the raw materials. Bulk density
for the raw materials and the extrudates, respectively,
showed significant increases with higher amounts of
DDGS. Water activities were very low and depict a product
with long shelf life properties. Furthermore, values for the
compressive strength were very low and resulted in easily
breakable extrudates, unlike the pellet durability index,
which indicated high values for nearly all blends and
provided a durable product with high resistance against
destructive forces. Low compressive strength and high
pellet durability are thus easily consumable by fish and
have very good transport properties. In addition, extrudates
showed excellent water stabilities that did not dissolve for
at least half an hour when exposed to water. In summary, it
can be concluded that extrusion processing with DDGS
yielded viable extrudates. Future work should examine how
changes in color, particularly brightness, are related to the
loss of lysine affected by the extrusion process and
availability of lysine and other essential amino acids in
DDGS feed can be assimilated by fish.
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