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a b s t r a c t

In this study, an artificial neural network (ANN) model was developed to estimate the

hydrogen production profile with time in batch studies. A back propagation artificial neural

network ANN configuration of 5e6e4e1 layers was developed. The ANN inputs were the

initial pH, initial substrate and biomass concentrations, temperature, and time. The model

training was done using 313 data points from 26 published experiments. The correlation

coefficient between the experimental and estimated hydrogen production was 0.989

for training, validating, and testing the model. Results showed that the trained ANN

successfully predicted the hydrogen production profile with time for new data with a cor-

relation coefficient of 0.976.

Copyright ª 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.

1. Introduction

Dark fermentation is a promising method for biohydrogen

production since it has higher production rates than other

processes, and can utilize a wide range of renewable feed-

stocks [1]. Many factors can influence the fermentative pro-

cess such as the inoculum type and concentration, substrate

type and concentration, reactor configuration, temperature,

and pH because they affect the activity and type of the

hydrogen producing bacteria [2].

To date, hydrogen is not commercialized as an energy

source but it is widely used as a chemical reactant in the

production of fertilizers, diesel refining, and industrial

synthesis of ammonia [3]. It has been well documented that

modeling fermentative hydrogen production process is one

of the most critical requirements for improving our ability to

predict the biohydrogen yield [4]. Modeling the biohydrogen

process is very important so as to provide information on the

different factors affecting the production processes.

Experimental optimization methods such as the “One-fac-

tor-at-a-time” are ineffective, time and materials consuming,

and they donot take into consideration the interaction between

these factors. Some studies investigated the combined effect of

two variables such as pH and substrate concentrations [5,6],

temperature and pressure release methods [7], and pH and

sulfate concentration [8] on the biohydrogen production pro-

cess. Ginkel and Sung [5] tested the effect of varying pH

(4.5e7.5) and substrate concentration (1.5e44.8 g COD/L) and
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their interaction on hydrogen production in batch tests using

compost as the seed microflora and sucrose as the substrate.

The aforementioned authors achieved maximum hydrogen

production of 74.7 mL/L-h at pH 5.5 and substrate concentra-

tion of 7.5 g COD/L. These findings were consistent with Li et al.

[6] who observed optimum conditions of pH 6.0 and substrate

concentration of 8 g COD/L to achieve a hydrogen yield of

1.83 mol/molglucose using seed sludge from a riverbed and glu-

cose as the substrate. The effects of varying sulfate concen-

tration (0e20 g/L) with pH (5.5e6.2) on continuous fermentative

hydrogen production were investigated using anaerobic

digester sludge (ADS) growing on glucose in a chemostat reac-

tor [8]. The aforementioned authors found optimum conditions

of pH 5.5 and sulfate concentration of 3 g/L to produce max-

imum hydrogen production rate of 2.8 L/d.

Several mathematical techniques were employed to

investigate biohydrogen production. Empirical models, such

as themodified Gompertz equation, have beenwidely used for

batch fermentative biohydrogen production [9,10]. The

modified Gompertz equation includes three parameters that

are used to fit the equation; lag time, hydrogen production

potential, and hydrogen production rate. Due to the empirical

nature of the model, it does not take into consideration the

effect of many important parameters such as the substrate

concentration, pH, and temperature.

Mechanistic models such as the anaerobic digestion model

no.1 (ADM1) have been used for modeling the whole anaerobic

digestion process [11] as well as for modeling biohydrogen pro-

duction [10]. The major limitation of the ADM1 model is

its mathematical complexity, as it consists of more than 20

biochemical reactionsandmorethan30kineticparameters, and

theextremeanalyticaldifficultyofmeasuring theseparameters.

Artificial Neural Network (ANN) is a mathematical repre-

sentation of the neurological functioning of a brain. It simu-

lates the brain’s learning process bymathematicallymodeling

the network structure of interconnected nerve cells [12]. ANN

is a powerful modeling tool for problems where the parame-

ters that govern the results are either not defined properly

or too complex [13]. ANN is able to describe the interactive

effects among these different parameters in a complicated

bioprocess [14]. ANN is capable of modeling the complex

relationships between input and output parameters without

requiring a detailed mechanistic description of the phenom-

ena that is governing the process [15].

A typical neural network has an input layer, one or more

hidden layers, and an output layer. The neurons in the hidden

layer, which are linked to the neurons in the input and output

layers by adjustable weights, enable the network to compute

complex associations between the input and output variables

[12]. Training the model is the process of determining the

adjustableweightsand it issimilar to theprocessofdetermining

the coefficients of a polynomial by regression. The weights are

initially selected randomly and an iterative algorithm is then

used to find theweights thatminimize the differences between

themodel-calculated and the actual outputs.

The most commonly used algorithm in ANN is the back

propagation neural network [12]. In this training algorithm, the

error between the model results of the output neurons and the

actual outputs is calculated and propagated backward through

the network. The algorithm adjusts the weights in each

successive layer to reduce the error. This procedure is repeated

until the error between the actual experimental and network-

calculated outputs satisfies a pre-specified error criterion [12].

Few studies in the literature investigated the modeling of

biohydrogen production in batch studies using ANN. Table 1

shows a summary of the different biohydrogen production

studies that used ANN as a modeling tool. Wang and Wan [14]

studied the effects of temperature, initial pH, and glucose

concentration on fermentative hydrogen production by mixed

cultures in batch tests. The ANN model successfully described

the effects of these parameters on the substrate degradation

efficiency,hydrogenyield,andaveragehydrogenproductionrate.

Shi et al. [15] presented a back propagation ANN model that

accurately predicted the steady-state performance of bio-

reactors for the biohydrogen production process using sugar

refinery wastewater in an integrative biological reactor com-

prising a continuous stirred tank reactor and an upflow anae-

robic sludge blanket reactor (UASB). Another continuous flow

system performance was simulated using ANN by Mu and Yu

[16]. Amodelwasdesigned, trained, and validated to predict the

steady-state performance of a laboratory-scale granular-based

hydrogen-producing UASB reactor treating sucrose-rich syn-

thetic wastewater. Organic loading rate, hydraulic retention

time (HRT), and influent bicarbonate alkalinity were the model

inputs, while the output variables were either hydrogen con-

centration, hydrogen production rate, hydrogen yield, effluent

total organic carbon, or effluent aqueous products including

acetate, propionate, butyrate, valerate, andcaporate. Themodel

effectively described the daily variations of the UASB reactor

performance and predicted the steady-state performance at

various substrate concentrations and HRTs.

Although ANN models may be successfully applied in

biohydrogen production systems and can capture effectively

the nonlinear relationships existing between variables in

complex systems like fermentative biohydrogen production,

one of the main limitations of ANN is the uncertainty of out-

puts prediction outside the data range, used in establishing

the model [17,18].

It is apparent from the literature survey that there is no

explicit agreement on the specific input parameters for ANN

modeling of biohydrogen systems. In addition, most of these

studies focused only on the prediction of the ultimate

hydrogen production and hydrogen yield [2,4,15]. However,

the prediction of hydrogen production profile with time is

crucial for better understanding the process and in evaluating

the kinetics of the process. Therefore, the main objective of

this study is to use ANN to predict the temporal variation of

hydrogen production in batch reactors as a function of initial

pH, initial substrate and biomass concentrations, tempera-

ture, and time. A database for the hydrogen production tests

was established from the literature and used for training,

validating, and testing the ANN model.

2. Methodology

2.1. Analytical approach

An analytical approach was tested to model hydrogen pro-

duction in batch experiments using the ADM1, which has
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been used formodeling thewhole anaerobic digestion process

for methane production. Hydrogenwas set as the end product

from sugar degradation, and methane production pathways

from either acetate utilization or hydrogen consumption were

neglected. The main equations for modeling the hydrogen

production process were the substrate uptake (Equation (1)),

biomass growth (Equation (2)), and products formation

(Equations (3)e(6)) [11]. For simplicity, in order to solve these

equations, the biomass decay and inhibition effects were

neglected, and only one culture was assumed for substrate

degradation and products formation.

�dSsu

dt
¼ km;su

Ssu

ks;su þ Ssu
X (1)

dX
dt

¼ Ysukm;su
Ssu

ks;su þ Ssu
Xþ Ybukm;bu

Sbu

ks;bu þ Sbu
X

þ Yprkm;pr
Spr

ks;pr þ Spr
X (2)

dSbu

dt
¼ ð1� YsuÞfbu;sukm;su

Ssu

ks;su þ Ssu
X� km;bu
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X (3)
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dt
¼ ð1� YsuÞfpr;sukm;su

Ssu

ks;su þ Ssu
X� km;pr
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ks;pr þ Spr
X (4)
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dt
¼ð1�YsuÞfac;sukm;su

Ssu

ks;suþSsu
Xþð1�YbuÞ �0:8km;bu

Sbu

ks;buþSbu
X

þ�
1�Ypr

��0:57km;pr
Spr

ks;prþSpr
X ð5Þ

dSH2

dt
¼ð1�YsuÞfH2 ;sukm;su

Ssu

ks;suþSsu
Xþð1�YbuÞ�0:2km;bu

Sbu

ks;buþSbu
X

þ�
1�Ypr

��0:43km;pr
Spr

ks;prþSpr
X ð6Þ

where Sbu, Spr, Sac, and SH2
, are the butyrate, propionate, ace-

tate, and hydrogen concentrations (g COD/L), Ysu, Ybu, and Yac,

are the biomass yields for sugars, butyrate, and acetate deg-

radation (g CODbiomass/g CODsubstrate), fbu,su, fpr,su, fac,su, and

fH2 ;su, are the butyrate, propionate, acetate, and hydrogen

yields on sugars (g COD/g CODsu), km,su, km,bu, and km,pr, are the

maximum rates of sugar, butyrate, and propionate utilization

(d�1), and ks,su, ks,bu, and ks,pr are the sugar, butyrate, and

propionate uptake affinity constants (g COD/L). Trying to solve

these equations lead to three difficult differential equations

that could not be solved analytically (Equations (7)e(9)).

Therefore, a numerical approach using ANNwas investigated.
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dSsu (7)
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ð1� YsuÞfac;sukm;su
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þ 0:8ð1� YbuÞkm;bu
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þ 0:57
�
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�
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�
dSsu (8)

km;su
Ssu

ks;su þ Ssu
dSH2
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�
ð1� YsuÞfH2 ;sukm;su
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þ 0:43
�
1� Ypr

�
km;pr

Spr
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�
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2.2. Experimental data and ANN structure

To predict hydrogen productionwith time, a back propagation

ANN was considered and the chosen input parameters

were initial pH, initial substrate concentration (So), initial

biomass concentration (Xo), temperature (T ), and time (t).

Table 1 e Experimental data used for BPNN model.

Input Output Reactor Substrate Inoculum ANN
structurea

Number of
data points

Ref.

ORP, pH, dissolved CO2 HP with time Batch Cheese whey E. coli e 102 [19]

HRT, So, Xo, ethanol,

organic acids conc.,

ORP, pH, recycle ratio,

alkalinity

HPR CSTR Sucrose Sewage sludge 12e20e1 e [20]

OLR, ORP, pH, alkalinity HP CSTR Kitchen wastes Anaerobic

activated sludge

4e3e1 e [15]

OLR, HRT, influent

alkalinity

H2%, HPR, HY, TOCeff,

products conc.

UASB Sucrose ADS e 140 [16]

pH, glucose: xylose,

inoculum size,

inoculum age

Cumulative H2 Batch Glucose þ xylose Compost 4e10e1 16 [4]

T�C, pHi, So HY Batch Glucose ADS 3e4e1 20 [2]

T�C, pHi, So Substrate degradation

efficiency %, HPR, HY

Batch Glucose ADS 3e5e1 29 [14]

ORP: Oxidation reduction potential, HP: Hydrogen production, HRT: Hydraulic retention time, So: initial substrate concentration, Xo: initial

biomass concentration, HPR: Hydrogen production rate, CSTR: Continuous stirred tank reactor, OLR: Organic loading rate, HY: Hydrogen yield,

TOCeff: Effluent total organic carbons, UASB: Upflow anaerobic sludge blanket.

a ANN structure: no. of input parameters-no. of neurons in hidden layer-no. of output parameters.
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Experimental data was collected from the published literature

in order to establish the model. The limitation in number of

studies used was due to choosing the studies that only pro-

vided data covering the input and output parameters under

the same experimental conditions. Table 2 shows the exper-

imental data sources, as well as the minimum and maximum

values for the input and output parameters.

Initial pH ranged from 5.5 to 7.5, initial substrate concen-

tration ranged from 0.3 to 58.6 g COD/L, initial biomass con-

centration ranged from 0.9 to 17.6 g COD/L, temperature

ranged from 20 to 55 �C (mesophilic and thermophilic condi-

tions), maximum fermentation time for batches was 97 h, and

maximum volumetric hydrogen production was 382 mL. All

experiments were batch studies and used glucose, sucrose, or

real wastes as the substrate and mixed cultures as the seed

microflora. Three hundred and thirteen data points from 26

different batch experiments were collected from 7 different

studies as shown in Table 2. Ranges for the input and output

data used in establishing the ANNmodel are shown in Table 3.

Input and output variables were normalized in the range of

(�1, 1) to avoid any numerical overflow prior to training, as

well as reducing the errors and decreasing the training time

[27]. The normalization process was according to Equations

(10) and (11) for both input and output variables, respectively.

Xn ¼ 2� ðX� XminÞ
ðXmax � XminÞ � 1 (10)

Yn ¼ 2� ðY � YminÞ
ðYmax � YminÞ � 1 (11)

where Xn is the normalized input, X is the input variable, Yn is

the normalized output, and Y is the output variable. The

scaled data was then used to train the ANN by randomly uti-

lizing 60%, 20%, and 20% of the data for training, validation,

and testing, respectively. The output data from the model

should then be processed to convert the data back into the

unnormalized values to get the actual output data according

to Equation (12).

Y ¼ 0:5� ðYn þ 1ÞðYmax � YminÞ þ Ymin (12)

The input layer consisted of five neurons (pH, So, Xo, T, t),

while the output layer had one neuron which is the hydrogen

production with time. A single hidden layer configuration

with different numbers of neurons was tested but showed

high errors. Therefore, a double layer configuration was

selected for the hidden layer. In order to determine the

number of neurons in the hidden layers, different trials were

investigated. Fig. 1 shows the mean square error (MSE)

between the experimental and predicted data calculated by

the following equation for different number of neurons in

both hidden layers.

MSE ¼
Pn

i¼1

�
Yi;e � Yi;p

�2
n

(13)

where Yi,e is the experimental data, Yi,p is the corresponding

predicted data output, and n is the number of experimental

data points.

Fig. 1 indicates that the minimum MSE occurred at 6 neu-

rons and 4 neurons in the first and second hidden layers,

respectively. It has been reported that when the number of

neurons in the hidden layer is higher than the optimum, the

neural network becomes very complex and will take longer

time to train [14].

2.3. ANN model training

All the neurons in the hidden layer were non-linear with

a sigmoid transfer function. Fig. 2 shows the structure of the

ANN and the type of transfer functions between the input and

hidden layer 1, hidden layer 1 and hidden layer 2, and that

between hidden layer 2 and the output layer. The ANN was

trained on a Matlab platform R2009 (MathWorks, Inc., Natick,

MA, USA).

A feed forward neural network with back propagation

algorithmwas used in this study. In the ANN training process,

Table 2 e Database sources and experimental conditions.

Carbon source No. of batches No. of data points pHi T�C So g COD/L Xo g COD/L Source

Glucose 8 72 7 20e55 10.7 1.68 [21]

Glucose 1 6 6 37 10.7 3.12 [22]

Glucose 1 6 6.7 37 10.7 2.84 [23]

Glucose 1 9 6.5 37 8.6 2.27 [9]

Sucrose 6 56 5.5 36 0.3e9.0 1.15e0.87 [24]

Glucose 2 10 5.5 25 3.0 2.84 [25]

Thin stillagea 7 154 5.5 37 4.4e58.6 9.74e17.62 [26]

pHi: initial pH, T: temperature, So: substrate initial concentration, Xo: biomass initial concentration.

a Thin stillage: from corn processing bioethanol plant.

Table 3 e Range for input and output parameters used in
BPNN model.

Parameter Minimum Maximum Unit

pHi 5.5 7.5 e

So 0.3 58.6 g COD/L

Xo 0.9 17.6 g COD/L

T 20 55 �C
t 0 97 h

H2 0 382 mL

Xo: biomass initial concentration, T: temperature, t: time.

pHi: initial pH, So: substrate initial concentration.

H2: volumetric hydrogen production.
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the error between the experimental data and the corre-

sponding predicted data MSE was calculated and then

propagated backward through the network in each cycle. The

algorithm adjusts the weights between the input, hidden

layers, and output neurons in order to reduce the error and the

procedure is repeated until the error between the exper-

imental and predicted data satisfies certain error criterion.

The weight and bias matrices obtained after the training

phase of the ANN model are:

W1 ¼

2
666666664

2:7604 �1:4851 1:4963 1:3453 1:4764

�0:3414 1:1921 �1:4907 2:3011 2:6455

�2:0486 1:1434 2:7576 0:7630 1:5372

1:9923 �1:8804 1:6281 0:3726 �2:3998

2:7125 �0:9574 �1:1360 �1:7970 1:8054

3:4058 �2:0009 �0:0187 �0:3880 �0:5475

3
777777775
;

B1 ¼

2
666666664

�4:0067

2:4040

0:8013

0:8013

2:4040

4:0067

3
777777775

W2 ¼

2
6664
�0:7755 �3:1651 0:7723 1:9648 4:1392 �4:1919

�3:6428 �1:4961 �0:9910 4:2892 �3:4782 �1:6720

3:4811 �1:3751 �1:1269 2:4597 �4:8622 �2:1933

�1:8333 0:4873 0:1609 �1:0459 �4:3517 �5:1113

3
7775;

B2 ¼

2
6664
4:1559

4:6714

2:9843

2:3192

3
7775

W3 ¼ ½�0:0798 �0:8093 0:7070 0:2623 �; B3 ¼ ½ 0:7186 �
where W1 is the matrix representing connection weights

between input and first hidden layer neurons,W2 is thematrix

representing connection weights between first and second

hidden layer neurons, W3 is the matrix representing con-

nection weights between second and output layer neurons, B1
is the bias matrix for the first hidden layer neurons, B2 is the

bias matrix for the second hidden layer neurons, and B3 is the

bias matrix for the output layer neurons. The ANN model

described can be used to predict hydrogen production with

time after normalizing the input data as in Equation (10). The

normalized Yn for hydrogen production can be calculated as

follows:

Yn ¼ W3 � ðlogsigðW2 � ðlogsigðW1 � Xn þ B1ÞÞ þ B2ÞÞ þ B3 (14)

logsigðxÞ ¼ 1
1þ expð�xÞ (15)

3. Results and discussion

3.1. Hydrogen production prediction using ANN

In order to evaluate the ANN modeling ability, experimental

data were compared to the predicted data. The correlation

coefficient and the mean absolute error (MAE) were used to

assess model predictability

Fig. 2 e Artificial neural network (ANN) configuration.

Fig. 1 e Error calculated at different number of neurons in

first and second hidden layers.
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MAE ¼ 1
n

X��Yi;p � Yi;e

�� (16)

where Yi,p is the predicted value, Yi,e is the corresponding

experimental value, and n is the number of experimental data

points.

Fig. 3 shows the correlation between the experimental

hydrogen production data and the hydrogen production pre-

dicted by the ANN for data points used for training, validating,

and testing the model (Table 2). Correlation coefficients of

0.988, 0.987, and 0.996 and MAE of 1.89 mL, 6.16 mL, and

4.89 mL were achieved for the training, validating, and testing

data points, respectively.

The ANN model was then used to estimate the temporal

hydrogen evolution for three new data sets adopted from

Chen et al. [24], Nasr et al. [26], and Wang and Wan [28] that

were not used in the training process. Chen et al. [24] inves-

tigated biohydrogen production from sucrose in batch studies

using ADS at 36 �C and an initial pH of 5.5. Nasr et al. [26]

investigated biohydrogen production from thin stillage as

the substrate using ADS as the seedmicroflora at 37 �C and an

initial pH of 5.5. Wang andWan [28] investigated biohydrogen

production from glucose in batch studies at 35 �C using pre-

heated ADS at an initial pH of 7. Fig. 4 shows the correlation

between the predicted and experimental data points from the

aforementioned sets of data, where a correlation coefficient of

0.965 and an MAE of 11.2 mL were obtained. Average per-

centage error (APE), defined as the summation of the absolute

difference between the experimental and predicted values

divided by the experimental values, averaged over the number

of data points were 1.4%, 9.6%, and 8.5% for the data sets

adopted from Nasr et al. [26], Chen et al. [24], and Wang and

Wan [28], respectively. Fig. 5 shows the experimental and

predicted hydrogen production profile using the three sets of

data. Although Nasr et al. [26] used thin stillage from a bio-

ethanol plant as a substrate as opposed to glucose or sucrose

that were mostly used in establishing the model, the model

was able to predict the hydrogen production profile accu-

rately. The reason is that thin stillage is composed predomi-

nantly of carbohydrates. It is evident that ANN accurately

predicted the temporal variation of hydrogen production in

the three studies, as reflected by APE of 1.4%, 9.6%, and 8.5%.

4. Conclusion

Dark fermentative hydrogen production is a highly complex

process that is difficult tomodelmechanistically. This study is

aimed at demonstrating the possibility of adapting ANN to

predict temporal hydrogen production. The results support

these conclusions:

� The developed ANN model is a viable method for predicting

temporal hydrogen production from different substrates

with excellent ability to capture the interrelationships be-

tween process parameters, confirming its versatility.

� R2 of 0.988, 0.987, and 0.996 were achieved for training,

validating, and testing data points, respectively.

� Average R2 of 0.976 was obtained when testing the proposed

model using a new data set.
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