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Abstract

Functional analysis of variance involves testing for differences in functional

means across k groups in n functional responses. If a significant overall dif-

ference in the mean curves is detected, one may want to identify the location

of these differences. Cox and Lee (2008) proposed performing a point-wise

test and applying the Westfall-Young multiple comparison correction. We

propose an alternative procedure for identifying regions of significant differ-

ence in the functional domain. Our procedure is based on a region-wise test

and application of a combining function along with the closure multiplicity

adjustment principle. We give an explicit formulation of how to implement
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our method and show that it performs well in a simulation study. The use of

the new method is illustrated with an analysis of spectral responses related

to vegetation changes from a CO2 release experiment.

Keywords: Functional data analysis, Multiple comparison procedure,

Permutation method, Distance-based method

1. Introduction

Functional data analysis (FDA) concerns situations in which collected

data are curves. Modern data recording methods often allow researchers to

observe a random variable densely in time from tmin to tmax. Even though

each data point is a measure at a discrete point in time, overall these values

can reflect smooth variation. Therefore, instead of basing inference on a set of

dense time series, it is often desirable to analyze these records as continuous

functions.

Situations in which the responses are random functions and the predictor

variable is the group membership can be analyzed using Functional Analysis

of Variance (FANOVA). The FANOVA model can be written as

yij(t) = µi(t) + εij(t), (1)

where µi(t) is the mean function of group i at time t, i = 1, . . . , k, j indexes

a functional response within a group, j = 1, . . . , ni, and εij(t) is the residual

function. In practice, one does not observe yij(t) for all t but only on a dense

grid of points between tmin and tmax. To construct a functional observation
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yij(t) from the discretely observed data one can employ a standard smoothing

technique such as smoothing cubic B-splines. An implementation of the

smoothing techniques is readily available in R (R Development Core Team

(2012)) in the fda package (Ramsay et al. (2011)).

The prime objective of FANOVA is the extension of the ideas of typical

analysis of variance. Specifically, within the FANOVA framework, one wants

to test for a difference in mean curves from k populations anywhere in t.

H0 : µ1(t) = µ2(t) = . . . = µk(t)

Ha : µi(t) 6= µi′(t), for at least one t and i 6= i′.

There are two distinct approaches to solve the FANOVA problem. One

approach, considered by Ramsay and Silverman (2005), Ramsay et al. (2009),

and Cox and Lee (2008), is point-wise. The idea is to evaluate the functional

responses on a finite grid of points {t1, . . . , tL} ∈ [tmin, tmax] and perform a

univariate F -test at each tl, l = 1, . . . , L. The other approach, taken by Shen

and Faraway (2004), Cuevas et al. (2004), and Delicado (2007), is region-wise.

It is based on the L2 norms among continuous, versus point-wise, functional

responses.

In the next section we provide a more detailed overview of these two

approaches and distinct issues these approaches can address in the FANOVA

setting.
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2. Methods for Functional ANOVA

Suppose that functional responses have been evaluated on a finite grid of

points {t1, . . . , tL} ∈ [tmin, tmax]. Ramsay and Silverman (2005) suggested to

consider the F -statistic at each point

F (tl) =

[∑
ij(yij(tl)− µ̂(tl))

2 −∑ij(yij(tl)− µ̂i(tl))
2
]
/(k − 1)∑

ij(yij(tl)− µ̂i(tl))2/(n− k)
,

= MST (tl)/MSE(tl). (2)

Here, µ̂(t) is an estimate of the overall mean function, µ̂i(t) is an estimate of

group i’s mean function, j = 1, . . . , ni, and n is the total number of functional

responses. To perform inference across time t, Ramsay and Silverman (2005)

suggested plotting the values of F (tl), l = 1, . . . , L, as a line (which can be

easily accomplished if the evaluation grid is dense) against the permutation

5% critical value. If the obtained line is substantially above the permuta-

tion 5% critical value over a certain time region, significance is declared at

that location. This approach does not account for the multiplicity problem,

generating as many tests as the number of evaluation points L.

To perform the overall test Ramsay et al. (2009) suggested using the

maximum of the F -ratio in (2). The test is overall in a sense that it is

designed to detect differences anywhere in t instead of performing inference

across t as was described above (i.e., identifying specific regions of t with

significant difference among functional means). The null distribution of the

statistic for the overall test is obtained by permuting observations across
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groups and tracking max{F (tl)} across the permutations.

Cox and Lee (2008) suggested using a univariate F -test at each single

evaluation point tl, l = 1, . . . , L, and correct for multiple testing using the

Westfall-Young multiplicity correction method (Westfall and Young (1993)).

This provides point-wise inferences for differences at L times but does not

directly address the overall FANOVA hypotheses.

Alternative inferential approaches were considered by Shen and Faraway

(2004), Cuevas et al. (2004), and Delicado (2007). Suppose a smoothing tech-

nique was applied to obtain a set of continuous response functions. They each

proposed test statistics that accumulate differences across the entire time re-

gion [tmin, tmax] and thus detect significance anywhere within the domain of

the functional response. In particular, Shen and Faraway (2004) proposed a

functional F -ratio

F =

[∑
ij

∫ tmax
tmin

(yij(t)− µ̂(t))2dt−∑ij

∫ tmax
tmin

(yij(t)− µ̂i(t))
2dt
]
/(k − 1)∑

ij

∫ tmax
tmin

(yij(t)− µ̂i(t))2dt/(n− k)
(3)

=

∑
i ni

∫ tmax
tmin

(µ̂i(t)− µ̂(t))2dt/(k − 1)∑
ij

∫ tmax
tmin

(yij(t)− µ̂i(t))2dt/(n− k)
,

where n is the total number of functional responses and k is the number of

groups. Shen and Faraway (2004) derived the distribution of the functional F

statistic under the null hypothesis on the region [tmin, tmax], but significance

can also be assessed via permutations. Cuevas et al. (2004) noted that the

numerator of F accounts for the “external” variability among functional

responses. This led Cuevas et al. (2004) to base their test statistic on the
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numerator of F since the null hypothesis of FANOVA should be rejected

based on a measure of difference among group means. They proposed a test

statistic

Vn =
k∑

i<j

ni||µ̂i(t)− µ̂j(t)||2,

where ||f || =
(∫ b

a f
2(x)dx

)1/2
. To derive the null distribution of the test

statistic, Cuevas et al. (2004) used the Central Limit Theorem as the number

of functional responses, n, goes to infinity or, once again, significance can be

assessed via permutation methods. Delicado (2007) noted that for a balanced

design, Vn differs from the numerator of F only by a multiplicative constant.

Delicado (2007) also showed equivalence between (3) and the Analysis of

Distance approach in Gower and Krzanowski (1999).

The region-wise approach, like in Shen and Faraway (2004) and Cuevas

et al. (2004), performs an overall FANOVA test, i.e., detects a significant dif-

ference anywhere in [tmin, tmax]. However, once overall significance is estab-

lished, one may want to perform a follow-up test across t to identify specific

regions of time where the significant difference among functional means has

occurred. The point-wise approaches of Ramsay and Silverman (2005) and

Cox and Lee (2008) can be considered as follow-up tests but both techniques

have their caveats. Ramsay and Silverman (2005) fail to account for the

multiplicity issue while performing L tests across the evaluation points. Cox

and Lee (2008) account for multiplicity but their method can not assess over-

all significance. Using either point-wise approach as a follow-up test could
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produce results that are inconsistent with the overall test inference.

The remainder of the paper is organized in the following way. Section 3

discusses the problem of multiplicity that has been briefly mentioned above.

In Section 4 we propose a new method to perform a follow-up test in the

FANOVA setting and contrast it to the existing method of Cox and Lee

(2008). Sections 5 and 6 present simulation study results, Section 7 applies

the methods to data from a study of CO2 impact on spectral measurements

of vegetation, and Section 8 concludes with a discussion.

3. Multiple Testing Procedures

In hypothesis testing problems involving a single null hypothesis, the

statistical tests are chosen to control the Type I error rate of incorrectly

rejecting H0 at a prespecified significance level α. If L hypotheses are tested

simultaneously, the probability of at least one Type I error increases in L,

and will be close to one for large L. That is, a researcher will commit a Type

I error almost surely and thus wrongly conclude for significant results. To

avoid these situations with misleading findings, the p-values based on which

the decisions are made should be adjusted for L simultaneous tests.

A common approach to the multiplicity problem calls for controlling the

family-wise error rate (FWER), the probability of committing at least one

Type I error. Statistical procedures that properly control for the FWER, and

thus adjust the p-values based on which a decision is made, are called multiple

comparison or multiple testing procedures. Generally, multiple comparison
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procedures can be classified as either single-step or stepwise. Single-step

multiple testing procedures, e.g., Bonferroni, reject or fail to reject a null hy-

pothesis without taking into account the decision for any other hypothesis.

For stepwise procedures, e.g., Holm (1979), the rejection or non-rejection of

a null hypothesis may depend on the decision of other hypotheses. Simple

single-step and stepwise methods produce adjusted p-values of 1 whenever

the number of tests, L, goes to ∞. Since, in the functional response set-

ting, the possible number of tests is potentially infinite, one needs to employ

more sophisticated multiplicity adjustment methods. Two possibilities are

reviewed below.

The Westfall-Young method (Westfall and Young (1993)) is a step-down

re-sampling method, i.e., the testing begins with the first ordered hypoth-

esis (corresponding to the smallest unadjusted p-value) and stops at the

first non-rejection. To implement this method first find unadjusted p-values

and order them from min to max, p(1) ≤ . . . ≤ p(L). Generate a vector

(p∗(1),n, . . . , p
∗
(L),n), n = 1, . . . , N , from the same, or at least, approximately

the same, distribution as the original p-values under the global null. That

is, randomly permute observations N times. For each permutation compute

the unadjusted p-values (p∗1,n, . . . , p
∗
L,n), where n indexes a particular permu-

tation. Put the p∗l,n’s, l = 1, . . . , L, in the same order as p-values for the

original data. Next, compute successive minima q∗(l),n = min{p∗(s),n : s ≥ l},

l = 1, . . . , L for all permutations n = 1, . . . N . Finally, the adjusted p-value

is the proportion of the q∗(l),n less than or equal to p(l), with an additional con-
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straint of enforced monotonicity (successive ordered adjusted p-values should

be greater or equal than one another). See Westfall and Young (1993) Algo-

rithm 2.8 for a complete description of the method.

Another approach is the closure method, which is based on the union-

intersection test. The union-intersection test was proposed by Roy (1953)

as a method of constructing a test of any global hypothesis H0 that can be

expressed as an intersection of the collection of individual (or elementary)

hypotheses. If the global null is rejected, one has to decide which indi-

vidual hypothesis Hl is false. Marcus et al. (1976) introduced the closure

principle as a construction method which leads to a step-wise test adjust-

ment procedure, and allows one to draw conclusions about the individual

hypotheses. The closure principle can be summarized as follows. Define a

set H = {H1, . . . , HL} of individual hypotheses and the closure set H̄ =

{HJ = ∩j∈JHj : J ⊂ {1, . . . , L}, HJ 6= 0}. For each intersection hypothesis

HJ ∈ H̄, perform a test and reject individual Hj if all hypotheses HJ ∈ H̄

with j ∈ J are rejected. For example, if L = 5 then the closure set is H̄ =

{H1, H2, . . . , H5, H12, H13, . . . , H45, H123, H124, . . . , H345, H1234, H1235, . . . , H2345, H12345}.

The entire closure set for L = 5 is shown in Figure 1. A rejection of H1 re-

quires rejection of all intersection hypotheses that include H1, which are

highlighted in Figure 1. See Hochberg and Tamhane (1987) for a discussion

of closed testing procedures.

Since in the closure principle, the global null hypothesis is defined as an

intersection of the individual null hypotheses, one would like to base the
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H12345

H1234 H1235 H1245 H1345 H2345

H123 H124 H134 H234 H234 H145 H245 H345H125 H135

H12 H13 H23 H14 H24 H34 H15 H25 H35 H45

H1 H2 H3 H4 H5

Figure 1: Closure set for five elementary hypotheses H1, . . . , H5 and their
intersections.

global test statistic on a combination of the individual test statistics. The

mapping of the individual test statistics to a global one is obtained via a

combining function. Pesarin (1992) and Basso et al. (2009) state that a

suitable combining function should satisfy the following requirements: (i) it

must be continuous in all its arguments, (ii) must be non-decreasing in its

arguments, (iii) must reach its supremum when one of its arguments rejects

the corresponding partial null hypothesis with probability one. Basso et al.

(2009) suggest the following combining functions in the comparison of means

of two groups:
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1. The unweighted sum of T -statistics

Tsum =
m∑

h=1

Th,

where Th is the standard Student’s t-test statistic.

2. A weighted sum of T -statistics

Twsum =
m∑

h=1

whTh,

where wh are the weights with
∑
wh = 1.

3. A sum of signed T squared statistics

TssT 2 =
m∑

h=1

sign(Th)T 2
h .

Note that the max{F (tl)} in Ramsay et al. (2009) is an extreme case of the

weighted sum combining function with all of the weights equal to zero ex-

cept one for the largest observed test statistic. Also, the numerator of the F

statistic, defined in (3), can be viewed in the context of an unweighted sum

combining function. We employ this F numerator property in the develop-

ment of our method.

In the next section we propose a new procedure to perform a follow-up

test in the FANOVA setting based on the ideas of the closure principle and

combining functions. The closure principle will allow us to make a decision

for both the overall test, to detect a difference anywhere in time t, and adjust
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the p-values for the follow-up test, to test across t. By using a combining

function we will be able to easily find the value of the test statistic for the

overall null based on the values of the individual test statistics.

4. Follow-Up Testing in FANOVA

There are two ways in which one can perform follow-up testing to identify

regions of significant difference. One possibility, as in Ramsay and Silverman

(2005) and Cox and Lee (2008), is to evaluate the functional responses on

a finite, equally spaced grid of L points from tmin to tmax (see Figure 2a).

Another possibility, proposed here, is to split the domain into L mutually

exclusive and exhaustive subintervals, say [al, bl] , l = 1, . . . , L (see Figure

2b). Based on these two possibilities, we considered follow-up tests for the

following four scenarios:
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(b)

Figure 2: Two follow-up testing methods illustrated on simulated data with
three groups, five curves per group, and five evaluation points or regions.
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1. The procedure proposed by Cox and Lee (2008), which is to evaluate

continuous functional responses on a finite grid of points, and at each

evaluation point tl, l = 1, . . . , L, perform a parametric F -test. The

individual p-values are adjusted using the Westfall-Young method. We

do not consider the Ramsay and Silverman (2005) procedure because

it fails to adjust for L simultaneous tests.

2. We propose performing a test based on subintervals of the functional

response domain and use the closure principle to adjust for multiplicity.

The method is implemented as follows. Apply a smoothing technique to

obtain continuous functional responses. Split the domain of functional

responses into L mutually exclusive and exhaustive intervals such that

[tmin, tmax] = ∪Ll=1[al, bl]. Let the elementary null hypothesis Hl be

of no significant difference among functional means anywhere in t on

the subinterval [al, bl]. For each subinterval, find the individual test

statistic Tl as a numerator of F in Equation (3)

Tl =
∫ bl

al

ni(µ̂i(t)− µ̂(t))2dt/(k − 1).

Because significance is assessed using permutations, only the numer-

ator of F is required to perform the tests. The other reason for this

preference is the fact that the numerator of F nicely fits with the idea
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of the unweighted sum combining function. That is

L∑
l=1

Tl =
L∑
l=1

∫
[al,bl]

k∑
i=1

ni(µ̂j(t)−µ̂(t))2dt/(k−1) =
∫ tmax

tmin

k∑
i=1

ni(µ̂i(t)−µ̂(t))2dt/(k−1) = T.

Thus, to test the intersection of two elementary hypotheses, say Hl and

Hl′ , of no difference in groups over [al, bl] ∪ [al′ , bl′ ], construct the test

statistic T(ll′) as a sum of Tl +Tl′ and find the p-value via permutations.

The number of permutations, B, should be chosen such that (B+1)α is

an integer to insure that the test is not liberal (Boos and Zhang (2000)).

The p-values of the individual hypotheses Hl are adjusted according to

the closure principle by taking the maximum p-value of all hypotheses

in the closure set involving Hl. Intermediate intersections of hypotheses

are adjusted similarly.

3. We also considered performing the test based on the subregions of the

functional domain with the Westfall-Young multiplicity adjustment. To

implement the method, first find the unadjusted p-values for each sub-

region [al, bl], l = 1, . . . , L, by computing F∗lb for b = 1, . . . , B permuta-

tions and then counting (# of (F∗lb ≥ Fl0))/B, where Fl0 is the value of

F for a given sample on the interval [al, bl]. Then correct the unadjusted

p-values using the Westfall-Young method. Note that to obtain a vec-

tor (p∗(1),n, . . . , p
∗
(L),n), n = 1, . . . , N , the values (F∗(1),n, . . . ,F∗(L),n) can

be computed based on a single permutation and then compared to the

distribution of F∗lb , b = 1, . . . , B, and l = 1, . . . , L, obtained previously.
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Thus, instead of simulating L separate permutation distributions of

F∗(l),n’s for each n = 1, . . . , N in the Westfall-Young algorithm, one can

use the same permutation distribution that was generated to calculate

the unadjusted p-values. This dual use of one set of permutations dra-

matically reduces the computational burden of this method without

impacting the adjustment procedure.

4. Finally, we considered a combination of the point-wise test with the

closure method for multiplicity adjustment. The procedure is imple-

mented as follows. First, evaluate functional responses on a grid of L

equally spaced points and obtain individual test statistics at each of L

evaluation points based on the regular univariate F -ratio. Then cal-

culate the unadjusted p-values based on B permutations and use the

unweighted sum combining function to obtain the global test statis-

tic and all of the test statistics for the hypotheses in the closure set.

In other words, to obtain a test statistic for the overall null hypothe-

sis of no significant difference anywhere in t simply calculate
∑L

l=1 Fl.

Note that this combining method is equivalent to the sum of signed

T -squared statistics, TssT 2 , suggested by Basso et al. (2009). The ad-

justed p-values of the elementary hypothesis Hl are once again found

by taking the maximum p-value of all hypotheses in the closure set

involving Hl.
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5. Simulation Study

Now, we present a small simulation study to examine properties of the

point-wise follow-up test proposed by Cox and Lee (2008), the region-based

method with the closure adjustment, the region-based method with the

Westfall-Young adjustment, and the point-wise test with the closure adjust-

ment. The properties of interest were the weak control of the FWER, the

strong control of the FWER, and power. Hochberg and Tamhane (1987)

define the error control as weak if the Type I error rate is controlled only

under the global null hypothesis, H = ∩mk=1Hk, which assumes that all ele-

mentary null hypotheses are true. Hochberg and Tamhane (1987) define the

error control as strong if the Type I error rate is controlled under any partial

configurations of true and false null hypotheses. To study the weak control

of the FWER, we followed the setup of Cuevas et al. (2004) and simulated

25 points from yij(t) = t(1− t) + εij(t) for i = 1, 2, 3, j = 1, . . . , 5, t ∈ [0, 1],

and εij ∼ N(0, 0.152). Once the points were generated, we fit these data

with smoothing cubic B-splines, with 25 equally spaced knots at times t1 =

0, . . . , t25 = 1. A smoothing parameter, λ, was selected by generalized cross-

validation. To study the strong control of the FWER, the observations for

the third group were simulated as y3j(t) = t(1− t)+0.05beta(37,37)(t)+ ε3j(t),

where betaa,b(t) is the density of the Beta(a, b) distribution. In our simu-

lation study, this setup implied a higher proportion of Ha’s in the partial

configuration of true and false hypotheses as the number of tests increased.

To investigate the power, we considered a shift alternative, where the obser-
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vations for the third group were simulated as y3j(t) = t(1 − t) + p + ε3j(t)

and p = 0.03, 0.06, 0.09, and 0.12. We also wanted to check whether the two

methods are somewhat independent of the number of evaluation points or

evaluation intervals. To check this condition, we performed follow-up testing

at either m = 5 or m = 10 intervals/evaluation points.

For this study, we needed two simulation loops. The outside loop was

of size O = 1000 replications. For each iteration, the permutation-based p-

values for the point-wise method with the Westfall-Young adjustment were

calculated using the mt.minP function from the multtest R package (Pol-

lard et al. (2011)). We would like to point out that, unlike the suggestion

in Cox and Lee (2008) to use a parametric F distribution to find the un-

adjusted p-values, the mt.minP function finds the unadjusted p-values via

permutations. For the region-based method with the closure adjustment,

the unadjusted p-values were calculated using the adonis function from the

vegan package (Oksanen et al. (2011)). We wrote an R script to adjust the

p-values according to the closure principle. The calculation of the p-values

based on the region method with the Westfall-Young adjustment required

computation of m unadjusted p-values based on B = 999 permutations and

a consecutive simulation of N vectors (p∗(1),n, . . . , p
∗
(m),n), n = 1, . . . , N . To

reduce computation time during power investigation for the third scenario,

we used a method of power extrapolation based on linear regression described

by Boos and Zhang (2000). The method is implemented by first finding three

1×m vectors of the adjusted p-values based on the Westfall-Young algorithm
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for (N1, N2, N3) = (59, 39, 19) for each iteration of the outside loop. Then

the estimated power is computed at each subregion as

p̂owk,Nr
=

1

O

O∑
j=1

I(pk,Nr ≤ α),

where I() is an indicator function, r = 1, 2, 3, k = 1, . . . ,m, O = 1000, and

pk is the adjusted p-value for the kth subregion based on the Westfall-Young

algorithm. Finally, the adjusted power based on the linear extrapolation was

calculated as

p̂ow
k,lin = 1.01137(p̂owk,59) + 0.61294(p̂owk,39)− 0.62430(p̂owk,19).

The p-values for the point-wise test with the closure adjustment were also

found based on B = 999 inner permutations. For all scenarios an R script is

available upon request.

6. Simulation Results

Tables 1 and 2 report estimates of the family-wise error rate in the weak

and the strong sense respectively for the nominal significance level of 5%.

The 95% confidence intervals of the estimates have been calculated based on

the normal approximation of the binomial distribution.

Table 1 indicates that both testing methods tend to be conservative when-

ever the closure multiplicity adjustment is applied with the simulations under

the global null (highlighted in bold). From Table 2 it is evident that both
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Method 5 intervals/evaluations 10 intervals/evaluations

Region-based/Closure 0.020± 0.009 0.008± 0.006
Point-wise/Closure 0.028± 0.010 0.008± 0.006
Region-based/Westfall-Young 0.043± 0.013 0.034± 0.011
Point-wise/Westfall-Young 0.045± 0.013 0.045± 0.013

Table 1: Estimates of the Type I error (±ME) control in the weak sense for
α = 0.05.

Method 5 intervals/evaluations 10 intervals/evaluations

Region-based/Closure 0.042± 0.012 0.035± 0.011
Point-wise/Closure 0.047± 0.013 0.049± 0.013
Region-based/Westfall-Young 0.050± 0.014 0.111± 0.019
Point-wise/Westfall-Young 0.039± 0.012 0.071± 0.016

Table 2: Estimates of the Type I error (±ME) control in the strong sense
for α = 0.05.

testing methods with the Westfall-Young multiplicity adjustment become lib-

eral as the proportion of Ha’s increases in the configuration of the true and

false null hypotheses (highlighted in bold). We offer the following explanation

for this phenomenon. The test for the overall significance, i.e., whether or

not a difference in mean functions exists anywhere in t, is not always rejected

if the observations are coming from a mixture of the hypotheses. The closure

principle rejects an individual hypothesis only if all hypotheses implied by it

(including the overall null) are rejected. Thus, whenever the overall null is

accepted, the individual p-values are adjusted accordingly – over the level of

significance – and control of the FWER in the strong sense is maintained.

With the Westfall-Young method the overall test is not performed. Only

the individual p-values are penalized for multiplicity, but the penalty is not
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“large” enough which likely causes the method to be liberal.

The results of the power investigation for 5 intervals/evaluation points

are illustrated in Figure 3 and for 10 intervals/evaluation points in Figure 4.

Solid lines correspond to power of the region-based method with the closure

adjustment, dashed lines to the region-based method with the Westfall-Young

adjustment, solid circles to the point-wise test with the Westfall-Young ad-

justment, and solid triangles to the point-wise method with the closure ad-

justment. The grouping of power results based on the shift amount, p, is

pretty apparent but a transparency effect is added to aid visualization. The

most solid objects (lower graph) correspond to a shift of p = 0.03, and the

most transparent objects (upper graph) to p = 0.12.

From Figure 3 it appears that a combination of the closure multiplicity

correction with either testing method provides higher power across all testing

points/intervals for moderate values of the shift deviation (p = 0.06 and

p = 0.09) than the Wetsfall-Young method. There does not seem to be any

striking visual difference in power of the four methods for the lowest and

highest shift amount (p = 0.03 and p = 0.12). Although the powers were

very close at the extreme values of p, it appears that the closure multiplicity

correction provides higher overall power across different values of p while

maintaining its conservative nature under the global null. Similar conclusions

can be drawn based on Figure 4.

A contrast of Figure 4 to Figure 3 reveals that all methods tend to lose

power as the number of evaluation points/intervals increases. This observa-
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tion implies an intuitive result that a region-based method should be more

powerful than a point-wise method. That is, in a real application of a point-

wise method one would want to employ many more than m = 10 evaluation

points. With the region-based application one may not have more than a few

a priori specified subintervals of interest. Since the power of methods de-

creases with an increase in m, a region-wise method with a modest number of

intervals provides a higher-powered alternative to the point-wise procedures,

as they would be used. Additional simulation results for larger values of m

provided in the supplementary material support this conclusion.

Both Figures 3 and 4 indicate that a point-wise test in a combination

with the closure procedure provides the highest power. However, there is

a caveat in a potential application of this method. The cardinality of the

closure set with m testing points is 2m − 1. Therefore, if one would like to

perform point-wise tests on a dense grid of evaluation points, the closure

principle might become impractical. For example, if one wants to perform a

test at m = 15 points, |H̄| = 32, 767, where |H̄| denotes the cardinality of

the closure set H̄. Zaykin et al. (2002) proposed a computationally feasible

method for isolation of individual significance through the closure principle

even for a large number of tests. However, since in our application the region-

based follow-up test directly addresses research questions and the number of

elementary hypotheses is typically small, we left an implementation of this

computational shortcut for future study.

As mentioned above, the closure multiplicity correction provides an ad-
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Figure 3: Power of the four methods at different values of the shift amount.
The solid objects in the lower graph correspond to p = 0.03. The three groups
of objects above that correspond to p = 0.06, 0.09, and 0.12 respectively.

ditional advantage over the Westfall-Young correction of being able to assess

the overall significance. Cox and Lee (2008) suggest taking a leap of faith

that when the Westfall-Young corrected p-values are below 0.05 level of sig-

nificance, then there is evidence of overall statistical significance. A use of

any combining method along with the closure principle allows one to perform

a global test as well as to obtain multiplicity adjusted individual p-values.

The closure method also provides adjusted p-values for all combinations of

elementary hypotheses and the union of some sub-intervals may be of direct

interest to researchers.
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Figure 4: Power of the four methods with 10 intervals/evaluation points.

7. Application

Data from an experiment related to the effect of leaked carbon dioxide

(CO2) on vegetation stress conducted at the Montana State University Zero

Emissions Research and Technology (ZERT) site in Bozeman, MT are used

to motivate these methods. Further details may be found in Bellante (2011).

One of the goals of the experiment was to investigate hyperspectral remote

sensing for monitoring geologic sequestration of carbon dioxide. A safe geo-

logic carbon sequestration technique must effectively store large amounts of

CO2 with minimal surface leaks. Where vegetation is the predominant land

cover over geologic carbon sequestration sites, remote sensing is proposed

to indirectly identify subsurface CO2 leaks through detection of plant stress
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caused by elevated soil CO2. During the course of the month long controlled

CO2 release experiment, an aerial imaging campaign was conducted with a

hyperspectral imager mounted to a small aircraft. A time series of images

was generated over the shallow CO2 release site to quantify and characterize

the spectral changes in overlying vegetation in response to elevated soil CO2.

We analyzed measurements acquired on June 21, 2010 during the aerial

imaging campaign over the ZERT site. The pixel-level measurements con-

sisted of 80 spectral reflectance responses between 424.46 and 929.27 nm.

For each pixel, we calculated the horizontal distance of the pixel to the CO2

release pipe. We hypothesized that the effect of the CO2 leak on plant

stress would diminish as we moved further away from the pipe. To test this,

we binned the continuous measurements of distance into five subcategories:

(0,1], (1,2], (2,3], (3,4], and (4,5] meters to the CO2 release pipe. Our null

hypothesis was that the spectral responses obtained at different distances are

indistinguishable. Thus, we could assume exchangeability and permute ob-

servations across distances under the null hypothesis. Since the entire image

consisted of over 30,000 pixels, we randomly selected 500 pixels from each

of the binned distance groups. The spectral responses in 80 discrete wave-

lengths were generally smooth, providing an easy translation to functional

data. There were 2500 spectral response curves in total, with a balanced de-

sign of a sample of 500 curves per binned distance. Once overall significance

was detected (permutation p-value=0.0003), we were interested in identifying

the regions of the electromagnetic spectrum where the significant differences
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occurred. In particular, we were interested in whether there were significant

differences in the visible (about 400 nm to 700 nm), “red edge” (about 700

nm to 750 nm), and near infrared (about 750 nm to 900 nm) portions of

the electromagnetic spectrum. Since our spectral response ranged to 929.27

nm, we also included the additional region of >900 nm. Because of our in-

terest in specific regions of the electromagnetic spectrum, the regionalized

analysis of variance based on the F test statistic was performed for each of

the four spectral regions. The corresponding unadjusted p-values were found

based on the permutation approximation. For each region we applied the two

multiplicity correction methods, namely the closure and the Westfall-Young

method. The results are shown in Figure 5.

The p-values adjusted by the two methods are quite similar to each other.

Both methods returned the lowest p-value corresponding to the “red edge”

spectral region. This is a somewhat expected result since the “red edge”

spectral region is typically associated with plant stress. In addition, signifi-

cant differences were detected in both the visible and near infrared regions.

The observed difference between the two adjustments is probably due to the

fact that the p-values adjusted with the closure method cannot be lower than

the overall p-value, while the Westfall-Young method does not have this re-

striction. These results demonstrate the novelty and utility of our approach

with regards to this application. A previous attempt at examining spectral

responses as a function of distance to the CO2 release pipe relied on a sin-

gle spectral index as opposed to the full spectral function (Bellante (2011)).
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Figure 5: Plot of mean spectral curves at each of the five binned distances
to the CO2 release pipe. p-valueWY represents a p-value obtained by a com-
bination of the regionalized testing method with the Wetsfall-Young multi-
plicity correction. p-valueCl represents a p-value obtained by the regionalized
method with the closure multiplicity adjustment.
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Identification of significant differences among spectral regions could prove to

be an important analysis technique for hyperspectral monitoring of geologic

carbon sequestration. By using a method that provides strong Type I error

control, we can reduce false detection of plant stress which could lead to

unneeded and costly examination of CO2 sequestration equipment in future

applications of these methods.

8. Discussion

We have suggested an alternative procedure to the method proposed by

Cox and Lee (2008) to perform follow-up testing in the functional analysis

of variance setting. Although there is no single approach that is superior in

every situation, we have shown that the method for the individual p-value

adjustment based on combining functions via the closure principle provides

higher power than that based on the Westfall-Young adjustment. We have

shown that the multiplicity adjustment method based on the closure principle

tends to be conservative assuming a common mean function, µ(t), for all t

(i.e., on the entire functional domain). The Westfall-Young method was

shown to be liberal assuming heterogeneous mean functions, µi(t), on some

subregions of the functional domain.

The point-wise follow-up testing method provides slightly higher power

than the region-based method. However, we would like to stress one more

time that these two methods should not be considered as direct competi-

tors. The choice of one follow-up testing method over the other should be

27



application driven. In our application, we were interested in significant differ-

ences in regions of the electromagnetic spectrum and applied the region-based

method. In this case it showed similar results with the two multiplicity ad-

justment corrections despite their differences in performance in simulations.
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