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Luc Rey-Bellet c, Dimitrios K. Tsagkarogiannis d

a Department of Mathematics, University of Massachusetts, Amherst, USA
b Mathematics Institute, University of Warwick, Coventry, United Kingdom
c Department of Mathematics, University of Massachusetts, Amherst, USA
d Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

Received 12 January 2007; received in revised form 17 April 2007; accepted 10 May 2007

Abstract

In this paper we continue our study of coarse-graining schemes for stochastic many-body microscopic models started in Katsoulakis et al. [M.
Katsoulakis, A. Majda, D. Vlachos, Coarse-grained stochastic processes for microscopic lattice systems, Proc. Natl. Acad. Sci. 100 (2003) 782–782,
M.A. Katsoulakis, L. Rey-Bellet, P. Plecháč, D. Tsagkarogiannis, Coarse-graining schemes and a posteriori error estimates for stochastic lattice
systems, M2AN Math. Model. Numer. Anal., in press], focusing on equilibrium stochastic lattice systems. Using cluster expansion techniques we
expand the exact coarse-grained Hamiltonian around a first approximation and derive higher accuracy schemes by including more terms in the
expansion. The accuracy of the coarse-graining schemes is measured in terms of information loss, i.e., relative entropy, between the exact and
approximate coarse-grained Gibbs measures. We test the effectiveness of our schemes in systems with competing short- and long-range interactions,
using an analytically solvable model as a computational benchmark. Furthermore, the cluster expansion in Katsoulakis et al. [M.A. Katsoulakis, L.
Rey-Bellet, P. Plecháč, D. Tsagkarogiannis, Coarse-graining schemes and a posteriori error estimates for stochastic lattice systems, M2AN Math.
Model. Numer. Anal., in press] yields sharp a posteriori error estimates for the coarse-grained approximations that can be computed on-the-fly
during the simulation. Based on these estimates we develop a numerical strategy to assess the quality of the coarse-graining and suitably refine or
coarsen the simulations. We demonstrate the use of this diagnostic tool in the numerical calculation of phase diagrams.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Microscopic extended systems with complex and multi-scale
interactions are one of the primary quantitative modeling tools in
a broad spectrum of scientific disciplines ranging from materials
and polymers to biological systems. Such systems are typically
simulated by molecular dynamics (MD) or Monte Carlo (MC)
methods. However, despite substantial progress in available
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algorithms, such molecular simulations are typically limited to
short length and time scales, compared to device sizes and mor-
phologies observed in experiments. If a reliable coarse-graining
method is available, i.e., a new model, derived from the micro-
scopic one, that involves only a reduced number of variables,
it can provide a powerful computational tool for speeding-up
molecular and multi-scale simulations.

Coarse-graining methods have a long history in the applied
sciences and engineering literature. In particular, in polymer
science, a sophisticated array of methods have been developed
recently, and they are, in spirit, closely related to our pro-
posed methodologies. In the coarse-graining of macromolecules
the primary goal is to group together, in a systematic man-

0377-0257/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jnnfm.2007.05.005



Author's personal copy

102 M.A. Katsoulakis et al. / J. Non-Newtonian Fluid Mech. 152 (2008) 101–112

ner, several atoms on a macromolecule, creating an effective
new chain, as means of reducing the degrees of freedom of the
original system, see for instance [31,8,4,10]. Key challenges
here include the presence of complex short- and long-range
interactions, the off-lattice nature of the models, as well as
the typical issues related to the high-dimensional integrations
necessary for extensive systems. The integration issue is han-
dled by adopting a semi-empirical strategy that allows the
break-up of the computational task into simpler, lower dimen-
sional integrations by assuming some additional structure on
the coarse-grained interactions; for instance eliminating multi-
body terms and assuming a particular form for the coarse-grained
bonded and non-bonded interactions. An alternative, statistics-
based, approach for the coarse-graining of macromolecules was
also developed recently [27]. In this method a parametrization of
coarse-grained potentials assumed to be of a known functional
form, e.g., Lennard–Jones, is optimized sequentially, against
pair distribution functions obtained from atomistic simulations.
The reverse procedure of coarse-graining, i.e., reproducing the
microscopic properties directly from CG simulations is an issue
arising extensively in the polymer science literature [32,27].
The main idea is that computationally inexpensive CG sim-
ulations are expected to reproduce the large scale structure;
subsequently microscopic information will be added through
a process of microscopic reconstruction, reversing the coarse-
graining. Mathematical results on error quantification for this
issue were first obtained in the context of lattice systems in
[18,22].

Although coarse-graining methods can provide a powerful
computational tool in molecular simulations, it has been also
observed that in some regimes important macroscopic properties
may not be captured properly [1,28]. For example, in coarse-
grained Monte Carlo (CGMC) simulations for lattice systems,
hysteresis and critical behavior are not captured adequately for
short and intermediate range potentials, while CGMC performs
well in the case of long-range interactions [19,20]. Relying on
these observations, we initiate here a systematic study of coarse-
graining methods, from the point of view of numerical analysis
where error is estimated in view of a specified tolerance.

We restrict ourselves to stochastic (Ising-type) lattice sys-
tems as a paradigm of hierarchical coarse-graining because they
are, mathematically and computationally, more tractable than,
for instance, off-lattice deterministic systems such as in MD.
Furthermore, lattice systems are of interest on their own as they
are widely used in stochastic modeling and Monte Carlo simula-
tions [24]. Such a system, on a lattice with N sites, is specified by
translation invariant microscopic Hamiltonians HN (σ) (σ is the
microscopic configuration) and an a priori Bernoulli measure
PN (dσ). To coarse-grain we subdivide the lattice into M coarse
cells and define a new configuration η given by the total magneti-
zation in each coarse cell. An exact coarse-grained Hamiltonian
H̄M(η) is given the renormalization group map [9,15]:

e−βH̄M (η) =
∫

e−βHN (σ)PN (dσ|η), (1.1)

where PN (dσ|η) is the probability of having a microscopic con-
figuration σ given a configuration η at the coarse level. However,

due to the high-dimensional integration, H̄M(η) cannot be easily
calculated explicitly and thus used in numerical simulations. Our
perspective is to approximate it by viewing it as a perturbation
of a, well-chosen, coarse-grained approximating Hamiltonian
H̄

(0)
M , for instance the one suggested in [17,19](see (2.12) below)

or in [13,14] where it was constructed using a wavelet expan-
sion. In [20] we proved that, using a cluster expansion, one can
expand H̄M(η) around H̄

(0)
M :

H̄M(η) = H̄
(0)
M (η) + H̄

(1)
M (η) + · · · + H̄

(p)
M (η) +O(εp+1),

(1.2)

where the correction terms H̄
(1)
M , H̄

(2)
M . . . can be calculated

explicitly. The small parameter ε is given in (2.16) and depends
on the characteristics of the coarse-graining, the potential and
the inverse temperature.

The choice of this first approximation H̄
(0)
M is crucial to our

method and it should, (i) be computable explicitly, analytically
as in [13,17] or numerically and (ii) satisfy good a priori estimate
with respect to the microscopic Hamiltonian (see Section 2.2).
Cluster expansions are widely used in statistical physics (see
e.g., [29] for an overview); in particular the cluster expansions
around mean-field models (e.g. [30,5,2,26]) used to analyze
critical behavior are conceptually related to ours. Our focus is
however more on the computational schemes and related numer-
ical analysis questions.

The error estimates in this paper provide bounds, in terms
of relative entropy or information loss, between the exactly
coarse-grained Gibbs measure associated with H̄M(η) and
the approximate, computable, coarse-grained Gibbs measures
obtained by truncating the Hamiltonian in (1.2). Error estimates
between measures are natural and useful since the measures
determine the most likely configurations observed in simula-
tions and the relative entropy estimates quantify the information
compression depending on the truncation level in (1.2).

In [20] we tested our numerical schemes, focusing either
short/intermediate- or long-range interactions, assessing the
effectiveness of the method, especially in phase transition
regimes. We continue here our computational explorations for
systems with more complex, combined short- and long-range
interactions. Such interactions arise in many realistic micro-
scopic systems, one notable example being in macromolecules
discussed earlier and in Section 5 below. We assess the coarse-
graining schemes by (a) comparing them to fully resolved
numerical simulations, and (b) using an analytically solvable
model with short- and long-range interactions due to Kardar
[16] as a computational benchmark.

Another consequence of the analysis in [20] is to provide a
posteriori estimates on the coarse-graining error, i.e., they can be
computed during a coarse-grained simulation and are expressed
exclusively in terms of the coarse variables η. For instance, for
the scheme based on H̄

(0)
M (η), the a posteriori error (see (1.2))

involves only H̄
(1,2)
M (η) plus a controlled error of orderO(ε2+1).

In Section 3 we track, on-the-fly, these a posteriori estimates
throughout our simulations. They serve as a diagnostic tool
for the quality of the numerical coarse-graining and indicate
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whether a given level of coarse-graining produces large error
and thus needs to be refined, or whether we can safely use a
coarser scale and speed up the simulations. This approach leads
to an a daptive coarse-graining of the microscopic system which
relies on the fact that the coarse-grained schemes in [19,20] form
a hierarchy of models allowing a seamless transition between
microscopic and coarser resolutions. We demonstrate the advan-
tages of such an adaptative approach in the numerical calculation
of phase diagrams for systems with combined short- and long-
range interactions. Most of the phase diagram can be constructed
with very coarse (inexpensive) simulations, while the critical,
phase transition regimes, require finer, even fully resolved sim-
ulations. The transitions from finer to coarser scales and back
are done on-the-fly, using the a posteriori error computation.

2. Summary of theoretical results

In this section we outline our coarse-graining strategy for
lattice models of Ising type and, briefly, review the results on
related coarse-garining methods obtained in [20] to which we
refer for more details and proofs.

2.1. Microscopic lattice models

Let us consider a spin system on the cubic d-dimensional lat-
tice �N = {x ∈Zd ; 0 ≤ xi ≤ n − 1} with N = nd lattice sites.
At each site x ∈ �N , the spin σ(x) takes value in {−1, +1} and
we denote by σ = {σ(x)}x ∈ �N

∈SN := {−1, +1}�N a config-
uration on �N . The Hamiltonian of the system is given by

HN (σ)=−1

2

∑
x ∈ �N

∑
y �=x

J(x − y)σ(x)σ(y)+h
∑

x ∈ �N

σ(x), (2.1)

where the two-body inter-particle potential J describes the inter-
action between individual spins and h is an external field. For
simplicity we assume that periodic boundary conditions are
imposed on the system. The finite-volume equilibrium states
of the system are given by the canonical Gibbs measure:

μN,β(dσ) = 1

ZN

e−βHN (σ)PN (dσ), (2.2)

whereβ is the inverse temperature,ZN the partition function, and
PN (dσ) is the prior distribution on SN , is the product measure:

PN (dσ) =
∏

x ∈ �N

ρ(dσ(x)),

where ρ(σ(x) = +1) = ρ(σ(x) = −1) = 1/2 is the distribution
of a Bernoulli random variable for each x ∈ �N .

2.2. Coarse-graining strategy

We now turn to our coarse-graining strategy which consists
of three main steps.

Step 1. Coarse-graining of the configuration space. We par-
tition the lattice �N into M = md disjoint cells with each
cell containing Q = qd lattice points so that N = nd = MQ =
mdqd . We define a coarse lattice �NC = {k ∈Zd ; 0 ≤ ki <

m − 1} and to each k ∈ �NC we associate the coarse cell Ck =
{x ∈ �N ; qki ≤ xi < q(ki + 1)}. We will refer to Q as the level
of coarse-graining (Q = 1 corresponds to no coarse-graining).

In each cell Ck we define a new spin variable
η(k) ∈ {−Q, −Q + 2, . . . , Q} given by

η(k) =
∑
x ∈ Ck

σ(x),

i.e., η(k) is the total spin in Ck. The configuration space for the
coarse-grained system is S̄M ≡ {−Q, −Q + 2, . . . , Q}�̄M and
we denote η = {η(k)}k ∈ �̄M

a configuration on the coarse lattice
�̄M . It is also convenient to introduce the coarse-graining map
F : SN → S̄M given by F(σ) = η which assigns a configuration
on the coarse lattice �̄M given a configuration on the micro-
scopic lattice �N . An equivalent coarse-grained variable, which
we shall also use later, is

α(k) : =card{x ∈ Ck : σ(x)=+1}=#{x ∈ Ck : σ(x)=+1} (2.3)

which takes values in {0, 1, . . . , Q}. The two equivalent coarse
variables are related by η = 2α − Q or α = (η + Q)/2.

Step 2. Coarse-graining of the prior distribution. The prior
distribution PN on SN induces a new prior distribution on S̄M

given by P̄M = PN ◦ F−1, i.e.,

P̄M(η) = PN (σ : F(σ) = η).

We note two simple, but important facts, which follow imme-
diately from the definition of F.

• The probability measure P̄M(dη) is a product measure:

P̄M(dη) =
∏

k ∈ �̄M

ρ̄(dη(k)) with ρ̄(η(k))

=
⎛
⎝ Q

η(k) + Q

2

⎞
⎠ (

1

2

)Q

.

• The conditional probability measure PN (dσ|η) is a product
measure:

PN (dσ|η) =
∏

k ∈ �̄M

ρ̃k,η(k)(dσ), (2.4)

where ρ̃k,η(k)(dσ) depends only on {σ(x)}x ∈ Ck
; for example

we have

ρ̃k,η(k)(σ(x) = 1) = η(k) + Q

2Q
and

ρ̃k,η(k)(σ(x) = −1) = Q − η(k)

2Q
. (2.5)

For a function f = f (σ) the corresponding conditional
expectation is given by

E[f |η] =
∫

f (σ)PN (dσ|η) =
∫

f (σ)
∏
k

ρ̃k,η(k)(dσ). (2.6)
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Step 3. Coarse-graining of the Hamiltonian. We define an
exact coarse-grained Hamiltonian H̄M(η) by using the renor-
malization group block averaging transformation (also known
as Kadanoff transformation), i.e.,

e−βH̄M (η) = E[e−βHN |η]. (2.7)

Given the Hamiltonian H̄M(η) we define the corresponding
Gibbs measure on S̄M by

μ̄M,β(dη) = 1

Z̄M

e−βH̄M (η)P̄M(dη). (2.8)

The factor β in front of H̄M is merely a convention as, in
general, the Hamiltonian H̄M depends itself on β in a nonlinear
way. From a practical, and computational, point of view the
nonlinear Kadanoff transformation, even for moderately large
N, is impossible to compute directly, and our goal is to present
a rather systematic way of calculating explicit approximations
of the coarse-grained Hamiltonian H̄M , to any given degree of
accuracy. Our approach consists of two distinct substeps:

Step 3a. Find a “good” first approximation H̄
(0)
M (η) for the exact

coarse-grained H̄M(η). Since H̄M(η), of course, is unknown, a
convenient way to quantify our first approximation is to require
the following a priori estimate on H̄

(0)
M (η): If F(σ) = η then

β

N
|HN (σ) − H̄

(0)
M (η)| = O(ε) (2.9)

for a suitable chosen small parameter ε. We include β on the
left hand side of this estimate since β multiplies the Hamilto-
nian in the Gibbs measure. It is important to note that the choice
of H̄

(0)
M (η) is not given a priori, nor necessarily unique: a good

choice of H̄
(0)
M (η) should take into account all the properties of

the system, e.g., temperature, range of the interaction, oscilla-
tions of the interactions, and so on. We will discuss one such
choice [19,20] and its range of applicability in the next section.

Step 3b. Using the initial approximation H̄
(0)
M (η) we rewrite

the exact coarse-graining as (1.1), or

H̄M(η) = H̄
(0)
M (η) − 1

β
logE[e−β(HN (σ)−H̄

(0)
M

(η))|η]. (2.10)

The usefulness of this formula lies in the estimate (2.9), the
fact HN (σ) − H̄

(0)
M (η) is a sum of local interactions, and the fact

the conditional probability PN (dσ|η) is a product measure at
the coarse level. These facts put us, at least in principle, in the
domain of applicability of cluster expansion techniques which
allow a rigorous expansion of H̄M in power of ε.

Remark 2.1. For fixed N the Kadanoff transformation is always
well-defined. However, from a physical point of view, one should
be able to construct H̄M(η), for all M, as a sum of translation-
invariant local many-body interactions. In this respect it is known
that the Kadanoff transformation suffers some relatively mild
pathologies at very low temperatures [33,3] but this will not
affect our discussion in the parameter ranges where our tech-
niques apply.

2.3. Coarse-grained Hamiltonians and error estimates

We provide a concrete example where the strategy outlined in
Section 2.2 has been carried out successfully [20]. In particular
it covers the case of system with long-range interactions which
is physically relevant and computationally challenging. In a sub-
sequent paper [21] we will discuss another choice of H̄

(0)
M which

is more adapted for systems with strong competition between
short- and long-range interactions.

In order to state our assumptions on the interactions let us
consider a function V : R+ → R, such that V (r) = 0 for |r| ≥ 1
and let us assume that potential J(x − y) has the form:

J(x − y) = 1

Ld
V

(
1

L
|x − y|

)
, x, y ∈ �N, (2.11)

so that each site interacts with its neighbors up to a distance of
L. The factor 1/Ld in (2.11) is a normalization which ensures
that the strength of the potential J is essentially independent of L
and 
 ∫ |V |dr. This allows us to consider the interaction range
L as an independent parameter of the system.

We define the first approximation H̄
(0)
M (η) by simply averag-

ing the Hamiltonian HN over coarse cells, i.e., we set

H̄
(0)
M (η) ≡ E[HN |η]. (2.12)

A simple computation using the conditional probability
PN (dσ|η) shows that for x, y ∈ Ck we have

E[σ(x)|η] = η(k)

Q
, E[σ(x)σ(y)|η] = η(k)2 − Q

Q(Q − 1)
. (2.13)

Using the factorization property of PN (dσ|η) one obtains:

H̄
(0)
M (η) = −1

2

∑
k

∑
l �=k

J̄(k − l)η(k)η(l)

−1

2

∑
k

J̄(0)(η2(k) − Q) + h
∑

k

η(k),

where

J̄(k − l) = 1

Q2

∑
x ∈ Ck,y ∈ Cl

J(x − y), for k �= l,

J̄(0) = 1

Q(Q − 1)

∑
x,y ∈ Ck,y �=x

J(x − y), for k = l.

In H̄
(0)
M (η) the potential J(x − y) is replaced by its average

over a coarse cell and therefore the error for the potential is
proportional to

Ekl(x − y) := J(x − y) − J̄(k − l), x ∈ Ck, y ∈ Cl,

which measures the variation of the potential J(x − y) over
a cell. An estimate on the error is provided by the following
lemma, see [20].

Lemma 2.1. (Identification of a small parameter) Assume that
J satisfies (2.11) and V (r) is C1.
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1. There exists a constant C > 0 such that, if x ∈ Ck and y ∈ Cl,
we have

|J(x − y) − J̄(k − l)| ≤ 2
q

Ld+1 sup
x′ ∈ Ck,

y′ ∈ Cl

‖∇V (x′ − y′)‖.

(2.14)

2. There exists a constant C > 0 such that, if F(σ) = η, we have

1

N

∣∣∣HN (σ) − H̄
(0)
M (η)

∣∣∣ ≤ C
q

L
‖∇V‖∞. (2.15)

While the estimate in Lemma 2.1 is not optimal it adequately
identifies a small parameter:

ε ≡ Cβ
q

L
‖∇V‖∞, (2.16)

which encapsulates the various factors influencing our coarse-
graining method: (i) ratio q/L of the coarse cell size compared
to the interaction range; (ii) temperature; (iii) variations of the
potential. Clearly, improved estimates can be obtained when the
interaction potential J(x − y) has long-range decay properties.

Using a cluster expansion, the main result proved in [20] is

Theorem 2.2 (Expansion of the Hamiltonian). Assume that J
satisfies (2.11) and that V (r) i s C1. Then there exists a constant
δ0 > 0 such that if Qε < δ0, the Hamiltonian H̄M(η) can be
expanded into a convergent series:

H̄M(η) =
∞∑

p=0

H̄
(p)
M (η).

where each term H̄
(p)
M (η) is a sum of finite-range translation-

invariant many-body potentials and we have the following error
bounds, uniformly in η and N:

β

N
(H̄M(η) − H̄

(0)
M (η) + · · · + H̄

(p)
M (η)) = O(εp+1).

It is important to note that the theorem provides an algorithm
to compute the corrections, in principle, to any degree of accu-
racy. The first few terms have been calculated explicitly in [20]
and are reproduced below.

While Theorem 2.2 gives error bounds at the level of the
Hamiltonian, it is important to have error bounds for the corre-
sponding Gibbs measure, since the latter determines the most
probable states η. Truncating the expansion we obtained the
following Gibbs measures:

μ̄
(p)
M,β(dη) = 1

Z̄
(p)
M

e−β(H̄ (0)
M

(η)+···+H̄
(p)
M

(η))P̄M(dη).

Coarse-graining is an information compression and there-
fore it is natural to measure errors in this context in terms of the
relative entropy which, by definition, is a measure of the infor-
mation loss. Recall that for two probability distribution π1 and
π2 defined on a common finite state space S, the relative entropy

of π1 with respect to π2 is defined as

R(π1|π2) =
∑
σ ∈S

π1(σ) log
π1(σ)

π2(σ)
.

Furthermore, since we are dealing with extended systems and
and compressing local interactions, the errors will be extensive
quantities and it is thus natural to measure the error per unit vol-
ume, i.e., in terms of the relative entropy per unit volume. Note
that the exactness of the coarse-graining given by the Kadanoff
transformation is expressed by the fact that (see [20] Section
1.3):

1

N
R(μ̄M,β|μN,β ◦ F−1) = 0.

Using Theorem 2.2 one can prove the following estimates [20]:

Theorem 2.3 (Relative entropy error bounds).

1

N
R(μ̄(0)

M,β|μN,β ◦ F−1) = O(ε2),

1

N
R(μ̄(p)

M,β|μN,β ◦ F−1) = O(εp+1),

where p = 2 . . . and ε is given by (2.16).

Note that, naively, one would expect the error for the measure
μ̄(0) constructed with the first approximation H̄

(0)
M given in (2.12)

to beO(ε). The fact that it is actuallyO(ε2) is due to cancellations
which follow from the definition of H̄

(0)
M .

2.4. Numerical coarse-graining schemes

Using the Hamiltonians provided by Theorem 2.2 we can
construct a number of Monte Carlo methods, at the coarse level,
to simulate the Gibbs measure μN,β. We will use Metropolis-
type algorithms in this paper, but other choices such as Arhenius
dynamics can be used too.

The first scheme is based on the approximation based on H
(0)
M

and has been extensively studied in [17–19,22].

Scheme 2.1 (Second-order coarse-graining). The second-
order coarse-graining algorithm has the following character-
istics:

1. Hamiltonian: H̄
(0)
M , see Eq. (2.12).

2. Gibbs measure: μ̄
(0)
M,β(dη) = 1

Z̄
(0)
M

e−βH̄
(0)
M

(η)P̄M(dη).

3. Relative entropy error: 1
N
R(μ̄(0)

M,β|μN,β ◦ F−1) = O(ε2).

Thus the scheme is second-order accurate.

Our second scheme is based on the expansion of the Hamil-
tonian in Theorem 2.2 and the error is O(ε3).

Scheme 2.2 (Third-order coarse-graining). The third-order
coarse-graining algorithm has the following characteristics:

1. Hamiltonian: H̄
(0)
M + H̄

(1)
M + H̄

(2)
M .

2. Gibbs measure: μ̄
(2)
M,β(dη) = 1

Z̄
(2)
M

e−(H̄ (0)
M

+H̄
(1)
M

+H̄
(2)
M

)P̄M(dη).
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3. Relative entropy error: 1
N
R(μ̄(2)

M,β|μN,β ◦ F−1) = O(ε3).

Thus the scheme is third-order accurate.

To provide explicit formulas for H̄
(1)
M and H̄

(2)
M it is convenient

to express our results in terms of the variables α(k), i.e., the num-
ber of spins σ(x) = 1 in the coarse cell Ck, and ω(k) = q − α(k).
We introduce the following quantities, assuming in each case that
all spins belong to a single cell but are located at different sites
of the cells:

E1(α) := E[σ(x)|α] = 2α − q

q
(2.17)

E2(α) := E[σ(x)σ(y)|α] = α(α − 1) − 2αω + ω(ω − 1)

q(q − 1)
(2.18)

E3(α) : = E[σ(x)σ(y)σ(z)|α]

=

α(α − 1)(α − 2) − 3α(α − 1)ω + 3α(ω − 1)ω

−(ω − 2)(ω − 1)ω

q(q − 1)(q − 2)
(2.19)

E4(α) : = E[σ(x)σ(y)σ(z)|α]

= α(α − 1)(α − 2)(α − 3) − 4α(α − 1)(α − 2)ω

q(q − 1)(q − 2)(q − 3)

+

6α(α − 1)(ω − 1)ω − 4α(ω − 2)(ω − 1)ω

+ω(ω − 1)(ω − 2)(ω − 3)

q(q − 1)(q − 2)(q − 3)
(2.20)

Furthermore, we introduce the notation:

j1
kl :=

∑
x ∈ Ck

y ∈ Cl

(J(x − y) − J̄(k, l))2 (2.21)

j2
kl :=

∑
x ∈ Ck

y, y′ ∈ Cl

(J(x − y) − J̄(k, l))(J(x − y′) − J̄(k, l))

(2.22)

j2
k1k2k3

: =
∑

x ∈ Ck1
y ∈ Ck2 , z ∈ Ck3

(J(x − y) − J̄(k1, k2))(J(y − z)

−J̄(k2, k3)) (2.23)

If k1 = k2 then we also impose that for x, y ∈ Ck1 we have y �= x.
Then we have

−H̄
(1)
M (η) = β

8

∑
k

4j2
kk[−E4(α(k)) + E2(α(k))]

+2j1
kk[E4(α(k)) + 1 − 2E2(α(k))]

+β

2

∑
k<l

j1
kl[E2(α(k))E2(α(l))

−E2(α(l))−E2(α(k))+1]+j2
kl[−2E2(α(k))E2(α(l))

+E2(α(k)) + E2(α(l))]

+β

2

∑
k,l �=k

j2
kkl[−E3(α(k))E1(α(l))

+2E1(α(k))E1(α(l)) − E3(α(l))E1(α(k))].

(2.24)
and

H̄
(2)
M (η) = β

∑
k1

∑
k2>k1

∑
k3>k2

j2
k1k2k3

[−E1(α(k1))E2(α(k2))

× E1(α(k3)) + E1(α(k1))E1(α(k3))]

+j2
k2k3k1

[−E1(α(k2))E2(α(k3))E1(α(k1))

+E1(α(k2))E1(α(k1))]

+j2
k3k1k2

[−E1(α(k3))E2(α(k1))E1(α(k2))

+E1(α(k3))E1(α(k2))]. (2.25)

3. A posteriori estimation and adaptive coarse-graining

The error estimate in Theorem 2.3, along with the clus-
ter expansion in Theorem 2.2 combine to provide us with an
explicit representation of the error in the coarse-grained numeri-
cal approximation. For instance, in [20] we showed the following
a posteriori error for Scheme 2.1:

Theorem 3.1 (A posteriori error). We have

1

N
R(μ̄(0)

M,β|μN,β ◦ F−1)

= 1

N
E

μ̄
(0)
M,β

[R(η)] + 1

N
log(E

μ̄
(0)
M,β

[eR(η)]) +O(ε3),

where the residuum operator R is given by R(η) = H̄
(1)
M (η) +

H̄
(2)
M (η).

Note also that such an a posteriori error cannot be numer-
ically computed directly from the relative entropy formula,
since it involves the calculation of the entire probability den-
sities. However, the error representation indicates that the
error in coarse-graining can be computed on-the-fly, during a
coarse-grained simulation. As the theorem suggests, when using
Scheme 2.1, the a posteriori error can be described exclusively
in terms of the coarse observables η: the error involves only
H̄

(1,2)
M (η) plus a controlled error of order O(ε3).
Earlier work that uses only an upper bound and not the sharp

estimate of Theorem 3.1 can be found in [6,7]. These papers
are more related in spirit to adaptive finite element methods for
PDEs, where a posteriori errors are typically used to construct
spatially adaptive coarse-grainings. However, the implemen-
tation proved somewhat cumbersome due to the extensive
sampling needed in determining the optimal spatially variable
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coarse lattice mesh, without excluding the possibility that the
methods can be substantially improved.

In this paper we implement the sharp a posteriori estimates of
Theorem 3.1, tracking them throughout our simulations. The on-
the-fly estimated error serves as a diagnostic tool for the quality
of the coarse-grained simulations. It indicates when a particular
level of coarse-graining produces excessive error and needs to
be refined, or when it can be safely coarsened further in order to
speed up the simulation. This approach leads to adaptive coarse-
graining of the microscopic system and clearly relies on the
fact that the coarse-grained models introduced in [19,20] form
a hierarchy of models. The hierarchy includes the microscopic
description at the finest level, while it allows for a seamless
transition between different resolutions.

We demonstrate the use of such diagnostics and the ensu-
ing adaptive coarse-grainings in the numerical calculation of
phase diagrams in systems with combined short- and long-range
interactions. In this case it turns out that most of the phase dia-
gram is constructed using coarse levels and hence inexpensive
simulations, while the relatively fewer regimes where critical
phenomena arise, require finer, or even fully resolved simula-
tions. The transitions from finer to coarser scales and back are
done on-the-fly, based on the a posteriori error computation.
The refinement or coarsening are govern by the error indicator
of Theorem 3.1. We remark that this indicator does not easily
relate to the absolute error of a given observable (e.g., mag-
netization). In the presented simulations a simple strategy has
been adopted: the change of the level is controlled by the relative
value of the indicator with respect to its maximal value along the
simulation path. More elaborate strategies for the error control
will be discussed elsewhere.

4. Computational algorithms and numerical
experiments

The error estimates presented in Section 2.3 open a new way
to evaluate a posteriori the quality of coarse-grained simulations
performed with Scheme 2.1 or Scheme 2.2. The a posteriori
indicator from Theorem 3.1 is useful for exploring phase dia-
grams efficiently and refininig the simulation only at critical
regions of the parameter space. We demonstrate the properties
of Schemes 2.1 and 2.2 on a prototype problem that includes
both short- and long-range interactions. Competing short- and
long-range interactions appear in diverse applications such as
micromagnetics, epitaxial growth or macromolecular systems
and their implementation is known to be a difficult computa-
tional task. The presented test example, due to Kardar [16], has
analytical solutions in one or higher dimensions and exhibits
a host of interesting complex behavior including phase transi-
tions, multicritical behavior in the antiferromagnetic regime, as
well as crossover from mean-field to nearest-neighbor regimes.
The one-dimensional system provides a suitable test bed since
the exact (analytical) solutions are known for both the classi-
cal Ising system (i.e., the nearest-neighbor interactions only)
and the mean-field model (the Curie–Weiss model). We use the
exact solutions to ensure that the simulations are not influenced
by finite-size effects. In all figures the exact solutions visually

coincide with the fully resolved simulations, i.e.,q = 1. We com-
puted error bars for statistical post-processing, however, they are
not displayed in the figures due to their small relative size as
compared to the scales of figures.

4.1. Test example: combined short- and long-range
interactions [16]

The model combines the classical nearest-neighbor interac-
tion of Ising spins in the external magnetic field with a weak
long-range interaction. By adding the long-range, Kac-type
interaction we observe transition between the critical behavior
of the Ising model and the mean-field model. We briefly describe
the formulation of the model and refer the reader to [16] for more
details about analysis and various types of phase transitions. The
Hamiltonian of the system describes interaction of N spins cou-
pled by a nearest-neighbor interaction of the strength K and a
long-range Kac-type potential of the constant strength J/N:

βH(σ) = −K

2

∑
x

∑
|y−x|=1

σ(x)σ(y) − J

2N

∑
x

∑
y �=x

σ(x)σ(y)

−h
∑

x

σ(x). (4.1)

The technique of central-limit minimization applied in [16]
yields, in the thermodynamic limit N → ∞, the minimization
problem for the free energy F (K, J, h):

F (K, J, h) = min
m

{
1

2
Jm2 + F0(K, Jm + h)

}
,

where F0 = F0(K, h) is the free energy of the nearest-neighbor
(J = 0) Ising model with interaction strength K and external
field h. Using the well-known explicit solution of the one-
dimensional nearest-neighbor Ising model we have

F (K, J, h) = min
m

{
1

2
Jm2 − log[eK cosh(h + Jm)

+(e2K sinh2(h + Jm) + e−2K)
1/2

]
}

,

or equivalently the magnetization curve is given by the mini-
mizer

mβ(K, J, h) = argmin
m

(
J

2
m2 − log

[
eK cosh(h + Jm)

+
√

e2K sinh2(h + Jm) + e−2K

])
. (4.2)

A sketch of the phase diagram for h = 0 is depicted in Fig. 1.
In the plane of parameters K and J, with h = 0 there is a line of
classical (mean-field) second-order transitions corresponding to
Jc = e−2K terminating at a classical tri-critical point given by
Kt = −1/4 log 3. The line separates the disordered state (with
the mean magnetization 〈m〉 = 0) and the ferromagnetic state.
We also plot magnetization curves depending on K for specific
values of J indicated in the insets in the phase diagram. To
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Fig. 1. Phase diagram for the one-dimensional model (the exact solution from
[16]). Insets depict depends of the magnetization curve 〈|m|〉 for the fixed value
of J and the fixed external field h = 0.

remove degeneracy due to the reflectional symmetry we per-
form simulations with a small external field h = 0.05 and plot
the quantity 〈|m|〉 rather than 〈m〉. By 〈·〉 we denote the expected
value (average) with respect to the equilibrium Gibbs measure.
Knowing the exact solution in the thermodynamic limit we can
explore the behavior of the coarse-graining schemes at different
regimes, depending on the choice of the parameters K and J.

Case I: long-range interactions only, K = 0: First we choose
K = 0 which corresponds to a purely long-range interaction as
in the Curie–Weiss model. The approximation of the hystere-
sis behavior in coarse-grained simulations provides a good test
for the two coarse-graining schemes. It has been observed pre-
viously that hysteresis and critical behavior are not captured
properly for short and intermediate range potentials [19]. Sim-
ilar issues in predicting critical behavior were also observed in
[28] for coarse-graining of complex fluids. There an artificial
solidification effect was observed for higher levels of coarse-
graining. Similar issues arise in the coarse-graining of polymer
chains [1].

In the numerical tests presented here we demonstrate that
the derived corrections improve this behavior even in the case
of nearest-neighbor interactions or high coarse-graining ratio
q. The sampling of the equilibrium measure is done by using
microscopic and coarse-grained Metropolis dynamics. We com-
pute isotherms similarly to natural parameter continuation, i.e.,
we trace the magnetization mβ versus external field h, first upon
increasing the field h from low values and then decreasing it
from high values.

While nearest-neighbor Ising models in one dimension do not
exhibit phase transitions, for infinitely long attractive interac-
tions there exists a second-order phase transition, and hysteresis
behavior is observed according to the global mean-field theory

for β > βc [12]. More explicitly, the mean-field (Curie–Weiss)
model gives the magnetization curve as a solution of the nonlin-
ear equation:

mβ(h) = tanh[β(J0mβ(h) + h)]. (4.3)

The Curie–Weiss model exhibits phase transition at the crit-
ical temperature given by βcJ0 = 1 in the case of spins {−1, 1}
(βcJ0 = 4 for spins {0, 1}). Similarly Ising systems with long
enough interaction radii also exhibit phase transitions. We
explore two such cases below in the context of our coarse-
graining schemes and use the mean-field magnetization (4.3)
as a point of reference.

All simulations have been done with the fine lattice of the
size N = 512. As derived in Theorem 2.2 the errors depend on
the interplay of three parameters q, L and β, and the potential
J. Improvements due to application of higher-order Scheme 2.2
have been reported in [20]. The transition between two equilibria
may not be estimated accurately in the coarse-grained model.
The a posteriori error indicator we present here allows us to refine
the level of coarse-graining at the critical regions of the phase
diagram. This application of the error estimates is demonstrated
in Fig. 2 where most of the magnetization curve is simulated at
the level q = 8 (i.e., coarse-graining to the nearest-neighbor) and
it is adaptively refined to capture the transition accurately only
at the transition region. In Fig. 3 we also plot the distribution of
the error along the continuation in h.

Case II: short-range interactions only, J = 0: In this case the
test problem reduces to the classical Ising model. We recall that
in the case of nearest-neighbor interactions the one-dimensional
system does not exhibit phase transition. In fact, the exact
solution is given by a well-known formula (see, e.g. [25]),
which we adopt to our choice of Hamiltonian with the con-
stant nearest-neighbor (L = 1) interaction potential of strength

Fig. 2. Demonstration of adaptivity dictated by the a posteriori error indicator.
Magnetization curve for the purely long-range interaction case, i.e., K = 0.
Levels of coarse-graining for sampling at different points of the phase diagram
h − 〈m〉 are depicted in the middle of the figure.
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Fig. 3. Distribution of error for the purely long-range interaction case, i.e., K =
0.

K. The equilibrium magnetization curve is then given by

mβ(h) = sinh(βh)√
sinh2(βh) + e−2βK

. (4.4)

Our analysis predicts that the coarse-graining beyond the
interaction range L in this case will produce significant errors.
Nonetheless, Fig. 4 demonstrates that including third-order cor-
rections in Scheme 2.2 improves the accuracy for a wide range of
interaction strength K. Note that in the Ising model K and β play

Fig. 4. Magnetization as a function of K for the external field h = 0.1 and
β = 1.0. Comparisons of the exact solution (4.4) with fully resolved (q = 1) and
coarse-grained (q = 8) simulations with and without corrections. The interaction
range is L = 1. Error bars are included in a few points to indicate statistical
errors.

Fig. 5. Magnetization curve for a purely short-range interaction case with
the nearest-neighbor antiferromagnetic interaction K = −1. Levels of coarse-
graining for sampling at different points of the phase diagram h − 〈m〉 are
depicted in the middle of the figure.

an equivalent role. Large values of K correspond to low temper-
atures. Therefore we include error bars for estimated statistical
errors as an accurate sampling in low temperatures becomes
more difficult. The discrepancies for higher values of K are con-
sistent with the error estimate in Theorem 2.2. In Fig. 4 we
explored also a range of antiferromagnetic interactions, i.e., neg-
ative values of K. The exact magnetization curve is again given
by (4.4) and is also depicted in Fig. 5. Note that this regime
exhibits microstructure (disordered phase) at the finest scale,
when the external field h is close to zero; thus the coarse-grained
observable η, which is essentially a local average (see Section
2.2), is not expected to work well. We estimate the error using
the a posteriori error indicator and Fig. 6 depicts distribution
of error along the magnetization curve. When using the error
indicator we can explore the phase diagram efficiently as we
can limit the region of parameters (h in this case) where fully
resolved, microscopic simulations need to be performed. This
point is clearly visiaulized in Fig. 5 where we also indicate the
level of coarse-graining.

Case III: competing short- and long-range interaction K �= 0
and J �= 0: Many realistic lattice and off-lattice systems arising
in diverse applications such as micromagnetics, epitaxial growth
or macromolecular systems involve combinations of short- and
long-range interactions. We show a comparison of the exact solu-
tion (4.2) to coarse-grained simulations in Fig. 7. It appears that
both Schemes 2.1 and 2.2 perform modestly well, however a
special coarse-graining strategy needs to be devised for such
systems due to the short-range interactions in the Hamiltonian.
In a subsequent paper [21] we will show how to extend our analy-
sis to such systems with both short- and long-range interactions.
However, the presented strategy still allows us to perform sim-
ulations with adaptive coarse-graining in which case we can
approximate the solution within a controlled error. We observe



Author's personal copy

110 M.A. Katsoulakis et al. / J. Non-Newtonian Fluid Mech. 152 (2008) 101–112

Fig. 6. Distribution of error for purely short-range interaction case with nearest-
neighbor antiferromagnetic interaction, i.e., K = −1.

in Fig. 7 that depending on the tolerance allowed in the simula-
tion the refinement is not necessarily up to the microscopic level
q = 1.

We conclude this section with a brief remark about the
computational complexity of the approximations. As a simple
measure of complexity we use the number of operations required
for evaluating the Hamiltonian. Although the actual Monte Carlo
step does not require evaluation of the full Hamiltonian the
relative complexity with respect to the operation count of the

Fig. 7. Adaptive coarse-graining in the computation of the magnetization curve
〈|m|〉 depending on the strength of the short-range (nearest-neighbor) interaction
K. Levels of coarse-graining for sampling at different points of the phase diagram
h − 〈m〉 are depicted in the middle of the figure.

Table 1
Computational complexity of evaluating the Hamiltonian on the d-dimensional
lattice for the interaction range L and the coarse-graining level q

Count Speed-up

Microscopic q = 1: HN (σ) O(NLd ) 1

Scheme 2.1: H̄
(0)
M O(MLd/qd ) O(q2d )

Scheme 2.2: H̄
(0)
M + H̄

(1)
M H̄

(2)
M O(ML2d/q2d ) O(q3d/Ld )

Fig. 8. Distribution of error in computing the K- 〈|m|〉 phase diagram.

full microscopic simulation q = 1 is properly reflected by this
measure. The major computational cost in a typical lattice sim-
ulation on a d-dimensional lattice will be related to evaluating
the long-range interactions of the radius L. We summarize the
computational complexity in Table 1 We see that the third-order
approximation gives an improved error estimate at the same
computational cost whenever q = L, in other words, whenever
we can compress interactions to the nearest-neighbor potential
(Fig. 8).

5. Connections to the coarse-graining of polymeric
chains

In this paper as well as earlier in [20], we studied ana-
lytically and computationally strategies for coarse-graining
many-particle microscopic systems. Our work focused on pro-
totype stochastic lattice systems which provide a more tractable
set-up to study this problem, while at the same time they can
still have complex collective behaviors which pose substan-
tial challenges in devising accurate coarse-graining algorithms.
At this point it seems that the our methodologies have the
potential to be extended to more complex, off-lattice macro-
molecular systems. We next briefly outline how such an
extension could be carried out by drawing some broad analogies
between our current work and existing approaches in polymer
science.
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Coarse-graining of polymer and other macromolecular sys-
tems has attracted considerable attention in polymers science
and engineering, [23,27]. The primary goal is to group together
in a systematic manner several atoms on a macromolecule, cre-
ating an effective new chain, as means of reducing the degrees
of freedom of the original system. Some of the key challenges
in this effort is the off-lattice set-up of the models, as well as the
presence of complex short- and long-range interactions; in fact,
the latter feature is what partly motivated our study in Section 4
of lattice systems with combined short- and long-range interac-
tions. Here we consider as our microscopic polymeric system a
united atom model, as typically studied in the polymer science
coarse-graining literature, see for instance [4,8,10]. This class
of models consists of n macromolecules (e.g., polymer chains)
in a simulation box with a fixed volume at the inverse temper-
ature β. Each molecule consists of m atoms. We have in total
N = nm microscopic particles represented by their position in
configuration spaceR3d , X = (x1, . . . , xN ), where xi ∈R3 is the
position vector of the ith atom. The interactions in the system
are described by the Hamiltonian:

HN (X)=Hb(X) + Hnb(X) + HCoul(X) + Hwall(X) + Hkin(X)

(5.1)

The first term Hb defines short-range (bonded) interactions
between neighboring atoms in each individual polymer chain;
it is defined in terms of a potential Ub, i.e., Hb = ∑

Ub The
second term Hnb describes non-bonded long-range interactions
between atoms in different chains and is typically modelled with
a Lennard–Jones two-body potential Unb. The Coulomb term
HCoul describes interactions associated with charged macro-
molecules, while Hwall interactions with walls. Finally the term
Hkin is the total kinetic energy of the system. We next con-
sider the canonical Gibbs measure (ensemble) at the inverse
temperature β given by

μ(dX) = Z−1e−βHN (X)
∏

i

dxi, Z =
∫

X
e−βHN (X)

∏
i

dxi.

(5.2)

In order to obtain a coarse-grained description of the above
system, we follow the standard practice in the aforementioned
polymer science literature and lump together k microscopic
atoms on the same chain into a single coarse-grained state,
which is usually referred as a “super-atom”; we thus have
M = N/k coarse-grained variables describing the whole sys-
tem. The coarse variables are denoted by Q = (q1, . . . , qM)
where each qi ∈R3 corresponds to one“super-atom”. The new
coarse state Q is completely analogous to the coarse variable η

employed in the lattice case.
Once the coarse variables are selected, we focus on obtaining

the coarse-grained Hamiltonian and the corresponding interac-
tion potentials. In fact, as in the lattice case (2.8), the exact
coarse-grained Hamiltonian H̄M(Q) is defined by the renormal-

ization map:

e−βH̄M (Q) =
∫

{X|FX=Q}
e−βHN (X)dX, (5.3)

where F denotes again the projection from fine to coarse vari-
ables. Following our strategy outlined earlier for the lattice case,
we would next need to identify a suitable first approximation
H̄

(0)
M (Q) and as in (2.10) rewrite (5.3) as

H̄M(Q) = H̄
(0)
M (Q) − 1

β
log

∫
{X|FX=Q}

e−β(HN (X)−H̄
(0)
M

(Q))dX.

(5.4)

Cluster expansions can be used to further improve the initial
approximation H̄

(0)
M (Q), similarly to (1.2).

This outline provides a brief sketch of how the coarse-grained
procedure introduced in [20] is extended to off-lattice poly-
mer systems. A detailed presentation, analysis and extensive
simulations for the polymers case will appear in [11].
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[21] M.A. Katsoulakis, P. Plecháč, L. Rey-Bellet, D.K. Tsagkarogiannis,
Coarse-graining schemes for lattice systems with short and long range
interactions, in preparation.
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