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Abstract

We consider a system of stochastic partial differential equations modeling heat conduction
in a non-linear medium. We show global existence of solutions for the system in Sobolev
spaces of low regularity, including spaces with norm beneath the energy norm. For the special
case of thermal equilibrium, we also show the existence of an invariant measure (Gibbs state).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this article we consider the following system of partial differential

0/, 1) = m(x, 1),
dm(x, 1) = (O — DP(x, 1) — up’ (x, 1) — r(D)a(x),
dr(t) = —(1(1) — (o, n(2))) dt + 2T de(?). (1)
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In Egs. (1) (¢, ) is a pair of scalar fields satisfying periodic boundary conditions with
x € [0,27n]. The vector-valued functions o = (a4, . .., ox) has each component o;(x) in
the Sobolev space H” for some y>0. The vector r(z) = (r1(¢),...,rg(¢)) takes value in
RX. Here r(t)a(x) = Zlel ri(t)oi(x) and (o, 7(¢)) is the vector with values in RX and
with components (a;, 7(7)) where (-, -) is the L*([0,2x]) inner product. Finally w(f) =
(w1(?), ..., wk(1)) is a standard K-dimensional Brownian motion, and +/27 dw has
components +/27;dw; and T; is interpreted as a temperature. The parameter p is a
coupling constant; we will be primarily interested in the cases pu =0 (linear
Klein—Gordon equation) and u>0 (non-linear defocusing linear wave equation).

The system of equations (1) arises from a model for heat conduction in a nonlinear
medium. It can be derived from first principles from a Hamiltonian system which
consists of K linear wave equations in R coupled to a nonlinear wave equation in
[0,27]. The total Hamiltonian is given by

K 1 , )
H= ;/Rgﬂax“j(X)l + [vj(x)]7) dx

! 2 2 2y B 4

K
+ Zl ( /R 0,1 (x)py(x) dx) ( /[0 REXCEC dx), @)

with the p;’s and the o;’s fixed coupling functions. One assumes further that the
initial conditions of the (u;,v;), j=1,...,K (“the reservoirs”) are distributed
according to Gibbs measures at temperatures 7;. These measures are (formally)
expressed as

1
2T

Z "exp <— /(l@xu_,»(x)|2 + 5% dx) H duj(x) dvj(x), 3)
R xeR

and they are simply the product of a Wiener measure (for the position fields ;) with

a white noise measure (for the momenta fields v;).

We refer to [11] or [20,18] for details on the derivation of equations (1) from the
Hamiltonian system (2) with initial conditions (3), at least in the case where the
nonlinear wave equation is replaced by a chain of nonlinear oscillators (formally a
discrete wave equation). In that case one obtains a set of stochastic ordinary
differential equations. The derivation is essentially the same as for the model
considered here and will not be repeated. We simply remark that the derivation of
Markovian equations is possible due to a particular choice of the p;’s.

In a series of papers [11,12,19-21,8,10,18] about the chain of nonlinear oscillators,
the existence, uniqueness, and strong ergodic properties of invariant measures have
been established. Moreover, a number of properties of these invariant measures have
been elucidated, such as existence of heat flow, positivity of entropy production, and
symmetry properties of entropy production fluctuations. These invariant measures
represent stationary states which generalize Gibbs distributions to non-equilibrium
situations where there is heat flow. Ultimately our goal is to establish similar
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properties for the systems of equations (1). But we study here the more immediate
problems of existence of global solutions—a prerequisite for studying the existence of
stationary states—and existence and invariance of an equilibrium (Gibbs) measure.

In the case of equilibrium, that is, when all temperatures are equal, 7; = T for all
j=1,...,K, we will prove below that there is an invariant state given formally by
the (non-Gaussian) Gibbs measure

dv =z exp( =gz [ (00 + 10008 + 5 16001 + Incop) v

X exp (— % r2> dr J] de(x)dn(x). (4)

x€[0,27]

To make sense of this measure, one considers first the Gaussian measure v* for
the case u=0. Its support is contained in H* x H"' x RX for any s<1 and,
with probability 1, ¢ is also a continuous function. Hence we can think of the
measure v as the measure which is absolutely continuous with respect to v* with a
Radon—Nikodym derivative proportional to exp(—u [ |p(x)|* dx/4T). We expect,
but have by no means proved, that the invariant measure for different temperatures,
if one exists, has similar support properties. But with this intuition, it is appropriate
to seek solutions of (1) in spaces of rough data H® x H*~! x RX with s< % Indeed
we show the global existence of strong solutions, for 1/3<s<1 (see Corollary 3.4
and the remark following it). We believe that these spaces, with at least 1 /3<s<1/2,
are natural to the invariant measure problem.

Clearly, in these spaces no energy conservation (or bounds on the energy growth/
dissipation) is available. In recent years, however, Bourgain [2], Keel and Tao [13]
and many others have developed techniques to show global existence for wave
equations and other Hamiltonian PDE’s in Sobolev spaces below the energy norm.
A review of recent results with an extensive bibliography can be found in [6]. Here,
we use and extend these methods to establish global existence of solutions for wave
equations coupled to heat reservoirs, i.e., with noise and dissipation.

In the last section, we show that solutions to an ultra-violet cut-off version
of our system of equations, Eq. (1), converge as the cut-off is removed. This result
is then applied to show that the equilibrium Gibbs state v described above,
Eq. (4), is indeed an invariant measure in the case of equilibrium. Note that
Gibbs measures for nonlinear wave equations (and nonlinear Schrédinger equations)
have been constructed and studied by several authors, (Lebowitz, Rose
and Speer [15], Zhidkov [22], McKean and Vaninsky [17], Bourgain [1,3], Brydges
and Slade [5]) but for isolated systems only, i.e., without dissipation or noise.
Note that in these works Gibbs measures for any temperature are invariant
while in our case the temperature is selected by the coupling to the reservoir.
Our work is also related in spirit to various recent works on the ergodic properties
of randomly forced dissipative equations, see e.g. [4,7,9,14,16] and others.
The main and very important differences are that our equation is Hamiltonian
rather than parabolic so that there is no intrinsic smoothing in the equations,
and that the dissipation is very weak.
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Our methods do not apply to the focusing case (i.e., for u<0) as we use repeatedly
to prove global existence that the energy and the H' x L> norm for the
Klein—Gordon equation are equivalent. Also we have chosen periodic boundary
conditions for mathematical convenience, although other boundary conditions, e.g.,
Dirichlet boundary conditions can be treated along the same line. The global
existence of the flow can be proved also on the real line, but our analysis of the
invariant measure is restricted to finite domains.

1.1. Notation

It is convenient to write our system as Bourgain does [2]. Set
i
U= —m, 5
b+ 5)

where B is the operator defined B = 1/ —32 + 1. Note that ¢ = Ru and 1n = Juare
respectively the real and imaginary parts of u. Thus our differential equations can be
written,

i0u = Bu + %(Mb} + ro),

dr(t) = —(r(t) — (&, (1)) dt + V2T doo(2). (6)
Let

o) = ) = (64 g r) )

and let u,(w,?) = (uy,7,)(w,t) be the corresponding solution to the differential
equations but with the non-linearity turned off, u = 0.
For a vector quantity u = (&, r), we introduce the norms

lull g = (7 + llull )", ®)

where H* is the Sobolev space with norm [|f |7, = >, (1 + k>Y'|f (k). The energy of
a vector u is defined by

1 1
&(u) = 5 llull 7 +§1’2 + g/(fRu)4 dx. )

2. Estimates for the linear wave equation

In this section we collect basic estimates for the linear system, u = 0. These
estimates actually establish global existence for this system.

The first step is to consider the linear deterministic (dissipative) system obtained
from (6) by omitting both the nonlinear term and the noise,

du,

dt
dr,

dt

1
= —iBu, — ior,,
19517 lBOCV

= (Bo, Ju,) — ry, (10)
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where Ju, is the imaginary part of u,. Set L, = B, + P with

—iB 0
Bl) = >
0 -1

1
0 —i—=o
P= B . (11)
(Bo|3 0
Here, the upper right matrix element of P acts as —i %ocr =— é >~ airi, and the lower

left matrix element of P, (Bx|J, maps u to the vector in RX with components
(Bo;, 3u). Symbolically, the solution of this system Eqs. (10) is given by e’**u,(0) with
L, = B, + P. The system should be regarded as linear in a function space of complex
functions over the reals (so that J is linear).

Lemma 2.1. Assume that o € H' for some y>0 and 0<s<1. For Jy sufficiently large
depending on the o’s only, (B, ~+ A0)(Lo + 40) " '(B, + 40)~* acting in L* ®RX is
defined as a bounded invertible operator.

Proof. It is no restriction to assume that y<1. We have the following operator
estimates (the operators acting in L> @ RX):

P 1 < C(/l()) .
By+ ot S 42y
1 (Vo)
P < —, 12
H Byt do+ DB+ 70| S (14 2y (12)

with y = min{y + s, 1} and with ¢(49) — 0 for 1y — oo. The first estimate in (12) is
obtained by considering the off diagonal terms separately; the upper right term is
estimated by

i
—o

5 Il (13

1 , 7] (o)
ri|<c < -
—1++2 —14+2g+4 (1+2)

and the norm of the lower left term is estimated by

17”
H B Bla
(—iB+ g+ )"

1 H < C(/l())

[ p 1A 14
m“$+%+w” a+ay (14)

The second estimate of (12) is obtained similarly. By expanding the resolvent
for L, in a geometric series, convergent for c(Jg)<1, one finds from these
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estimates that

(By + 20)(Lo 4+ 20 + A) ' (By + 20)~*

(15)

=<Bo+ﬂ~o)1‘S(Bu+;v0H)—lw( c(o) )

(1+ 24"

by splitting off the first term in the series and estimating the remainder. Using

di
(Lo 4 Ao + A7

L, + ) ' =¢, - 16
(Lo + o) c/0 (16)

with ¢ a suitable normalizing constant, and integrating the previous equation, we
obtain

(Bo + 20)(Lo + 20~ (By + 40) ™" = 1 + O(c()), (I

which clearly is bounded. By choosing A large so that c¢(4¢) is sufficiently small, we
see that (B, + A0)(L, + 40)° "' (B, + 49)~* is invertible. [

Lemma 2.2. Assume oo € H, withy>0,0<s<1. There is a constant c3 depending only
on s and the o’s, such that

lleFou(0)|l g+ < c3/u(0)]| (18)
for all time t.
Proof. We have that

&o(u) = J(llull, + %) (19)

is a (degenerate) Liapunov function for the linear system Eq. (10), since d&,(u)/dt =
—rg(t)go. The lemma follows if we can show that for a suitably large constant Ay,
&o((Ly + 20)* 'u) is equivalent to ||(B, +io)su||%, which is in turn equivalent to
||u||%{s. This is certainly the case if s = 1. For s<1, this amounts to showing that
(By 4+ 20)(Lo + 20) " '(B, + 40) ™ is a bounded invertible operator, which is the
content of the previous lemma. [

We now provide an estimate for the linear stochastic evolution u, solving Eq. (6),
with the nonlinearity turned off, u = 0.

Lemma 2.3. Assume that y>0,0<s<1 and set |u,(0)| s = . There exist constants ¢
and C, such that for A=cf,

(i —cpy )
Posup [lu(D|lgs =4 p<Cexp| ——— ). 20
{Kg luo (Dl } p< 211 17 (20)
Remark. The estimate is certainly not optimal. It does not account for the rapid
dissipation of energy for small kK modes of u,. The lemma provides a global bound on
the linear evolution, showing that it does not blow up, almost surely.
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Proof. The Duhamel formula for u,(¢) is
t
u,(t) = / e=hoy, da(t) + eFou,(0)
0

t
= v,0(1) + / "0 Lyvya() df + e'Fu,(0), 1)
0

the latter line obtained by integration by parts, with L, defined as in the deterministic
case, Eq. (11), and

0
v, = (ﬁ) 22)

By Lemma 22, there is a constant c3 such that |eZu,(0)|y <c3f, and
e Loy, || s <e3|Voll y+ (Which is finite) so that from the integral equation Eq. (21)
above, we obtain the estimate

oDl < IVoll g1 + €32l LoVoll = sup 1(t)] + ¢311up(0) 1. (23)

<t

Thus we can write for a suitable constant ¢ that

luo(@)ll <1 + 1) sup (@) + cf, (24)
U<t

with § the H® norm of the initial data u,(0).
~ Now if at some time ¢, with #<t, we have that |u,(¢)|l5s >/, then evidently
Locp <sup, , lo(?)], and so, for A>cf,

(141 ==
P{fgg () >z} sP{fgg 1> jf)}
X__ s
<2P{Iw(f)l>c(1 ;’f)}
) (i—cﬁ)z)
<Cexp< it ) (25)

by the reflection principle for Brownian motion, for yet another suitable constant
C depending on the dimension of r. This concludes the proof of the lemma. [

For later use, we also note here some simple Sobolev inequalities, all in one-

dimension only. Here and in the sequel || - ||, denotes the I” norm.

Lemma 2.4. For s>(1/2 — 1/p) and p=2 there is a constant ¢ = c(s, p) such that
oll, <cllllg- (26)
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Also, for 0<0<(1 — 1/p), there is a constant ¢ such that

191100 <cll Pl 1) 117" @7)
Finally, for s>1/6 and s < min(0,3s — 1), or & = 0 and s>1/3, there is a constant
c = c(s,s) such that for ¢y, ¢,, $3 € H®,

||¢1¢2¢3||H> <cllillasldall s sl ars- (28)
Remark. The first inequality of the lemma actually holds with s = 1/3 and p = 6, as
can be proved using the Hardy—Littlewood—Sobolev inequality. For convenience we

will use this inequality as well, although it is not essential for our purposes. But as a
consequence of this remark, the last inequality (28) holds for s/ =0, s = 1/3.

Proof. The first inequality of the lemma is proved by estimating

A 1 iy A
P 24sp' /21 5P
I8 = 3 a0 )

<UL+ Pl (29)
with p’ conjugate to p and r = 2 / (2 — P). The right side of this inequality is bounded
provided that sp'r>1, i.e., s > 5 —+. One then applies Hausdorff~Young to obtain

the first assertion of the lemmd
The second inequality of the lemma is shown by first noting that

inx

e
Px )—— 27(1 N
which by the Schwarz inequality gives the special case (6 = 0)
[Plloo<cllPllpy- (31

Also, we have that

(14 1) (n), (30)

P <p / 0P 01 di + 161 0). (32)

Estimating the integral by ||¢||2(p 1)||(]3||H| and then integrating this inequality (32)
with respect to y over [0, 2x], we get

2711 ()<2mpll I, Dt + 191151 bl (33)
so that
Illoe <cllllag, Dbl (34)

The second inequality of the lemma is then obtained by interpolation between
inequalities (31,34).

To prove the last inequality of the lemma (28), we suppose each of the ¢,’s is in H®
with s> 1/6. Pick p’ with 5> =3 and for later purposes, 3 S<p'<3. By inequality

(29) above, each (l),- is in 51’, and the double convolution ¢1 * ¢2 * <§53 is in £" for
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1= ]% — 2 by Young’s inequality. Note that 2<r<oo. It is then easy to check that
(14122}, * ¢y * s is in €2 provided s’ < — 1 where L+1=1 Thisissoifs <0

(r is positive) and s < — L =1— é_ 3 —3<3(s+14) —3=23s— 1. The special case

with 8 = 0, s>1/3 is an immediate consequence of the ﬁrst inequality (26). O

3. Estimates for the non-linear equations
3.1. Local existence

The Duhamel integral representation of the system equations for u, Eq. (6), is

Ho3 /

t = d

u(r) = / el="Lo g O + e'Lu(0). (35)
0 V2T do(t')

Fix s with 1 <s<1, and for R>1 let Zr(p, t) be the set of functions defined

Tr(p,1) = {U() € ¢([0, 21, #°) | [lu(0)| > < and sup ||u(l)||H“<Rﬂ} (36)

<t
and let & g(f, ) be the (probabilistic) event that the Duhamel integral equation

Eq. (35) has a unique strong solution in Zg(f,t). We have the following local
existence result.

Proposition 3.1. Assume 5 <s<1. There exist constants c|, ¢3, ¢3 and C such that if
u(0) satisfies ||u(0)|l s <, R>3c3 and t<cl/(Rzﬁ ), then

Cszﬂ )
(1+1?)

Clearly, the sets & g(f,t) are nested, Z r(f,t2) C Fr(p, ;) if t;<t,. The event
F r(P) =, Z r(B, t/n) is the event that u(-) exists for some positive time, and, in this

time, has H® norm no bigger than Rfi. An immediate corollary of the above
proposition is that # g(ff) occurs with probability one.

P R(B 0} =1 — Cexp (— (37)

Corollary 3.2. For s> %, local existence of the solution u(-) in H® holds almost surely,
P{7r(P)} = 1. (38)
Proof of Proposition 3.1. We have

mo3, /
6o = ¢ (¢)dt
/ =L, [ B <3ty sup ”¢3(t,)”1-15*‘
0 0 <t
HS
, 1
<cut sup (@3 <cut(RP)* < gRﬁ’ (39)

<t

for a suitable constant ¢. Here, we have used Lemma 2.2 and the Sobolev inequality
(28) of Lemma 2.4 to estimate |¢° ll g1, assuming that s>1/6 and using
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s — 1< min(0, 3s — 1). Also, we have chosen < (3cuR>f*)~'. Furthermore

t 0 1
(t—1)L, -
/0 © («/2wa(z/)> HH <3RP. (40)

using that the left side inequality (40) is bounded by c(1 + #)sup, <, |w(¢)| for a
suitable constant ¢ (cf. the proof of Lemma 2.3); this condition holds with
probability exceeding

/ Rﬁ CZR2:B2
P{f}g}' OIS 3515 t)} >1=Cexp <_ (1 + t)2>’ @D

for suitable constants ¢, C. Finally, since R>3c¢3 we have [le’“u(0)] g+ <c3f< 1 Rp.
Together with inequalities (39,40) this implies that the right side of the Duhamel
integral equation Eq. (35) is a map of Z(p, t) into itself.

It remains to check that the right side of the Duhamel equation Eq. (35) is
contractive for small ¢. But clearly for two functions u;, u, € Z(f, t), with real field
parts ¢, and ¢, respectively, and for #; <¢,

141 ﬁ _ %
/ (=1L, B(qﬁf () d4f
0 0 -
<espt sup 197 + d1b + $2)(d1 = )l
<3C,ut(Rﬁ)2 f/u<f;' I(ur — w)(@)ll g, @)

by inequality (28) of Lemma 2.4, for a suitable constant ¢. Thus the Duhamel
integral is a contraction for #<1/(3cuR>f?).

In summary, if 1<c¢;/ 1R2B%), for a suitably small constant ¢;, and if the stochastic
integral estimate inequality (40) holds, the right side of the Duhamel expression
maps Zg(f,t) into itself and it is a contraction, so that by the contraction mapping
theorem, Eq. (6) has a unique strong solution in Zg(p, ¢). Inequality (40) holds with
probability at least that given in inequality (41). O

3.2. Global existence

Finally, in this section we provide a global estimate for the non-linear stochastic
evolution u(?). Following Bourgain’s methods for the non-linear wave equation [2],
we set

iy (1) = (an (1), 7(1)) = ((u(?) = P> nuo(1), (r — 1o)(1), (43)

with the positive integer N to be chosen later, P~y projection onto the Fourier
modes {k : |k| > N}. Here, u(¢) and u,(f) (the linear evolution) are assumed to begin
with the same initial data, u(0) = u,(0), and are driven by the same stochastic driving
terms, so that they are not independent: they are coupled. The quantity Iy(¢) is
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defined as it would be in the pure deterministic case,

In(1) = E(an(2)), (44)
with & the energy defined by Eq. (9). Set
0, = min{i(4s — 1),(1 — 5),7}. (45)

We will assume below that o € H” with y>0, and that 1/3<s<1.
Our main result is the following.

Proposition 3.3. Let u(0) = u,(0), with f = ||u(0)]| ;s = |u,(0)|| 7s. Fix R>1, 0>0 and
0>0 so that 0 + 6<0,. There exist constants ¢, C and an N, = N,(R,f) and v =
©(R, B), such that if N>N, and t<tN°, then

2 Ar2(1—5) ¢N?
Pisup In(/)>RB NV < Cexp| ——— . 46
{t’él? N( ) ﬁ } p( [(1 t)2> ( )

This proposition and Lemma 2.3 give us a global bound:

Corollary 3.4. Let 8, 0<0,, R=2 be fixed, as in the above Proposition. There exist
constants, ¢, C and N1 = N(f, R, t), such that for any time t, and N = N,

1 N2
P<{sup |[[u(?)]| s> RBN < Cexp| — . 47
{1,5 lu() s > RB } P< T +[)2> 47

Proof of Proposition 3.3. The stochastic differential of 7 (?) is given by
dIn(1) = (3(Bity, p(Ru)’ — w(Ra)* + roP<yor) — 7
+ #3(Bu,, P< o)) dt. (48)

In particular, there are no dw or dw? = dt terms, hence the differential is the same as
if we were just considering a wave equation with dissipation. We proceed to estimate
the terms on the right side.

We have that

I(Ru)* (&) — (Riin) (O, <" U1P= (Dl v 12 + 1P= nuto(D)17)

<P w2 Nl 171 + 1Po nuo(D)]13)
SN uOll i In (07 + o (D)1 3), (49)

for suitable constants ¢”,¢’,c. Here the first line is obtained by factoring the
difference of cubes and then using u = iy + P nyu,; the remaining two lines are
obtained by the Sobolev inequalities, first inequality (27), then inequality (26) of
Lemma 2.4. The other factors in Eq. (48) are readily estimated, and we get

ATy (O <N oDl g In(2)¢ + (o)) + N 7775 g (1) s
+ [luo ()13 w(2)' /) dt. (50)
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Now assuming that IN(t)gRﬁzNz“_S) and [lu,(t)|| 7+ <N, with 0<0<0, =
min{} (4s — 1),1(1 — ), 7}, we obtain

dIy() < NN ONT4)) + N30 N~y + NP o(N 7)) dt
<N T=9ON%) ds. (51)

It follows that Iy(7)<RE*N*'=9 for t< T with T = O(N?), <0, — 0, provided that
in this time interval, |Ju,(7)| ;> <N?. Said more precisely, given S, R, there exist an
N,(B,R) and a (3,0, B, R) such that for N>N, Iy(7) remains less than Rf>N>(—9
for a time ¢, 0<t<tN°, provided that ||u,(?)|| ;> remains less than N’ in this same time
interval.

Thus we have that

P{sup IN(r’)>R[32N2“S>}

U<t

= P{sup In(#)>REN? 179 and sup [lu,(¢)| g >N0}

U<t <t

<P{sup ||ua(t/)||Hs>N0}

<

(V' - ﬁ)) (_ c1N29>
<Cexp< i1+ 1) C)exp 71(14_02, (52)

for t<tN?, by inequality (20) of Lemma 2.3 and appropriate new constants C; and
c1. After renaming of constants and taking N, still larger so that N g >2c¢p, the proof
of the proposition is complete. [

Proof of Corollary 3.4. We have that

r<

{sup lu() ||+ > RAN"'~ Y}<P{sup RN () g > 5 RﬂN‘ }

+P{Sup o ()l 2= > RﬁNl Y} (53)

<t

Now the first probability on the right side is bounded by

CN20
P{Sup ]N(t)> R2[)) NZ(l Y)}<Cexp< 72), (54)
r<t (141

for N> N, by Proposition 3.3. The second probability on the right side of inequality
(53) is bounded by the estimate given in Lemma 2.3, with 1 =1RBN'™> O(N").
Thus this probability is negligible compared to the first term on the right side of
inequality (53). Enlarging C completes the proof of the corollary. [
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Remark. The same ideas, in particular estimating /y(f) for any N, can be used to
prove global existence almost surely in the energy norm s = 1, but we do not write
out precise statements here.

4. Large k cut-off systems and an equilibrium invariant measure
4.1. Convergence of finite dimensional cut-off systems

We consider a cut-off version of our system (1) where we retain Fourier modes {k}
with |k|<M, M a positive integer. Let wy () = (unr, rar)(0) = (Ppr + 570 a)(0)
denote a solution to the finite dimensional system

i0uurr (1) = Bup(t) + SP < ar(ue (2) + ras(t)),
drar(1) = —(rar(t) — (P< o, mpr (1)) dt + 2T doo ), (55)

for initial data u,,(0) € P<y L?. The solution uy(f) remains in P<,L> ® RX and is
clearly in H® (for any s), since all Fourier coefficients iy = 0 for |k|>M. We
remark that under the same assumptions on the coupling functions o, the
conclusions of the previous section, Propositions 3.1, 3.3 and Corollary 3.4, hold
for solutions wu,s uniformly in M with respective initial data uy(0) = P<u(0) for an
initial u(0) € H*, s>1/3. In particular the arguments used there are equally valid for
the cut-off systems.

Fix s and let Zg(p,t) be the set of continuous functions defined in Eq. (36), in
particular functions u bounded in the H®-norm by Rf with |u(0)| 4 <f, and let
% r(P, ) be the probabilistic event defined

Gr(B,t) = {u(-), uy(-) € Zr(p, 1) for each M}, (56)

with u(-) the solution to Eq. (1) and uy,(-) the solution to Eq. (55).

Proposition 4.1. Fix s>1/3, a time t>0, and s,>s. Then {uy;(-)} converges strongly to
u(-) in H® uniformly on Gg(p,t) N {u] |u(0)] 7+ < p}.

Proof. For notational convenience we will replace the ¢ of the proposition statement
by #;, and work on the time interval ¢ € [0,7;]. We will assume that in this time
interval we have the a priori bounds ||u(?)|| ;s < Rp and |Jup(7)]| s < Rf, for all M and 1.
Given these bounds, we will actually show the stronger result that P¢ju—uy — 0
strongly in H' and P~ j;u — 0 strongly in H®, uniformly in 7 and the initial data with
a(0)[| g0 < B

The quantities u and uy, satisfy the respective Duhamel relations

— (g’ +ra)dl

t
u(t) = / =15, + eBou(0), (57)
0 (o, Ty At + /2T dox(?)
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and, for uy, with initial data P < yu(0),
—i 3 ’
p I :
uy(f) = / =8, | B Peyludly +ruz)dr
0 (o, Tpr) dt' + /2T do(?)
We proceed to estimate (P<yu — uy)(¢) in the H'-norm, for 0<¢<1¢,.
From the above integral formulae Eqs. (57,58) one sees that there will be three

contributions to (P<u — uy,)(?) coming from integrals involving the non-linearity
¢’ — s> (r = ra)a, and (2, (v — 7).

+ e P 3u(0). (58)

() ¢° — qb?w-lerm. We bound the contribution to (P<u — uy)(?) by

_i:u /
/’6(1_,/)30 B Pom(¢’ — ¢3p)de
0 0 -
ot t
<c(Rp)? / 1P~ pru(?) e A + c(RB)? / (P < pru — up )(£)|] o 7'
0 0
(59)

for a suitable constant ¢ by the Sobolev inequality (28) with s = 0 and s>1/3.
(i1) (r — ryr)a-term. The corresponding contribution to (P yu — uyy)(¢) is bounded by

—l(}’ - rM) /
/t e(l—f/)Bo 73 PgMOC dt
0 O e
t
<cllalls / 1P <ar — w1 . (60)
0

(ili) (o, (mr — mar))-term. Let ii(f) = u(¢) — e'T~u(0) be the difference between u(z) and
the solution of the linear equation with dissipation but without noise. We then
bound the contribution to (P« ju — uy,)(?) from the integral of (o, (m — 7)) by

/ =08, 0
0 (o, (m — mpr)) d?’

t t
<Pyl / | P o i) 1 dz/+’ / e "o, BP~ e tou(0)) d7
0 0

H'

t
s [ Ui =)l . (61)
To estimate the second of these integrals on the right side we use the identity

/ fe gt gy € T / gL gy (62)
; = Lo + /1 () o )
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and the bound

using Lemma 2.2 (With s =1), then Lemma 2.1 (with s =0). Then the second
integral in inequality (61) is bounded by ¢|| P s> |u(0)], < cl| P art]l»f.

Adding these contributions, inequalities (59,60,61), and using the last estimate, we
arrive at the bound

ef "L,

S
Ly -{-} “

<cllu(0)]l,, (63)
Hl

0

1P <210 — wa)(D) g1 <o, R) /0 1P <agtt = wng )0 s Y
1 (R / 1P sgu(t) - 7
0

!
1Pl [ 1P aiO)l 0
0
+ eRPIP- . (64)

where c(o, Rf5) is linear in ||o||, and quadratic in Rp.
The inhomogeneous terms on the right side of this inequality (64), i.e., the second,
third, and fourth terms, each go to zero, M — oo uniformly in ¢ and the data.

(1) Second term of (64): Consider the projection of the integral formula of Eq. (57)
above onto Py H®. To control the non-linear contribution to || P pru(?)|| s, we

use
1 3 _ 3
§P>M¢ - ||P>M¢ ”HS*‘
Hs
MNPy |l o
<M |ull3s < MV (RBY, (65)

by the Sobolev inequality (28), with s” chosen, s<s”<1. The a-contribution

presents little difficulty and is O(M ~7 Rf3| || ;;+), while the inhomogeneous term is

estimated || P yeBou(0)|| s <3 MP75 || P o ppu(0)]] oo <3 M f, by Lemma 2.2.
(i1) Third term of (64): We have that

||P>Mﬁ(z>||ﬂl</0 P>M< () + L0 ;")(’) ) dr
Hl
< /0 1P st ()2 A7 + (R + el Pl (66)

Here, P~ y(u(?')’) = Ps y(P<ppaj3u(t’) + Py 5u(t)’), where [M /3] denotes
the greatest integer < M /3. Expanding this out, one sees that terms containing a
factor P.py3u(f') go to zero uniformly for M — oo as in our analysis of
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the second term of (64), and the term P p/(P<[as /3]u(t’)3) is identically zero. The
o-term is O(M 7 Rp||o|| 7). It follows that || P~ pU(2)|| 1 goes to 0 uniformly.
(ii1) Fourth term of (64): This term, proportional to o, is O(M ™" Rf||o|| 7)-

Thus inequality (64), with each of its inhomogeneous terms going to zero
uniformly, M — oo, implies via Gronwall’s inequality that (P u — uy/)(?) goes to
zero in H' uniformly in ¢ and the data. Since P- ju(?) goes to zero uniformly in H*
as we have seen above, we have that wuy(7) converges to u(f) uniformly in H®,
provided that ||u(?)|| s and |Juy(¢)|| s stay less than Rf for 1 <1y, i.e., are in Gr(p, t1),
and the data u(0) satisfies |u(0)|| g~ <p. O

4.2. Equilibrium invariant measure

We proceed now to show the existence of an invariant measure for the complete
system Egs. (1), but in equilibrium where all temperatures are equal to a common 7.
Let v* be the Gaussian measure referred to in the introduction. For vy, ¢, 7 and r are
independent, of mean zero, and with respective covariance é, 1, and 1. With respect
to Y, ||u||§{s has finite expectation for s<1/2,

/ lull e v =27 (14 k%) <oo, (67)
k

hence || ¢/ ;s is finite, v'-a.s. By Sobolev inequality (26) of Lemma 2.4, ||$|l4 <c|l¢ |l g
for s>1/4, so that as random variables ||@|l4 and ||P<y |4 are also finite v'- a.s.
(Actually v is supported on continuous functions, but we do not need this here.) Set

dvy(m, ¢) = Z;/ exp (—%/ (b?u dx) dO(m, ¢),

dv(n, ) = Z ' exp (— % / o dx> Az, ), (68)

with appropriate normalizations

Zu :/exp<—£/¢?‘4dx> a’, Z:exp<_4'l;w/¢4dx>dv0, (69)

and ¢,, = P<p¢p. Since ||¢|l4 and ||P<p |4 are finite a.s., the Radon—Nikodym
factors exp(— 47 [ (,i)‘}v, dx) and exp(— £ $*dx) are bounded and positive a.s., and
the normalizations Z and Z,, are positive. The measures v,; and v are absolutely
continuous with respect to .

The semigroup associated with the cut-off system Eq. (55) acts invariantly on
functions {f(u)} of the form f(u) = g(@i_yy, . .., U, 1), with g integrable. The measure
vy 1s an invariant measure for this semigroup, as can be checked by computing the
generator of the process and showing that its adjoint annihilates v,,; we leave this
exercise to the reader.
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We also have that limy,_,, Z) = Z. This is the case by the bounded convergence
theorem: Clearly the exponentials in (69) are bounded by one, and

Nlls — NlParllal <P — Prrlla<clld — dpfllys — 0, M — oo as. (70)

since ¢ is in H® a.s. Thus

exp(—%/qﬁildX) — exp(—%/qﬁ“dx), a.s. (71)

Let f'be a function in the norm closure 4" of functions depending continuously on
only a finite number of modes,

X = U {f1f =9g(l_p,...,0y,7), g bounded continuous}. (72)
M

Then again we have by bounded convergence that

/fexp<—%/¢?udx)dvo - /fexp(—%/gb‘ldx)dvo, (73)

and so

Zy /fexp(—%/%dx)dvo - Z”/féXp(—%/qﬁ“dx)de. (74)

Thus, vy, converges to v in a weak-« sense.
For later use, we also note a kind of tightness for the measures {v,}; for s<1/2,

1 llull g H 4 0
de\—/ exp| —— | ¢, dx |dv
/{uHs>/f} Zul) B ar ) M

1 5 0 1/2
<[327 </ lullz dv ) > (75)

which is arbitrarily small for f large, uniformly in M, by inequality (67).
Finally, we address the invariance of v. Define the semigroups
S'f(w) = Eoff @), Syf(w) = Eoff (ay ()], (76)

where f € 4. (We will assume here for definiteness that the Fourier modes @i/ (7) are
simply constant in time for modes |k| > M.)

Proposition 4.2 (Equilibrium case). The measure v is invariant with respect to the
semigroup S in the sense that for f € X,

S'fdv= [ fdv. (77
Jsra=]

Proof. Choose s, 1/3<s<1/2, and let ¥g(p, 1) be the event defined in Eq. (56) (using
the H*-norm). By Corollary 3.4, we have that for an initial u with |Jul| s <p,
c R20/(ls)>

At (78)

Pu{@GR(B, 0} < Cexp (—
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We identify the R here with 2N'~* in the corollary statement (the R of the corollary
being chosen equal to 2) and appropriately redefine the constant c.

Now let s, be chosen, with s<s,<1/2 and let f(u) be a bounded function
continuous in the A*-norm of u. (Such functions are dense in Z). For |lul|; < and
any £>0,

|S'f (w) — S}y f (u)|
SEulXg4(p.0(f (D)) = f(ar (DD + 21U | oo Pu{ G R(B, 1)}
<&, (79)
for R and then M chosen sufficiently large, by the above probability estimate,

and by the uniform convergence of uy to u on “r(B, 1) N {ul|u(0)| % <p},
Proposition 4.1. Consequently, S',f(u) — S’f(u), for M — oo uniformly in u,

l[ull g0 <B.
Finally,

/S"‘fdv—/Sﬁ,Ifde’

< ‘/S’f(dv - de)‘ +/X{||u||Hs,,</f}|Slf — Shyf1dvy

2 / dvar. (80)
{”u”HSU > ﬂ}

The first term on the right side goes to zero by weak-* convergence of {v,/} to v, the
last term can be made arbitrarily small for f suitably large by tightness inequality
(75), and the middle term then goes to zero by uniform convergence of S,/ for
[la]| gso < B. Thus

/S’fdv:ﬁ}iinoo/S;lfde :A}@w/fdw :/fdv, 81)

by the above inequality (80), by invariance of vy, under (S’,)*, and again by weak-x
convergence of the {vy,}. This completes the proof of invariance of v for functions
depending continuously on u with respect to the H*-norm and, by density, invariance
forall feZ. O

Remark. We emphasize that the question of ergodicity for this equilibrium measure
v remains open, as does the existence of non-equilibrium invariant measures for
differing temperatures.
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