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We give large deviation upper bounds, and discuss lower bounds, for the Gibbs-
KMS state of a system of quantum spins or an interacting Fermi gas on the
lattice. We cover general interactions and general observables, both in the high
temperature regime and in dimension one.
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1. INTRODUCTION

The theory of large deviations studies the probability of rare events: It seeks
to determine at which rate the probabilities of untypical events (large devi-
ations) vanish, when measured with a family of distributions converging to
a limit.

This is a standard setup in equilibrium statistical mechanics. Imagine
a very large (formally infinite) mechanical system which is in an equilib-
rium state corresponding to given thermodynamical parameters, such as
temperature and chemical potential (grandcanonical description) or, equiv-
alently, energy and particle densities (microcanonical description). In sta-
tistical physics, the properties of a system in equilibrium are conveniently
described by its Gibbs states. A Gibbs state, in the formulation of classical
mechanics, is a probability distribution on the phase space of the system
characterized, roughly speaking, by weak space correlations. Microscopic
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configurations that are typical with respect to a Gibbs measure correspond
to equilibrium values of the thermodynamical parameters. For most ob-
servables of physical interest (that are intensive in the volume), the proba-
bility distribution induced by a Gibbs state is extremely peaked around the
mean value. This corresponds to the experimental fact that all equivalent
systems subject to the same conditions give rise to the same macroscopic
measurements.

For example, in a system in equilibrium at temperature T =β−1 and
chemical potential µ, consider a microscopically large but macroscopically
small subregion � of the available volume V . It is convenient in this
setup to regard V as infinitely large, that is, to work with ωβ,µ, the Gibbs
state of the infinite system, formally resulting from a suitable thermody-
namic limit. Say that the typical energy density, with respect to ωβ,µ, is
e; what is the probability to observe in � an energy density within the
range [e1, e2] =U , away from e? The large deviation principle asserts that
this probability is exponentially small in the size of �, i.e., of the order
e−IU |�|. A similar result should be true for most intensive observables. This
implies that the portion of the system in � has essentially the same prop-
erties as the whole. For example, it makes sense to speak of the tempera-
ture in �, as the probability to measure a macroscopically large deviation
of the energy therein is exceedingly small.

This shows how fundamental large deviations are for the very founda-
tions of statistical mechanics and thermodynamics, which treat as infinite
what in reality is only very large, and as deterministic what in reality is
only very likely.

The large deviation principle for Gibbs measures in classical mechan-
ics, initiated in the seminal papers of refs. 24, 30, is now a classical sub-
ject, see e.g. refs. 9, 12–14, 16, 22, 23, 28, 31. It is maybe surprising that,
in comparison, very little is known about its quantum counterpart: We are
only aware of refs. 4, 5, 15, 21, 27, 29, 30, 32, 33, and none of these results
are very general in nature. The ones that are closest to the present work
are refs. 15 and 21, which analyze the large deviations of the particle den-
sity in ideal (fermionic and bosonic) quantum gases and their perturba-
tions. As we were completing this paper, the preprint in ref. 26 appeared
where the large deviation principle is established in the high temperature
regime (using a cluster expansion) for observables that depend only on one
site. In the larger context of probabilistic results for quantum lattice sys-
tems we want to mention refs. 17, 18, 24, 25, about the Central Limit
Theorem and the algebra of normal fluctuations, and refs. 6, 7, on Shan-
non–McMillan type of theorems.

In this work we treat general observables and general Hamiltonians,
but give results only for certain one-phase regimes (high temperature and
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dimension one). From a technical point of view, however, we do not use
cluster expansions, but a simple matrix inequality, combined with analytic-
ity estimates on the dynamics and subadditivity arguments.

For simplicity we will consider quantum systems of spins or fermions
on a lattice. The statistical mechanics of spins and fermions is naturally
expressed in the formalism of C∗-algebras, which we will use through-
out the paper (see refs. 8, 36 for spin systems and ref. 3 for fermions).
For classical Gibbs systems, the DLR condition is a crucial ingredient
in establishing the large deviations principle. For quantum systems, Araki
introduced an analogous condition, the so-called Gibbs condition, which
will play an important role in our proofs. Our results presumably extend
to some bosonic systems or lattices of oscillators, but such systems pres-
ent more technical difficulties as they are most naturally expressed in the
W ∗-algebraic formalism.

In order to illustrate the scope – and limitations – of this work, let us con-
sider the example of a system of (fermionic) particles of spin 1/2. Our results,
however, are substantially more general and will be detailed in Section 3.

Let cx,σ and c∗x,σ denote the annihilation and creation operators for
fermions of spin σ ∈ {↑,↓} at site x ∈ Zd . These operators satisfy the
Canonical Anticommutation Relations. We denote by nx,σ = c∗x,σ cx,σ the
operator for the number of particles in x with spin σ , so that nx =nx,↑ +
nx,↓ indicates the operator for the total number of particles in x. The
finite-volume Hamiltonian (with free boundary conditions) for a finite sub-
set � of the lattice is taken to be

H� = −
∑

{x,y}⊂�
Tx−y

∑

σ

(
c∗y,σ cx,σ + c∗x,σ cy,σ

)
+

∑

x∈�
Unx,↑nx,↓

+
∑

{x,y}⊂�
Jx−y nxny. (1.1)

Special cases of this Hamiltonian are the Hubbard models and the
tJ -models, which are widely used in applications. We define the number
operator for a finite subset � of the lattice by

N� =
∑

x∈�
nx. (1.2)

We work in the grand canonical ensemble, whose finite-volume Gibbs
states are given by

ω
(β,µ)
� ( · ) = tr( · e−β(H�−µN�))

tr(e−β(H�−µN�))
, (1.3)
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where β is the inverse temperature and µ the chemical potential. We
denote by ω(β,µ) the Gibbs states of the infinite system, which, roughly
speaking, are constructed as limit points of ω� as �↗ Zd . Mathemati-
cally, the Gibbs states of the infinite system are characterized, equivalently,
by the variational principle, or the KMS condition, or the Gibbs condi-
tion.

Let us consider a local (microscopic) observable A, i.e., a self-adjoint
operator depending only on even products of creation and annihilation
operators (this is a natural limitation for Fermi systems; see Section 2).
For example, say that A is an even polynomial in the creation and annihi-
lation operators. Assume that A depends only on the sites of X⊂Zd , and
denote by υxA the translate of A by x ∈ Zd . For a cube � we define the
macroscopic observable K� by

K� =
∑

X+x⊂�
υxA. (1.4)

In this way, |�|−1K� represents the average of A in � (|�| denotes the
cardinality of the set �). If we denote by 1B the indicator function of a
Borel set B⊂R, then, for a Gibbs state ω(β,µ),

ρ�(B) = ω(β,µ)
(

1B
(
|�|−1K�

))
(1.5)

defines a probability measure on R. Namely, (1.5) is the probability that,
in the state ω(β,µ), the observable |�|−1K� takes values in B. Large devia-
tion theory studies the asymptotic behavior of the family of measures ρ�
on an exponential scale in |�|. This asymptotic behavior is expressed in
terms of a rate function I (x), which is a lower semicontinuous function
with compact level sets.

Let C be a closed set. We say that we have a large deviation upper
bound for C if

lim sup
�↗Zd

1
|�| logω(β,µ)

(
1C

(
|�|−1K�

))
� − inf

x∈C
I (x). (1.6)

Similarly, if O is open, we have a large deviation lower bound for O if

lim inf
�↗Zd

1
|�| logω(β,µ)

(
1O

(
|�|−1K�

))
� − inf

x∈O
I (x). (1.7)

One says that {ρ�} satisfies the large deviation principle if we have upper
and lower bound for all closed and open sets, respectively.
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In order to study the large deviations for ρ� as �↗Zd (along
sequences of cubes), one considers the corresponding logarithmic moment
generating function, defined as

f (α) = lim
�↗Zd

1
|�| logω(β,µ)(eαK�). (1.8)

The Gärtner–Ellis Theorem (see, e.g., ref. 11), shows that the existence
of f (α) implies large deviation upper bounds with a rate function I (x)

that is the Legendre transform of f (α). One obtains lower bounds if, in
addition, the moment generating function is smooth, at least C1. If the
moment generating function is not smooth, one has a weaker result: In
(1.7), the infimum over O is replaced by the infimum over O ∩E, where
E is the set of the so-called exposed points (see ref. 11 for details).

Our results apply both in one dimension and at high temperature. In
both cases the parameters β and µ are such that there is a unique Gibbs-
KMS state ω(β,µ).

Dimension one. Let us assume that the lattice is one-dimensional and
that the interaction has finite range, i.e., there exists an R > 0 such that
Tx−y and Jx−y vanish whenever |x−y|>R. Our core result is that, for any
macroscopic observable K� and all values of β and µ, the moment gen-
erating function f (α) exists and is finite for all α ∈ R. Furthermore f (α)
is given by the formula

f (α) = lim
�↗Zd

1
|�| log

tr(eαK� e−β(H�−µN�))
tr(e−β(H�−µN�))

, (1.9)

which involves only finite-dimensional objects.
As recalled above, if I (x) is the Legendre transform of f (α), the Gärt-

ner–Ellis Theorem entails the large deviation upper bounds with I as the
rate function. As for the lower bounds, it is tempting to conjecture that the
function f (α) is smooth, in one dimension. We have not proved it so far.

It is instructive, at this point, to compare our results on quantum
systems with their classical analogs. In the classical case, using the DLR
equations, one shows that a formula similar to Eq. (1.9) holds, with the
trace replaced by the expectation with respect to the counting measure. In
that case, one sees that f (α) is simply the translated pressure correspond-
ing to the Hamiltonians βH� − βµN� − αK�. Therefore, classically, the
smoothness of f (α) follows immediately from the lack of phase transitions
in one dimension, together with the identification of Gibbs states with
functionals tangent to the pressure.(19,36) In the quantum case, K� does
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not commute with H�−µNλ, in general, so the thermodynamic interpre-
tation of the moment generating function is not obvious. This is the main
difference.

Such interpretation is possible, however, when [K�, H� −µN�] = 0.
In our example (1.1), H� does commute with N� (this is not hard to ver-
ify, using the CAR; see (2.1)), therefore we can fully treat the physically
important large deviations in the energy and in the density. More in detail,
if the pressure function for our system is defined as

P(β,µ) = lim
�↗Zd

1
|�| log tr

(
e−β(H�−µN�)

)
, (1.10)

then (1.6)–(1.7) hold for the energy (K� = H�), with I (x) being the
Legendre transform of

α �→ P

(
β−α, β

β−αµ
)

−P(β,µ). (1.11)

They also hold for the number of particles (K� =N�), and in that case
I (x) is the Legendre transform of

α �→ P

(
β,µ+ α

β

)
−P(β,µ). (1.12)

High temperature. For arbitrary space dimension we assume that the
interaction is summable:

∑
x∈Zd (|Tx | + |Jx |) <∞. Our main result is that

there exist two constants, β0 (which depends only on the Hamiltonians
H�) and α0 (which depends only on the observables K�), such that the
function f (α) exists for |α|<α0, |β|<β0, and arbitrary µ ∈ R. Further-
more, in the special case in which the macroscopic observable is a sum of
terms depending only on one site, α0 can be taken to be infinity. Again,
the function f (α) is also given by (1.9).

This yields large deviation upper bounds for closed sets which are
contained in a neighborhood of the average K= lim�↗Zd |�|−1ω(β,µ)(K�).
At high temperature, one expects f (α) to be smooth, in fact analytic, and
this can be proved using a cluster expansion.

For the case of commuting observables we show that the moment
generating function exists for any α, provided |β|<β0. It is known that,
for sufficiently high temperature and any value of the chemical potential,
there is a unique Gibbs state (see Theorem 6.2.46 of ref. 8). Using this,
we obtain a full large deviation principle for the density of particles. As
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for the energy, we expect f (α) to have a singularity at some α �=0. At any
rate, we have upper bounds for all closed sets and lower bounds for sets
that are contained in a neighborhood of the mean energy. For both the
energy and the particle density, the rate functions are again the Legendre
transforms of (1.11)–(1.12).

Once again, the precise statements for a general quantum lattice sys-
tem will be presented – and proved – in Section 3.

2. QUANTUM LATTICE SYSTEMS

We consider a quantum mechanical system on the d-dimensional lat-
tice Zd , as seen, e.g., in refs. 8, 19, 35, 36 for spin systems, and in ref. 3
for fermions.

2.1. Observable Algebras

We first describe quantum spin systems. Let H be a finite-dimensional
Hilbert space. One associates with each lattice site x ∈ Zd a Hilbert space
Hx , isomorphic to H, and with each finite subset X⊂Zd the tensor prod-
uct space HX = ⊗

x∈X Hx . The local algebra of observables is given by
OX=B(HX), the set of all bounded operators on HX. If X⊂Y , there is a
natural inclusion of OX into OY , and the algebras {OX} form a partially
ordered family of matrix algebras. The norm-completion of the union of
the local algebras is the C∗-algebra that corresponds to the physical ob-
servables of the system, and is denoted by O. Within O, we have that
[OX, OY ] = 0 whenever X∩Y =∅. A state ω is a positive normalized lin-
ear functional on O, i.e., ω: O −→ C, ω(1)= 1 and ω(A) � 0, whenever
A � 0. The group Zd acts as a ∗-automorphic group on O: For x ∈ Zd ,
υx(OX) = OX+x . A state is called translation invariant if ω ◦υx =ω for all
x∈Zd and we denote by 	I the set of all translation invariant states. The
action of υ is asymptotically abelian, therefore 	I is a Choquet simplex
and one can decompose a state into ergodic components (see ref. 36).

The structure of the algebra of observables for fermionic lattices gases
is a little more involved, due to the anticommutativity properties of crea-
tion and annihilation operators (see refs. 3, 10). We construct it as follows.

Let I be the finite set that describes the spin states of a particle. For
X a finite subset of Zd , FX is defined formally as the C∗-algebra generated
by the elements {c∗x,σ , cx,σ }x∈X,σ∈I together with the relations

{c∗x,σ , cy,σ ′ } = δx,yδσ,σ ′1

{c∗x,σ , c∗y,σ ′ } = {cx,σ , cy,σ ′ } = 0. (2.1)
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The above are referred to as the Canonical Anticommutation Relations
(CAR). c∗x,σ and cx,σ are called the annihilation and creation operators
and are taken to be mutually adjoint by definition. It is easy to realize
that, as a vector space,

FX = span
{
c�1
x1,σ1

c�2
x2,σ2

· · · c�mxm,σm
}
, (2.2)

where the span is taken over all (finite) sequences {(xj , σj , �j )}mj=1 in X×
I ×{·,∗} that are strictly increasing w.r.t. a predetermined order. If X⊂Y ,
there is a natural inclusion FX⊂FY , and we define the fermionic C∗-alge-
bra F to be the norm-completion of

⋃
X⊂Zd FX.

Elements of F localized on disjoint parts of the lattice do not neces-
sarily commute (the generators in (2.2) might either commute or anticom-
mute) and so F is not asymptotically abelian. We have to restrict the class
of allowed observables to a smaller algebra. Let us denote by � the auto-
morphism of F determined by �(c�x,σ )=−c�x,σ . The observable algebra of
a fermionic lattice gas O is defined to be the even part of F , i.e.,

O = {A∈F |�(A)=A} . (2.3)

Clearly, OX = O ∩ FX is given by the same r.h.s. of (2.2), restricted to m

even. Hence [OX, FY ]=0 whenever X∩Y =∅, which is the commutativity
property we need. The algebra O is thus quasilocal and similar consider-
ations as for quantum spins systems apply.

Example 2.1. For quantum spin systems with spin 1/2, the Hilbert
spaces Hx , x ∈Zd , is isomorphic to C2.

Example 2.2. For fermionic systems of particles with spin 1/2, for
each x, the algebra generated by c∗x,σ and cx,σ is isomorphic to B(C4).

2.2. Interactions and Macroscopic Observables

An interaction Φ = {φX} is a map from the finite subsets X of Zd

(whose collection is denoted Pf (Zd)) into the self-adjoint elements of
the observable algebras OX (whose set is denoted O(sa)

X ). We will always
assume the interaction to be translation invariant, i.e., υxφX=φX+x for all
x ∈ Zd and all X ∈ Pf (Zd). An interaction is said to have finite range if
there exists an R>0 such that φX=0 whenever diam(X), the diameter of
X, exceeds R. (One usually says that the range is R if R is the smallest
positive number that verifies the previous condition.) We denote by B(f )
the set of all finite-range interactions. The set of interactions can be made



Large Deviations in Quantum Lattice Systems 723

into a Banach space by completing B(f ) with respect to various norms. In
this paper we use the norm

‖Φ‖λ =
∑

X�0

‖φX‖ eλ|X|, (2.4)

where λ> 0 and |X| denotes the cardinality of X. We call Bλ the corre-
sponding Banach space of interactions. To a given Φ one associates a fam-
ily of Hamiltonians (or energy operators) {H�}�∈Pf (Zd ) via

H�=H�(Φ)=
∑

X⊂�
φX. (2.5)

As in ref. 20, we define a finite-range macroscopic observable K of
range R to be a mapping K:Pf (Zd)−→O(sa) such that

1. K�+x =υxK� for all x ∈Zd and for all �∈Pf (Zd).
2. K�∪�′ =K�+K�′ if � and � are at distance greater than R.

The kind of example that we have in mind, and that covers most applica-
tions, is K�=∑

X+x∈� υxA, for a given self-adjoint A∈OX (which could
be, say, the magnetization or the occupation operator at the origin, or the
energy in a finite region, or so).

Given a finite-range observable K, we can recursively define a finite-
range interaction Ψ ∈ B(f ) by means of the equalities K� = ∑

X⊂�ψX .
We have a one-to-one correspondence between finite-range macroscopic
observables and finite-range interactions. We can and will consider more
general macroscopic observables by replacing condition 2 with the condi-
tion that the interaction Ψ , corresponding to K, belongs to some Banach
space.

2.3. Gibbs-KMS States

There are several equivalent ways to characterize the equilibrium
states corresponding to an interaction Φ. These equivalences certainly
hold if Φ ∈Bλ, for some λ>0.(8,36) A more general result of this type has
been proved recently in ref. 3, both for spin and fermion systems, for a
nearly optimal class of interactions.

In this paper, the notation �↗Zd will always mean that we take the
limit along an increasing sequence of hypercubes �. All our results can
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be proved for more general sequences (presumably Van Hove limits or so),
but, for simplicity, we will refrain from doing so.

We denote by P(Φ) the pressure for the interaction Φ, given by
the limit P(Φ) = lim�↗Zd |�|−1 tr(e−H�). Here tr is the normalized trace
in H� and H� is specified by (2.5). Let ω be a translation invari-
ant state. The mean energy relative to ω is defined as e(Φ)(ω) = H =
lim�↗Zd |�|−1ω(H�). Denoting by ω� the restriction of ω to O�, we
define the mean entropy in the state ω by s(ω) = lim�↗Zd |�|−1 S(ω�),
where S(ω�)=ω�(logρ�)= tr(ρ� logρ�) and ρ� is the density matrix of
ω�. The existence of the limits for the pressure, mean energy and entropy
is a standard result.

The variational principle states that

P(Φ) = sup
ω∈	I

(
s(ω)− e(Φ)(ω)

)
. (2.6)

We denote by 	(Φ)I the set of states for which the supremum in Eq. (2.6) is
attained, and we call such states the equilibrium states for the interaction
Φ. The set 	(Φ)I is a simplex and each of its states has a unique decom-
position into ergodic states.

The second characterization of equilibrium states is via the KMS con-
dition. Let us consider τt , a strongly continuous unitary action of R on O.
It is known that, on a norm-dense subalgebra of O, τt can be extended to
a (pointwise analytic) action of C.(8) So, a state ω is said to be τ -KMS if

ω(Aτi(B))=ω(BA) (2.7)

for all A, B in a norm-dense τ -invariant subalgebra of O. For a given
interaction Φ, one constructs the dynamics τ (Φ)t as the limit of finite vol-
ume dynamics defined, on a local observable A, by eiH�tAe−iH�t . Then
one can speak of a KMS state for the interaction Φ.

The third characterization is through the Gibbs condition. This con-
dition is analog to the DLR equations for classical spin systems. Stating
it properly would require considerable machinery, including the Tomita-
Takesaki theory. Detailed expositions can be found in refs. 8, 36 and we
will be brief here. Given an element P ∈O(sa) and a state ω, one can define
a perturbed state ωP in the following way: Using the Tomita-Takesaki the-
ory one constructs (in the GNS representation) a dynamics τt that makes
ω a τ -KMS state. One then perturbs the dynamics τt by formally adding
the term i[P, · ] to its generator (this would correspond to adding P to the
Hamiltonian). Finally, one defines ωP as the KMS state for the perturbed
dynamics (Araki’s perturbation theory).
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For an interaction Φ, let us consider the perturbation

W� =
∑

X∩� �=∅
X∩�c �=∅

φX, (2.8)

which is well defined under our assumptions. The state ω satisfies the
Gibbs condition if, for every finite subset �, there exists a state ω′ on O�c

such that

ω−W� = ω
(Φ)
� ⊗ω′. (2.9)

Here O�c is the subalgebra of observables that “do not depend on �” (we
omit the formal definition; suffices to say that O=O�⊗O�c ). Also, which
is crucial, ω(Φ)� is the finite-volume Gibbs state on O� given by

ω
(Φ)
� (A) = tr(Ae−H�)

tr(e−H�)
. (2.10)

The Gibbs condition is very similar to the DLR equations in classical lat-
tice systems, and it is not difficult to check that the DLR equations and
the Gibbs condition are indeed equivalent for classical spin systems.

Nor is it hard to verify that finite-volume Gibbs states satisfy all
the previous three conditions. A fundamental result of quantum statisti-
cal mechanics, due to Lanford, Robinson, Ruelle and Araki, asserts that
the three characterizations are indeed equivalent for infinite-volume trans-
lation invariant states of spins or fermions. The key to the proof is the
Gibbs condition, introduced by Araki. In the very recent ref. 3, equiva-
lence has been proved for a very large class of interactions, much larger
than the one considered in this paper.

3. RESULTS

Given an interaction Φ with a corresponding Gibbs-KMS state ω ∈
	
(Φ)
I , and a macroscopic observable {K�}, uniquely determined by the

interaction Ψ , we introduce the moment generating function

f (Ψ,Φ)(α) = lim
�↗Zd

1
|�| logω(eαK�) ; (3.1)
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that is, when the limit exists. A priori it is not obvious that f (Ψ,Φ)(α)
depends only on Φ and not on the choice of ω∈	(Φ)I . In this paper, how-
ever, we will always work in the one-phase regime, see Remark 3.3. Fur-
thermore one expects that, as in the classical case, f (Ψ,Φ)(α) would depend
only on Φ.

We will make one of the following assumptions.

H1: High temperature. Both Φ and Ψ belong to some Bλ and

λ

4
‖Φ‖λ <1. (3.2)

H2: High temperature improved. Φ is the sum of two interactions, Φ=
Φ ′ +Φ ′′, where Φ ′′ ={φ′′

x }x∈Zd involves only observables depending on one
site, and, for all �⊂Zd , we have

[
H ′
�, H

′′
�

]=0. Also, we assume that Φ ′
and Ψ belong to some Bλ with

λ

4
‖Φ ′‖λ <1. (3.3)

No smallness assumption on Φ ′′ is made.

H3: Dimension one. The lattice has dimension one and both Φ and Ψ
have finite range R.

Remark 3.1. Condition H2 is important in physical applications
where Φ ′′ is a chemical potential or an external magnetic field. It allows
us to prove our results at high temperature for any value of the chemical
potential/magnetic field (see the example in the introduction).

Our main result is

Theorem 3.2. Let ω, Φ, Ψ be as above.

1. (High temperature) If H1 or H2 is satisfied, then the moment gener-
ating function f (Ψ,Φ)(α) exists and is finite for all real α such that

|α|< 4
λ‖Ψ ‖λ . (3.4)

If the macroscopic observable is the sum of observables depending only on
one site, i.e., K�=∑

x∈�ψx , with ψx ∈O{x}, then f (Ψ,Φ)(α) exists and is
finite for all α∈R.
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2. (Dimension one) If H3 is satisfied, then f (Ψ,Φ)(α) exists and is finite
for all α∈R.

The moment generating function f (Ψ,Φ)(α) is convex and Lipschitz
continuous; more precisely,

∣∣∣f (Ψ,Φ)(α1)−f (Ψ,Φ)(α2)

∣∣∣ � ‖Ψ ‖0 |α1 −α2|, (3.5)

where ‖Ψ ‖0 =∑
X�0 ‖ψX‖. Moreover,

f (Ψ,Φ)(α) = lim
�↗Zd

1
|�| log

(
tr(eαK� e−H�)

tr(e−H�)

)
. (3.6)

Remark 3.3. Although our proof does not directly use this fact, the
assumptions of Theorem 3.2 imply that there is a unique KMS state (in
ref. 8, for instance, check Theorem 6.2.45 for H1, Theorem 6.2.46 for H2,
and Theorem 6.2.47 for H3).

Remark 3.4. The equality of the two limits (3.1) and (3.6) implies
that – using the terminology of ref. 21 – semilocal large deviations are the
same as global large deviations. In other words, ω(1B(|�|−1K�)) decreases
at the same exponential rate as ω�(1B(|�|−1K�)). Global large devia-
tions are so named because they gauge the probability of deviation from
the expected value when a microscopic observable is averaged over all the
available volume.

For particular, physically important observables, the results of Theo-
rem 3.2 can be improved.

Corollary 3.5. Suppose that, for all �∈Pf (Zd), the observable K�
commutes with the energy H�.

1. If H1 or H2 holds, then f (Ψ,Φ)(α) exists and is finite for all α ∈
R, and is C1 in a neighborhood of 0. If K� is the sum of observables
depending only on one site, then f (Ψ,Φ)(α) is C1 for all α.

2. If H3 holds, then f (Ψ,Φ)(α) exists, is finite, and is C1 for all α∈R.

Proof. If [H�, K�]=0 then, by Theorem 3.2 and Eq. (3.6),

f (Ψ,Φ)(α) = lim
�↗Zd

1
|�| log

(
tr(eαK�−H�)

tr(e−H�)

)

= P(Φ−αΨ )−P(Φ), (3.7)
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so that, as in the classical case, f (Ψ,Φ)(α) is the translated pressure. There
is a unique Gibbs-KMS state for the interaction Φ−αΨ , provided ‖Φ−
αΨ ‖λ is sufficiently small (ref. 8, Theorem 6.2.45), so, by the equivalence
between Gibbs-KMS states and functionals tangent to the pressure,(19,36)

f (Ψ,Φ)(α) is differentiable if α is sufficiently small. If the interaction Ψ

consists only of observables depending on one site, and H� commutes
with K�, then there is a unique Gibbs-KMS state for Φ−αΨ , for all α,
provided ‖Φ‖λ is small (ref. 8, Theorem 6.2.46). If condition H2 is sat-
isfied, similar considerations apply (see ref. 8, Theorem 6.2.46). If condi-
tion H3 is satisfied, there is a unique Gibbs-KMS state for Φ−αΨ (ref. 8,
Theorem 6.2.47).

The proof of Theorem 3.2 is in two steps. In the first step, instead of
f (Ψ,Φ)(α), we consider

g(Ψ,Φ)(α) = lim
�↗Zd

1
|�| log tr(eαK�e−H�). (3.8)

In the second step we show that

f (Ψ,Φ)(α) = g(Ψ,Φ)(α)−P(Φ). (3.9)

The function g(Ψ,Φ)(α) is defined via finite-dimensional objects. We will
prove the existence of the limit using a subaddivity argument, as in the
proof of the existence of the pressure. The equality (3.9) is proved using
perturbation theory for KMS states.

3.1. Perturbation of KMS States

A basic ingredient in the proof of the existence of the pressure is the
following matrix inequality:

∣∣∣log tr
(
eH+P

)
− log tr

(
eH

)∣∣∣ � ‖P ‖, (3.10)

where H and P are symmetric n×n matrices. In order to study the func-
tion g(Ψ,Φ)(α), where we have two (generally non-commuting) exponentials
under the trace, one needs to estimate quantities like

∣∣∣log tr
(
CeH+P

)
− log tr

(
CeH

)∣∣∣ , (3.11)
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where C is a positive-definite n×n matrix. A little thinking convinces one
that an estimate of (3.11) by a constant times ‖P ‖ cannot possibly hold
true, if the constant is required not to depend on C or n.

The following lemma gives an upper bound for (3.11) which is inde-
pendent of C and n, although it has a different form than Eq. (3.10).

Lemma 3.6. Let H,P ∈Cn×n, with H ∗ =H and P ∗ =P .

1. We have

∣∣∣log tr
(
eH+P

)
− log tr

(
eH

)∣∣∣ � ‖P ‖. (3.12)

2. Also, if C ∈Cn×n with C>0,

∣∣∣log tr
(
CeH+P

)
− log tr

(
CeH

)∣∣∣ � sup
0� t�1

sup
− 1

2 � s� 1
2

∥∥U−s(t)P Us(t)
∥∥ ,

(3.13)

where

Us(t)= es(H+tP ). (3.14)

Proof. The proof of part 1 is standard. One writes

∣∣∣log tr
(
eH+P

)
− log tr

(
eH

)∣∣∣ =
∣∣∣∣∣

∫ 1

0
dt
d

dt
log tr

(
eH+tP

)∣∣∣∣∣

�
∫ 1

0
ds

∣∣∣∣
tr(P eH+tP )
tr(eH+tP )

∣∣∣∣ � ‖P ‖, (3.15)

having used the fact that, for E � 0,

∣∣∣∣
tr(AE)
tr(E)

∣∣∣∣ � ‖A‖. (3.16)

To prove part 2, we recall DuHamel’s identity for the derivative of
eF(t), when F(t) is a bounded operator:

d

dt
eF(t) =

∫ 1

0
dueuF(t) F ′(t) e(1−u)F (t). (3.17)
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We write

log tr
(
CeH+P

)
− log tr

(
CeH

)
=

∫ 1

0
dt
d

dt
log tr

(
CeH+tP

)
(3.18)

and

d

dt
log tr

(
C eH+tP

)

=
tr

(∫ 1
0 duC e

u(H+tP ) P e(1−u)(H+tP )
)

tr
(
C eH+tP )

=
tr

(
e(H+tP )/2C e(H+tP )/2 ∫ 1

0 due
(u−1/2)(H+tP ) P e(1/2−u)(H+tP )

)

tr
(
e(H+tP )/2C e(H+tP )/2)

�
∥∥∥∥∥

∫ 1/2

−1/2
ds e−s(H+tP ) C es(H+tP )

∥∥∥∥∥ , (3.19)

where we have used the bound (3.16) with E= e(H+tP )/2Ce(H+tP )/2. This
concludes the proof of Lemma 3.6.

Lemma 3.6 involves the quantity U−s(t)PUs(t), which is the time
evolution (in imaginary time) of the observable P , relative to the dynamics
generated by H + tP . One needs to estimate the dynamics for imaginary
times between −i/2 and i/2. The connection with the KMS boundary
conditions is evident.

If we define a (finite-volume) state ω and a perturbed state ωP by

ω(A) = tr(AeH )
tr(eH )

, ωP (A) = tr(AeH+P )
tr(eH+P )

, (3.20)

then Lemma 3.6 immediately implies that, for C>0,

∣∣∣logωP (C)− logω(C)
∣∣∣ � ‖P ‖+ sup

0� t�1
sup

− 1
2 � s� 1

2

‖U−s(t)P Us(t)‖.

(3.21)

We will generalize this bound for Gibbs-KMS states of the infinite sys-
tem, using results from the perturbation theory of KMS states (see, e.g.,
Chapter 5.4 of ref. 8 or Chapter IV.5 of ref. 36). For a τ -KMS state ω,
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we denote by (Gω,πω,Oω)= (G, π,O) its GNS representation. The scalar
product on G is indicated with 〈 ·, · 〉. For any A∈O we have

ω(A) = 〈O,π(A)O〉 (3.22)

and the dynamics τ is implemented by some self-adjoint operator H on G:

π(τs(A)) = eisHπ(A) e−isH . (3.23)

From now on we will identify an element A with its representative π(A).
This is possible since the two-sided ideal {A ∈ O |ω(A∗A)= 0} is trivial
(ref. 36, Theorem IV.4.10), therefore π is the left multiplication on O
(ref. 36, Theorem I.7.5).

For P ∈O(sa), τP (A) given by

τPs (A) = τs(A)

+
∞∑

n=1

in
∫ s

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn

[
τsn(P ),

[· · · [τs1(P ), τs(A)]
] · · · ] .

(3.24)

defines a strongly continuous semigroup of automorphims of O imple-
mented by H +P :

τPs (A) = eis(H+P)Ae−is(H+P). (3.25)

Moreover we have

τPs (A) = �Ps τs(A)(�
P
s )

∗ = �Ps τs(A)(�
P
s )

−1, (3.26)

where the unitary operator

�Ps = eis(H+P)e−isH (3.27)

has the following representation as a norm-convergent series:

�Ps =1+
∞∑

n=1

in
∫ s

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn τsn(P ) · · · τs1(P ). (3.28)
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Furthermore, f (s,P ) = �Ps O, defined on R, extends to a holomorphic
function f (z,P ) on {z∈C |0 � Imz � 1/2} (i.e., the function is continuous
and bounded on the close strip, and analytic on its interior). In particular,
O belongs to the (maximal) domain of �P

i/2, so that one can set

OP = �Pi/2O = e−(H+P)/2 eH/2O. (3.29)

Araki’s perturbation theory asserts that the state ωP given by

ωP (A) = 〈OP , AOP 〉
〈OP , OP 〉 =

〈
O, (�P

i/2)
∗A(�P

i/2)O
〉

〈
O, (�P

i/2)
∗(�P

i/2)O
〉 (3.30)

is a τP -KMS state.
The bound in Lemma 3.6 involves the norm of the imaginary-time

evolution of the perturbation P . Therefore, for infinite systems, we will
assume that P is an analytic element for the dynamics in the strip {|Imz| �
1/2}: By this we mean that τz(P ) extends to a holomorphic function in the
strip, in the sense specified above. This is clearly a strong assumption and
the main limitation of our approach.

Theorem 3.7. Let ω be a τ -KMS state and let P ∈ O be a self-
adjoint analytic element in the strip {|Imz| � 1/2}. Then, for all positive
C ∈O we have

∣∣∣logωP (C)− logω(C)
∣∣∣ � ‖P ‖+ sup

0� t�1
sup

− 1
2 � s� 1

2

‖τ tPis (P )‖ (3.31)

Proof. The proof of Theorem 3.7 follows closely the proof of
Lemma 3.6. We first assume that C1/2 is an analytic element for the
dynamics τ – such elements form a dense subalgebra of O (ref. 36,
Proposition IV.4.6). Rewriting Eq. (3.28) as

�Ps = 1+
∞∑

n=1

(is)n
∫ 1

0
du1

∫ u1

0
du2 · · ·

∫ un−1

0
dun τsun(P ) · · · τsu1(P )

(3.32)

and recalling the hypothesis on P , it is easy to extend �Ps to a holo-
morphic function on {|Ims| � 1/2}. In light of Eq. (3.26), then, we con-
clude that C1/2 is an analytic element for τ tP in that same strip, for all
0 � t � 1.



Large Deviations in Quantum Lattice Systems 733

Using Eq. (3.30) we have

logωP (C)− logω(C) =
∫ 1

0
dt
d

dt
logωtP (C)

=
∫ 1

0
dt
d

dt

[
log

〈
O, (�tPi/2)

∗C �tPi/2O
〉

− log
〈
OtP , OtP

〉]
. (3.33)

We now claim that

d

dt
�tPi/2 = −

∫ 1/2

0
ds τ tPis (P )�

tP
i/2. (3.34)

Verifying (3.34) would amount to a simple application of DuHamel’s for-
mula (3.17), if H were a bounded operator. In the case at hand we need
to work a little harder, although we use the same idea. For e>0, let �e be
the projection on the invariant space of H defined by values of its spectral
measure in [−e, e]. Then �′

e = 1 −�e is the projection on the orthogonal
complement. Set

He=�e H �e, H ′
e=�′

e H �
′
e, Pe=�e P �e. (3.35)

Clearly, He and Pe are bounded operators and [H ′
e, He]= [H ′

e, Pe]=0. By
means of (3.17), and after a change of variable, we verify that

d

dt
e−(He+tPe)/2eHe/2 =−

∫ 1/2

0
ds e−s(He+tPe)Pees(He+tPe)e−(He+tPe)/2 eHe/2.

(3.36)

Now we multiply each factor above by the corresponding term euH
′
e (u=

±1/2,±s); these terms commute with everything. We obtain

d

dt
�
tPe
i/2 = −

∫ 1/2

0
ds τ

tPe
is (Pe)�

tPe
i/2 . (3.37)

That (3.37) becomes (3.34), as e→+∞, follows from (3.24) – or rather its
analytic continuation – and (3.32), since Pe is entire analytic for τs , and
‖Pe−P ‖→0.
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Once (3.34) is settled, we can write

d

dt
log

〈
O, (�tPi/2)

∗C �tPi/2O
〉

=−
ωtP

(∫ 0
−1/2 ds τ

tP
is (P )C+ ∫ 1/2

0 ds Cτ tPis (P )
)

ωtP (C)
. (3.38)

The symmetric form of the KMS condition for ωtP is easily derived from
(2.7): For A,B analytic in the strip,

ωtP
(
τ tP−i/2(A) τ

tP
i/2(B)

)
= ωtP (BA) . (3.39)

Applying the above twice,

ωtP
(
τ tPis (P )C

)
= ωtP

(
τ tP−i/2(C

1/2) τ tPi(s+1/2)(P ) τ
tP
i/2(C

1/2)
)

;
ωtP

(
Cτ tPis (P )

)
= ωtP

(
τ tP−i/2(C

1/2) τ tPi(s−1/2)(P ) τ
tP
i/2(C

1/2)
)
. (3.40)

We thus turn (3.38) into

d

dt
log

〈
OtP , C OtP

〉

=−
ωtP

(
τ tP−i/2(C

1/2)
∫ 1/2
−1/2 ds τ

tP
is (P ) τ

tP
i/2(C

1/2)
)

ωtP
(
τ tP−i/2(C1/2)τ tP

i/2(C
1/2)

) , (3.41)

and therefore

∣∣∣∣
d

dt
log

〈
OtP , C OtP

〉∣∣∣∣ � sup
− 1

2 � s� 1
2

∥∥∥τ tPis (P )
∥∥∥ . (3.42)

Here we have used the fact that

A �→ ω(B∗AB)
ω(B∗B)

(3.43)

defines a state on O if ω(B∗B) �=0.
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As for the second term in (3.33), we plug C = 1 in (3.41), use the
invariance of ωtP with respect to τ tPz , and conclude that

∣∣∣∣
d

dt
log

〈
OtP , OtP

〉∣∣∣∣ � ‖P ‖. (3.44)

This gives the desired bound when C1/2 is analytic. The general statement
follows by density, see Corollary IV.4.4 in ref. 36.

3.2. Analyticity Estimates

As is apparent from the previous section, we need estimates on the
evolution of observables (in imaginary time). We will use two results, one
valid at high temperature and one valid in dimension one.

The first is due to Ruelle, has no restriction on the dimension, and is
a standard.

Proposition 3.8. Let Φ ∈ Bλ, for some λ> 0 (see Section 2.2). For
any � ∈ Pf (Zd) and any collection of numbers {uX}X⊂�, with uX =
uX(�)∈ [0,1], set

H
(u)
� =

∑

X⊂�
uXφX (3.45)

(of course, H(u)
� =H�, if uX=1 for all X). If A∈⋃

X OX is a local observ-
able and z belongs to the strip {|Imz| � 2/(λ‖Φ‖λ)}, then

∥∥∥eizH
(u)
� Ae−izH

(u)
�

∥∥∥ � 1

1−|Imz| λ2 ‖Φ‖λ
‖A‖ eλ|X|. (3.46)

This estimate is uniform in � (and {uX}) and thus holds in the limit
�↗Zd , when this limit exists. In particular it holds for the infinite-vol-
ume dynamics τz.

Proof. Follows trivially from the estimates of Theorem 6.2.4 in
ref. 8.

Proposition 3.8 implies that, in the high-temperature regime

λ

4
‖Φ‖λ <1, (3.47)
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local observables are analytic elements for the dynamics at least in the
strip {|Imz| � 1/2}, which is what we need.

The second estimate is due to Araki(1) and applies only in dimension
one. It was used recently in ref. 24 to prove a central limit theorem in one-
dimensional spin systems.

In order to state it we introduce the concept of exponentially local-
ized observables. Denote On = O[−n,n]. Given A∈ O, we set ‖A‖[0] = ‖A‖
and

‖A‖[n] = inf
An∈On

‖A−An‖. (3.48)

This allows us to define, for 0<θ <1, the norm

‖A‖(θ) =
∑

n�0

θ−n ‖A‖[n]. (3.49)

An element A of O is said to be exponentially localized with rate θ if, and
only if, ‖A‖(θ) <∞. The symbol O(θ) will denote the space of all such ob-
servables.

We consider an interaction Φ of finite range R, and set

S(Φ) =
∥∥∥∥∥
∑

X�0

φX

diam(X)

∥∥∥∥∥ . (3.50)

Also, for s >0, we define

FR(s) = exp

[
(−R+1)s+2

R∑

k=1

ekR −1
k

]
. (3.51)

We have

Proposition 3.9. Let Φ ∈B(f ), with range R. If θ ∈ (0,1) and h>0
verify θe4hS(Φ)= θ ′<1, then there exists a constant M=M(R, θ, h) (inde-
pendent of Φ) such that, for A∈O(θ) and |Imz| � h,

∥∥∥eizH
(u)
� Ae−izH

(u)
�

∥∥∥
(θ ′)

� MFR(2S(Φ))‖A‖(θ). (3.52)

Here H(u)
� is defined as in (3.45). This estimate is uniform in � (and {uX})

and thus holds in the limit �↗Zd , when this limit exists. In particular it
holds for the infinite-volume dynamics τz.
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Proof. Follows from the results of ref. 1; see also ref. 25.

We will use this result in the particular case in which the macro-
scopic observable {K�} has finite range. Hence notice that, if A is a local
observable, then A∈⋂

θ O(θ). Furthermore, for every θ ∈ (0,1), there exists
a constant D =D(θ,R′) such that ‖A‖(θ) � D‖A‖, for all A ∈ OX with
diam(X) � R′. The reverse bound, ‖A‖ � ‖A‖(θ), is of course valid for
every A∈O. These considerations and Proposition 3.9 imply that, for any
such A, there exists a constant G=G(R,R′, S(Φ)) such that, for |Imz| �
1/2,

∥∥∥eizH�Ae−izH�
∥∥∥ � G‖A‖. (3.53)

Once again, this is what we need to apply Lemma 3.6 and Theorem 3.7.

3.3. Subadditivity

We now give sufficient conditions for the limit

g(Ψ,Φ)(α) = lim
�↗Zd

1
|�| log tr(eαK�e−H�) (3.54)

to exist.

Theorem 3.10. The following holds true:

1. (High temperature) If condition H1 or H2 applies, then the function
g(Ψ,Φ)(α) defined by Eq. (3.54) exists and is finite for α real, with

|α|< 4
λ‖Ψ ‖λ . (3.55)

Furthermore, if Ψ ={ψx}x∈Zd with ψx ∈O{x} (observables depending only
on one site), then g(Ψ,Φ)(α) exists and is finite for all α∈R.

2. (Dimension one) If condition H3 applies, then g(Ψ,Φ)(α) exists and is
finite for all α∈R.

Proof. We start with item 1 under the condition H1. The proof
combines Lemma 3.6, the analyticity estimates of Section 3.2, and a sub-
addivity argument as in the proof of the existence of the pressure. Let �
to be a hypercube of side length L. We choose a>0 and write L=na+b,
with 0 � b < a. We divide the L-cube into disjoint adjacent nd a-cubes,
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∆1,∆2, . . . ,∆nd , and a “rest” region ∆0 which contains Ld − (na)d lattice
points. We write

H� =
nd∑

j=1

H∆j +H∆0 +W, K� =
nd∑

j=1

K∆j +K∆0 +U, (3.56)

where

W =
∑

X

′
φX, U =

∑

X

′
ψX (3.57)

and
∑′

indicates a sum over all X⊂� such that, for some j=0,1, . . . , nd ,
X∩∆j �=∅ and X∩∆cj �=∅. We denote by

g
(Ψ,Φ)
� (α) = 1

|�| log tr
(
eαK�e−βH�

)
(3.58)

the function whose limit we are set to take. By the commutativity property
of local observables and the translation invariance,

log tr
(
e
α

∑nd

j=1K∆j−∑nd

j=1H∆j

)
= log

nd∏

j=1

tr
(
e
αK∆j e

−βH∆j
)

= (na)dg
(Ψ,Φ)
∆1

(α). (3.59)

Set now

P = H∆0 +W, Q = K∆0 +U. (3.60)

Using Eq. (3.59), the triangle inequality, Lemma 3.6 and Proposition 3.8,
we are able to estimate

∣∣∣∣g
(Ψ,Φ)
� (α)− (na)d

|�| g
(Ψ,Φ)
∆1

(α)

∣∣∣∣

� 1
|�| sup

0� t�1
sup

− 1
2 � s� 1

2

‖e−s(H�−tP ) P es(H�−tP )‖

+ 1
|�| sup

0� t�1
sup

− 1
2 � s� 1

2

‖e−sα(K�−tQ) αQesα(K�−tQ)‖
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� 1

1− λ
4 ‖Φ‖λ

1
|�|




∑

X⊂∆0

+
∑

X

′



‖φX‖ eλ|X|

+ |α|
1−|α|λ4 ‖Ψ ‖λ

1
|�|




∑

X⊂∆0

+
∑

X

′


‖ψX‖ eλ|X|. (3.61)

We take the limit �↗Zd of the various parts of Ineq. (3.61). First,

1
|�|

∑

X∈∆0

‖φX‖ eλ|X| � 1
Ld

∑

x∈∆0

∑

X�x
‖φX‖ eλ|X|

� Ld − (na)d
Ld

‖Φ‖λ −→ 0 (3.62)

as L→∞; similarly for
∑
X∈∆0

‖ψX‖ eλ|X|. Also, in the same limit,

1
|�|

∑

X

′ ‖φX‖ eλ|X| � 1
Ld

nd∑

j=1

∑

X∩∆j �=∅
X∩∆c

j
�=∅

‖φX‖ eλ|X|

� nd

Ld

∑

X∩∆1 �=∅
X∩∆c1 �=∅

‖φX‖ eλ|X|

−→ 1
|∆1|

∑

X∩∆1 �=∅
X∩∆c1 �=∅

‖φX‖ eλ|X|. (3.63)

Once again, a similar estimate holds for
∑′
X ‖ψX‖ eλ|X|. In the remainder,

for the sake of the notation, we rename ∆1 =∆. From (3.61) to (3.63) we
obtain

∣∣∣∣∣lim sup
�↗Zd

g
(Ψ,Φ)
� (α)−g(Ψ,Φ)∆ (α)

∣∣∣∣∣

� 1

1− λ
4 ‖Φ‖λ

1
|∆|

∑

X∩∆�=∅
X∩∆c �=∅

‖φX‖eλ|X|

+ |α|
1−|α|λ4 ‖Ψ ‖λ

1
|∆|

∑

X∩∆ �=∅
X∩∆c �=∅

‖ψx‖eλ|X|. (3.64)
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It is now time to take the limit ∆↗ Zd . Denote by ∆′ the cube of
side length a−a1/2 and concentric to ∆. We have

1
|∆|

∑

X∩∆�=∅
X∩∆c �=∅

‖φX‖ eλ|X|

� 1
|∆|

∑

x∈∆′

∑

X�x
X∩∆c �=∅

‖φX‖ eλ|X| + 1
|∆|

∑

x∈∆\∆′

∑

X�x
X∩∆c �=∅

‖φX‖ eλ|X|

� |∆′|
|∆|

∑

diam(X)�a1/2

‖φX‖ eλ|X| + |∆\∆′|
|∆| ‖Φ‖λ −→ 0, (3.65)

as a→∞. The same holds for the second term of (3.64). Finally, then,

∣∣∣∣∣lim sup
�↗Zd

g
(Ψ,Φ)
� (α)− lim inf

�↗Zd
g
(Ψ,Φ)
� (α)

∣∣∣∣∣ = 0, (3.66)

which proves the existence and finiteness of the limit g(Ψ,Φ)(α), in the high
temperature regime.

In the special case in which Ψ consists only of one-body interactions,
we have

K� =
nd∑

j=1

K∆j +K∆0 , (3.67)

i.e., U = 0 and all the observables involved commute. Thus, in the first
inequality of (3.61), the second term simplifies to

‖e−sα(K�−tK∆0 )αK∆0e
sα(K�−tK∆0 )‖=‖αK∆0‖ � (Ld − (na)d)|α| ‖Ψ ‖0.

(3.68)

Proceeding as above, one proves the existence of g(Ψ,Φ)(α) for all α∈R.
If condition H2 holds instead of H1, we have to modify the argument

a little: Using the same notation as above and because Φ ′′ only involves
one-site interactions, we have

H ′
� =

nd∑

j=1

H ′
∆j

+H ′
∆0

+W ′, H ′′
� =

nd∑

j=1

H ′′
∆j

+H ′′
∆0
, (3.69)
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We note that, since
[
H ′
V , H

′′
V

] = 0 for all V ∈ Pf (Zd), the decomposition
(3.69) implies that

[
H ′′
V , W

′] = 0. (3.70)

In order to estimate

log tr
(
C e−H�

)
− log tr

(
C e

−∑nd

j=1H∆j

)
(3.71)

for positive C, we proceed in two steps, using Lemma 3.6. We have, using
(3.70),

∣∣∣log tr
(
C e−H�

)
− log tr

(
C e−H�−W ′)∣∣∣

� sup
0� t�1

sup
− 1

2 � s� 1
2

∥∥∥e−s(H�−tW ′) W ′ es(H�−tW ′)
∥∥∥

= sup
0� t�1

sup
− 1

2 � s� 1
2

∥∥∥e−s(H
′
�−tW ′) e−sH

′′
� W ′ esH

′′
� es(H

′
�−tW ′)

∥∥∥

= sup
0� t�1

sup
− 1

2 � s� 1
2

∥∥∥e−s(H
′
�−tW ′) W ′ es(H

′
�−tW ′)

∥∥∥ . (3.72)

This term does not involve Φ ′′ anymore and is estimated as under condi-
tion H1. On the other hand, since H�−W ′ =∑

j H∆j +H∆0 is a sum of
commuting terms, we have

∣∣∣∣log tr
(
C e−(H�−W ′)

)
− log tr

(
C e

−∑nd

j=1H∆j

)∣∣∣∣

� sup
0� t�1

sup
− 1

2 � s� 1
2

∥∥∥∥e
−s

(∑
j H∆j−tH∆0

)

H∆0 e
s
(∑

j H∆j−tH∆0

)∥∥∥∥

� ‖H∆0‖, (3.73)

which is estimated as in (3.68).
If one works under condition H3, the proof is similar, using estimate

(3.53). This concludes the proof of Theorem 3.10.

Theorem 3.11. If any of the conditions H1, H2, or H3 hold, and ω
is a Gibbs-KMS state for Φ, then

lim
�↗Zd

∣∣∣∣
1

|�| logω
(
eαK�

)
− 1

|�| log
tr(eαK� e−H�)

tr(e−H�)

∣∣∣∣ = 0. (3.74)
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Proof. We will give two different proofs of Theorem 3.11. The first
uses the Gibbs condition and not, a priori, the fact that we are in a one-
phase region.

Defining W� as in (2.8), we apply the Gibbs condition (2.9) for ω to
the observable eαK� :

ω−W�
(
eαK�

)
= ω

(Φ)
�

(
eαK�

)
ω′(1) = tr

(
eαK�e−H�

)

tr
(
e−H�

) . (3.75)

On the other hand, Theorem 3.7 asserts that
∣∣∣logω−W�

(
eαK�

)
− logω

(
eαK�

)∣∣∣�‖W�‖+ sup
0� t�1

sup
− 1

2 � s� 1
2

∥∥∥τ−tW�
is (W�)

∥∥∥ .

(3.76)

By Proposition 3.8, then, if Φ is in the high temperature regime and |s| �
1/2,

1
|�|

∥∥∥τ−tW�
is (W�)

∥∥∥ � 1

1− λ
4 ‖Φ‖λ

1
|�|

∑

X∩��=∅
X∩�c �=∅

‖φX‖ eλ|X|, (3.77)

which vanishes when �↗Zd , as we have checked in (3.65). The same, of
course, happens to |�|−1‖W�‖. Putting together (3.75), (3.76) and the last
two estimates proves the theorem in the case H1.

If H2 applies, we have only two relations that have to do with the
specific case at hand; the rest of the proof are algebraic manipulations for
KMS states. The first relation is

τs = τ (Φ
′+Φ ′′)

s = τ (Φ
′)

s ◦ τ (Φ ′′)
s (3.78)

(the notation should be clear), and the second is

τ (Φ
′′)

s (W�)=W�. (3.79)

Eq. (3.78) comes from the fact that, for all V ∈Pf (Zd),
[
H ′
V , H

′′
V

]=0, so
the corresponding identity holds for the dynamics in V . Then one sends
V ↗Zd , remembering that τ (Φ)s ( · ) is a uniform limit in its argument, for s
within the strip that we are considering. As concerns Eq. (3.79), we define

W�(V ) =
∑

X⊂V
X∩��=∅ ;X∩�c �=∅

φX. (3.80)
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As in the proof of Theorem 3.10,
[
H ′′
V , W�(V )

]= 0, so, taking again the
limit V ↗Zd , and noting that ‖W�(V )−W�‖→0, we derive (3.79).

Now, using (3.78) and (3.79) in (3.24), we get that, for the perturbed
dynamics,

τ−tW�
s (A) = τ (Φ

′),−tW�
s

(
τ (Φ

′′)
s (A)

)
. (3.81)

We plug A=W� in the above, exploit (3.79) again, and take the analytic
continuation of the result: For |s| � 1/2,

τ
−tW�
is (W�) = τ

(Φ ′),−tW�
is (W�) (3.82)

which is estimated as in case H1.
One proceeds similarly when H3 holds. This concludes the first proof

of Theorem 3.11.
The second proof is based on the fact that – as we have thoroughly

recalled earlier – under our assumptions the Gibbs-KMS state is unique.
Therefore we can write ω as limit of finite-volume Gibbs states with free
boundary conditions:

ω(A) = lim
V↗Zd

tr(Ae−HV )
tr(e−HV )

, (3.83)

for A∈⋃
X OX. Let us write HV =H�+H�c +W�(V ), where W�(V ) was

defined in Eq. (3.80). If A∈O�, with �⊂V ,

tr(Ae−HV )
tr(e−HV )

= tr(Ae−H�)
tr(e−H�)

tr(Ae−H�−H�c−W�(V ))
tr(Ae−H�−H�c )

tr(e−H�−H�c )
tr(e−H�−H�c−W�(V ))

,

(3.84)

because the trace factorizes, when evaluating the product of two observ-
ables with disjoint support. Now, via Lemma 3.6, a couple of estimates of
the type seen in Theorem 3.10 yield

lim
�↗Zd

1
|�|

∣∣∣∣log
tr(e−H�−H�c )

tr(e−H�−H�c−W�(V ))

∣∣∣∣ = 0,

lim
�↗Zd

1
|�|

∣∣∣∣∣log
tr(Ae−H�−H�c−W�(V ))

tr(Ae−H�−H�c )

∣∣∣∣∣ = 0, (3.85)

uniformly in A∈O�, A>0, and in V ⊃�. Thanks to this uniformity, one
obtains the assertion of Theorem 3.11 from (3.84).



744 Lenci and Rey-Bellet

We conclude by proving what we have called our main result.

Proof of Theorem 3.2. Combining Theorems 3.10 and 3.11 we have
that

f (Ψ,Φ)(α) = lim
�↗Zd

1
|�| logω(eαK�)

= lim
�↗Zd

1
|�| log tr(eαK�e−H�)− lim

�↗Zd

1
|�| log tr(e−H�)

= g(Ψ,Φ)(α)−P(Φ). (3.86)

The existence of the pressure is of course a standard result not harder
than Theorem 3.10.

The convexity of f (Ψ,Φ) follows from the convexity of α �→ logω(eαK�),
which is verified with a standard application of Hölder’s inequality, noting
that ω(eαK�)= ∫

dν(x) eαx , for some Borel measure ν (coming from the
spectral measure of K� in the GNS representation).

To obtain the Lipschitz continuity, we apply Lemma 3.6 with H =
α2K�, P = (α1 −α2)K�, and C= e−H� . Since H and P commute,

1
|�|

∣∣∣log tr
(
eα1K�e−H�

)
− log tr

(
eα2K�e−H�

)∣∣∣

� 1
|�| ‖(α1 −α2)K�‖ � |α1 −α2|

∑

X�0

‖ψX‖, (3.87)

which easily leads to (3.5).
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