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Abstract

We consider a system of stochastic partial differential equations modeling heat conduction

in a non-linear medium. We show global existence of solutions for the system in Sobolev

spaces of low regularity, including spaces with norm beneath the energy norm. For the special

case of thermal equilibrium, we also show the existence of an invariant measure (Gibbs state).
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1. Introduction

In this article we consider the following system of partial differential

qtfðx; tÞ ¼ pðx; tÞ,

qtpðx; tÞ ¼ ðq2x � 1Þfðx; tÞ � mf3
ðx; tÞ � rðtÞaðxÞ,

drðtÞ ¼ �ðrðtÞ � ha;pðtÞiÞdt þ
ffiffiffiffiffiffiffi
2T

p
doðtÞ. ð1Þ
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In Eqs. (1) ðf; pÞ is a pair of scalar fields satisfying periodic boundary conditions with
x 2 ½0; 2p�: The vector-valued functions a ¼ ða1; . . . ; aK Þ has each component aiðxÞ in
the Sobolev space Hg for some g40: The vector rðtÞ ¼ ðr1ðtÞ; . . . ; rK ðtÞÞ takes value in
RK : Here rðtÞaðxÞ ¼

PK
i¼1 riðtÞaiðxÞ and ha;pðtÞi is the vector with values in RK and

with components hai;pðtÞi where h�; �i is the L2ð½0; 2p�Þ inner product. Finally oðtÞ ¼
ðo1ðtÞ; . . . ;oK ðtÞÞ is a standard K-dimensional Brownian motion, and

ffiffiffiffiffiffiffi
2T

p
do has

components
ffiffiffiffiffiffiffiffi
2Ti

p
doi and Ti is interpreted as a temperature. The parameter m is a

coupling constant; we will be primarily interested in the cases m ¼ 0 (linear
Klein–Gordon equation) and m40 (non-linear defocusing linear wave equation).
The system of equations (1) arises from a model for heat conduction in a nonlinear

medium. It can be derived from first principles from a Hamiltonian system which
consists of K linear wave equations in R coupled to a nonlinear wave equation in
½0; 2p�: The total Hamiltonian is given by

H ¼
XK

j¼1

Z
R

1

2
ðjqxujðxÞj

2 þ jvjðxÞj
2Þdx

þ

Z
½0;2p�

1

2
ðjqxfðxÞj2 þ jfðxÞj2 þ jpðxÞj2Þ þ

m
4
jfðxÞj4 dx

þ
XK

j¼1

Z
R

qxujðxÞrjðxÞdx

� � Z
½0;2p�

qxfðxÞajðxÞdx

� �
, ð2Þ

with the rj’s and the aj ’s fixed coupling functions. One assumes further that the
initial conditions of the ðuj ; vjÞ; j ¼ 1; . . . ;K (‘‘the reservoirs’’) are distributed
according to Gibbs measures at temperatures Tj : These measures are (formally)
expressed as

Z�1 exp �
1

2Ti

Z
R

ðjqxujðxÞj
2 þ jvjðxÞj

2Þdx

� � Y
x2R

dujðxÞdvjðxÞ, (3)

and they are simply the product of a Wiener measure (for the position fields uj) with
a white noise measure (for the momenta fields vj).
We refer to [11] or [20,18] for details on the derivation of equations (1) from the

Hamiltonian system (2) with initial conditions (3), at least in the case where the
nonlinear wave equation is replaced by a chain of nonlinear oscillators (formally a
discrete wave equation). In that case one obtains a set of stochastic ordinary
differential equations. The derivation is essentially the same as for the model
considered here and will not be repeated. We simply remark that the derivation of
Markovian equations is possible due to a particular choice of the rj’s.
In a series of papers [11,12,19–21,8,10,18] about the chain of nonlinear oscillators,

the existence, uniqueness, and strong ergodic properties of invariant measures have
been established. Moreover, a number of properties of these invariant measures have
been elucidated, such as existence of heat flow, positivity of entropy production, and
symmetry properties of entropy production fluctuations. These invariant measures
represent stationary states which generalize Gibbs distributions to non-equilibrium
situations where there is heat flow. Ultimately our goal is to establish similar
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properties for the systems of equations (1). But we study here the more immediate
problems of existence of global solutions—a prerequisite for studying the existence of
stationary states—and existence and invariance of an equilibrium (Gibbs) measure.
In the case of equilibrium, that is, when all temperatures are equal, Tj ¼ T for all

j ¼ 1; . . . ;K ; we will prove below that there is an invariant state given formally by
the (non-Gaussian) Gibbs measure

dn ¼ Z�1 exp �
1

2T

Z
½0;2p�

ðjqxfðxÞj2 þ jfðxÞj2 þ
m
2
jfðxÞj4 þ jpðxÞj2Þdx

� �

� exp �
1

2T
r2

� �
dr

Y
x2½0;2p�

dfðxÞdpðxÞ. ð4Þ

To make sense of this measure, one considers first the Gaussian measure n0 for
the case m ¼ 0: Its support is contained in Hs � Hs�1 � RK for any so 1

2
and,

with probability 1, f is also a continuous function. Hence we can think of the
measure n as the measure which is absolutely continuous with respect to n0 with a
Radon–Nikodym derivative proportional to expð�m

R
jfðxÞj4 dx=4TÞ: We expect,

but have by no means proved, that the invariant measure for different temperatures,
if one exists, has similar support properties. But with this intuition, it is appropriate
to seek solutions of (1) in spaces of rough data Hs � Hs�1 � RK with so 1

2 : Indeed
we show the global existence of strong solutions, for 1=3pso1 (see Corollary 3.4
and the remark following it). We believe that these spaces, with at least 1=3pso1=2;
are natural to the invariant measure problem.
Clearly, in these spaces no energy conservation (or bounds on the energy growth/

dissipation) is available. In recent years, however, Bourgain [2], Keel and Tao [13]
and many others have developed techniques to show global existence for wave
equations and other Hamiltonian PDE’s in Sobolev spaces below the energy norm.
A review of recent results with an extensive bibliography can be found in [6]. Here,
we use and extend these methods to establish global existence of solutions for wave
equations coupled to heat reservoirs, i.e., with noise and dissipation.
In the last section, we show that solutions to an ultra-violet cut-off version

of our system of equations, Eq. (1), converge as the cut-off is removed. This result
is then applied to show that the equilibrium Gibbs state n described above,
Eq. (4), is indeed an invariant measure in the case of equilibrium. Note that
Gibbs measures for nonlinear wave equations (and nonlinear Schrödinger equations)
have been constructed and studied by several authors, (Lebowitz, Rose
and Speer [15], Zhidkov [22], McKean and Vaninsky [17], Bourgain [1,3], Brydges
and Slade [5]) but for isolated systems only, i.e., without dissipation or noise.
Note that in these works Gibbs measures for any temperature are invariant
while in our case the temperature is selected by the coupling to the reservoir.
Our work is also related in spirit to various recent works on the ergodic properties
of randomly forced dissipative equations, see e.g. [4,7,9,14,16] and others.
The main and very important differences are that our equation is Hamiltonian
rather than parabolic so that there is no intrinsic smoothing in the equations,
and that the dissipation is very weak.
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Our methods do not apply to the focusing case (i.e., for mo0) as we use repeatedly
to prove global existence that the energy and the H1 � L2 norm for the
Klein–Gordon equation are equivalent. Also we have chosen periodic boundary
conditions for mathematical convenience, although other boundary conditions, e.g.,
Dirichlet boundary conditions can be treated along the same line. The global
existence of the flow can be proved also on the real line, but our analysis of the
invariant measure is restricted to finite domains.

1.1. Notation

It is convenient to write our system as Bourgain does [2]. Set

u ¼ fþ
i

B
p, (5)

where B is the operator defined B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2x þ 1

q
: Note that f ¼ Ru and 1

B
p ¼ Iu are

respectively the real and imaginary parts of u. Thus our differential equations can be
written,

iqtu ¼ Bu þ
1

B
ðmf3

þ raÞ,

drðtÞ ¼ �ðrðtÞ � ha;pðtÞiÞdt þ
ffiffiffiffiffiffiffi
2T

p
doðtÞ. ð6Þ

Let

uðo; tÞ ¼ ðu; rÞ ¼ fþ
i

B
p; r

� �
, (7)

and let uoðo; tÞ ¼ ðuo; roÞðo; tÞ be the corresponding solution to the differential
equations but with the non-linearity turned off, m ¼ 0:
For a vector quantity u ¼ ðu; rÞ; we introduce the norms

kukHs ¼ ðr2 þ kuk2HsÞ
1=2. (8)

where Hs is the Sobolev space with norm kf k2Hs ¼
P

k ð1þ k2
Þ
s
jf̂ ðkÞj2: The energy of

a vector u is defined by

EðuÞ ¼
1

2
kuk2

H1 þ
1

2
r2 þ

m
4

Z
ðRuÞ4 dx. (9)

2. Estimates for the linear wave equation

In this section we collect basic estimates for the linear system, m ¼ 0: These
estimates actually establish global existence for this system.
The first step is to consider the linear deterministic (dissipative) system obtained

from (6) by omitting both the nonlinear term and the noise,

duo

dt
¼ �iBuo � i

1

B
aro,

dro

dt
¼ hBa;Iuoi � ro, ð10Þ
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where Iuo is the imaginary part of uo: Set Lo ¼ Bo þ P with

Bo ¼
�iB 0

0 �1

 !
,

P ¼
0 �i

1

B
a

hBajI 0

0
B@

1
CA. ð11Þ

Here, the upper right matrix element of P acts as �i 1
B
ar ¼ �i 1

B

P
i airi; and the lower

left matrix element of P, hBajI; maps u to the vector in RK with components

hBai;Iui: Symbolically, the solution of this system Eqs. (10) is given by etLouoð0Þ with
Lo ¼ Bo þ P: The system should be regarded as linear in a function space of complex
functions over the reals (so that I is linear).

Lemma 2.1. Assume that a 2 Hg for some g40 and 0pso1: For l0 sufficiently large

depending on the a’s only, ðBo þ l0ÞðLo þ l0Þ
s�1

ðBo þ l0Þ
�s acting in L2 � RK is

defined as a bounded invertible operator.

Proof. It is no restriction to assume that go1: We have the following operator
estimates (the operators acting in L2 � RK ):

P
1

Bo þ l0 þ l

����
����p cðl0Þ

ð1þ lÞg
,

P
1

ðBo þ l0 þ lÞðBo þ l0Þ
s

����
����p cðl0Þ

ð1þ lÞg
0 , ð12Þ

with g0 ¼ minfgþ s; 1g and with cðl0Þ ! 0 for l0 ! 1: The first estimate in (12) is
obtained by considering the off diagonal terms separately; the upper right term is
estimated by

1

B
a

����
���� 1

�1þ l0 þ l
r

����
����pc

jrj

�1þ l0 þ l
p

cðl0Þ
ð1þ lÞg

jrj, (13)

and the norm of the lower left term is estimated by

B1�g

ð�iB þ l0 þ lÞ1�g Bga
����

���� 1

ð�iB þ l0 þ lÞg
u

����
����p cðl0Þ

ð1þ lÞg
kuk. (14)

The second estimate of (12) is obtained similarly. By expanding the resolvent
for Lo in a geometric series, convergent for cðl0Þo1; one finds from these
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estimates that

ðBo þ l0ÞðLo þ l0 þ lÞ�1ðBo þ l0Þ
�s

¼ ðBo þ l0Þ
1�s

ðBo þ l0 þ lÞ�1 þ O
cðl0Þ

ð1þ lÞg
0

� �
, ð15Þ

by splitting off the first term in the series and estimating the remainder. Using

ðLo þ l0Þ
s�1

¼ cs

Z 1

0

dl

ðLo þ l0 þ lÞl1�s
, (16)

with cs a suitable normalizing constant, and integrating the previous equation, we
obtain

ðBo þ l0ÞðLo þ l0Þ
s�1

ðBo þ l0Þ
�s

¼ 1þ Oðcðl0ÞÞ, (17)

which clearly is bounded. By choosing l0 large so that cðl0Þ is sufficiently small, we
see that ðBo þ l0ÞðLo þ l0Þ

s�1
ðBo þ l0Þ

�s is invertible. &

Lemma 2.2. Assume a 2 Hg; with g40; 0osp1: There is a constant c3 depending only

on s and the a’s, such that

ketLouð0ÞkHspc3kuð0ÞkHs (18)

for all time t.

Proof. We have that

EoðuÞ �
1
2
ðkuk2

H1 þ r2Þ (19)

is a (degenerate) Liapunov function for the linear system Eq. (10), since dEoðuÞ=dt ¼

�r2oðtÞp0: The lemma follows if we can show that for a suitably large constant l0;
EoððLo þ l0Þ

s�1uÞ is equivalent to kðBo þ l0Þ
suk22; which is in turn equivalent to

kuk2Hs : This is certainly the case if s ¼ 1: For so1; this amounts to showing that
ðBo þ l0ÞðLo þ l0Þ

s�1
ðBo þ l0Þ

�s is a bounded invertible operator, which is the
content of the previous lemma. &

We now provide an estimate for the linear stochastic evolution uo solving Eq. (6),
with the nonlinearity turned off, m ¼ 0:

Lemma 2.3. Assume that g40; 0osp1 and set kuoð0ÞkHs ¼ b: There exist constants c

and C, such that for lXcb;

P sup
t0ot

kuoðtÞkHsXl
� �

pC exp �
ðl� cbÞ2

c2tð1þ tÞ2

� �
. (20)

Remark. The estimate is certainly not optimal. It does not account for the rapid
dissipation of energy for small k modes of uo: The lemma provides a global bound on
the linear evolution, showing that it does not blow up, almost surely.
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Proof. The Duhamel formula for uoðtÞ is

uoðtÞ ¼

Z t

0

eðt�t0ÞLovo doðt0Þ þ etLouoð0Þ

¼ vooðtÞ þ
Z t

0

eðt�t0ÞLo Lovooðt0Þdt0 þ etLouoð0Þ, ð21Þ

the latter line obtained by integration by parts, with Lo defined as in the deterministic
case, Eq. (11), and

vo ¼
0ffiffiffiffiffiffiffi
2T

p

 !
. (22)

By Lemma 2.2, there is a constant c3 such that ketLouoð0ÞkHspc3b; and
keðt�t0ÞLovokHspc3kvokHs (which is finite) so that from the integral equation Eq. (21)
above, we obtain the estimate

kuoðtÞkHspkvokHs joðtÞj þ c3tkLovokHs sup
t0pt

joðt0Þj þ c3kuoð0ÞkHs . (23)

Thus we can write for a suitable constant c that

kuoðtÞkHspcð1þ tÞ sup
t0pt

joðt0Þj þ cb, (24)

with b the Hs norm of the initial data uoð0Þ:
Now if at some time t0; with t0pt; we have that kuoðt

0ÞkHs4l; then evidently
l�cb
cð1þtÞ

psupt0pt joðt
0Þj; and so, for l4cb;

P sup
t0pt

kuoðt
0ÞkHs4l

� �
pP sup

t0pt
joðt0Þj4

l� cb
cð1þ tÞ

� �

p2P joðtÞj4
l� cb
cð1þ tÞ

� �

pC exp �
ðl� cbÞ2

c2tð1þ tÞ2

� �
, ð25Þ

by the reflection principle for Brownian motion, for yet another suitable constant
C depending on the dimension of r. This concludes the proof of the lemma. &

For later use, we also note here some simple Sobolev inequalities, all in one-
dimension only. Here and in the sequel k � kp denotes the Lp norm.

Lemma 2.4. For s4ð1=2� 1=pÞ and pX2 there is a constant c ¼ cðs; pÞ such that

kfkppckfkHs . (26)
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Also, for 0pypð1� 1=pÞ; there is a constant c such that

kfk1pckfky2ðp�1Þkfk
1�y
H1 . (27)

Finally, for s41=6 and s0pminð0; 3s � 1Þ; or s0 ¼ 0 and s41=3; there is a constant

c ¼ cðs; s0Þ such that for f1;f2;f3 2 Hs;

kf1f2f3kHs0pckf1kHskf2kHskf3kHs . (28)

Remark. The first inequality of the lemma actually holds with s ¼ 1=3 and p ¼ 6; as
can be proved using the Hardy–Littlewood–Sobolev inequality. For convenience we
will use this inequality as well, although it is not essential for our purposes. But as a
consequence of this remark, the last inequality (28) holds for s0 ¼ 0; s ¼ 1=3:

Proof. The first inequality of the lemma is proved by estimating

kf̂kp0

‘p0 ¼
X

n

1

ð1þ n2Þsp0=2
ð1þ n2Þsp0=2

jf̂jp
0

ðnÞ

pkð1þ n2Þ�sp0=2
k‘rkfkp0

Hs , ð29Þ

with p0 conjugate to p and r ¼ 2=ð2� p0Þ: The right side of this inequality is bounded
provided that sp0r41; i.e., s4 1

2
� 1

p
: One then applies Hausdorff–Young to obtain

the first assertion of the lemma.
The second inequality of the lemma is shown by first noting that

fðxÞ ¼
1

2p

X
n

einx

ð1þ n2Þ1=2
ð1þ n2Þ1=2f̂ðnÞ, (30)

which by the Schwarz inequality gives the special case (y ¼ 0)

kfk1pckfkH1 . (31)

Also, we have that

jfjpðxÞpp

Z x

y

jfjp�1jf0
ðtÞjdt þ jfjpðyÞ. (32)

Estimating the integral by kfkp�1
2ðp�1ÞkfkH1 and then integrating this inequality (32)

with respect to y over ½0; 2p�; we get

2pjfjpðxÞp2ppkfkp�1
2ðp�1ÞkfkH1 þ kfkp�1

2ðp�1Þkfk2, (33)

so that

kfk1pckfk1�1=p

2ðp�1Þkfk
1=p

H1 . (34)

The second inequality of the lemma is then obtained by interpolation between
inequalities (31,34).
To prove the last inequality of the lemma (28), we suppose each of the fi’s is in Hs

with s41=6: Pick p0 with s4 1
p0
� 1

2
and, for later purposes, 6

5
op0p 3

2
: By inequality

(29) above, each f̂i is in ‘p0 ; and the double convolution f̂1 � f̂2 � f̂3 is in ‘r for
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1
r
¼ 3

p0
� 2 by Young’s inequality. Note that 2orp1: It is then easy to check that

ð1þ n2Þs
0=2f̂1 � f̂2 � f̂3 is in ‘2 provided s0r0o� 1 where 1

r0
þ 1

r
¼ 1

2
: This is so if s0o0

(r0 is positive) and s0o� 1
r0
¼ 1

r
� 1

2
¼ 3

p0
� 5

2
o3ðs þ 1

2
Þ � 5

2
¼ 3s � 1: The special case

with s0 ¼ 0; s41=3 is an immediate consequence of the first inequality (26). &

3. Estimates for the non-linear equations

3.1. Local existence

The Duhamel integral representation of the system equations for u; Eq. (6), is

uðtÞ ¼

Z t

0

eðt�t0ÞLo

m
B
f3

ðt0Þdt0ffiffiffiffiffiffiffi
2T

p
doðt0Þ

0
@

1
Aþ etLouð0Þ. (35)

Fix s with 1
6
oso1; and for R41 let DRðb; tÞ be the set of functions defined

DRðb; tÞ � uð�Þ 2 Cð½0; t�;HsÞ j kuð0ÞkHspb and sup
t0pt

kuðt0ÞkHspRb
� �

, (36)

and let FRðb; tÞ be the (probabilistic) event that the Duhamel integral equation
Eq. (35) has a unique strong solution in DRðb; tÞ: We have the following local
existence result.

Proposition 3.1. Assume 1
6
oso1: There exist constants c1; c2; c3 and C such that if

uð0Þ satisfies kuð0ÞkHspb; R43c3 and tpc1=ðR
2b2Þ; then

PfFRðb; tÞgX1� C exp �
c2R

2b2

tð1þ tÞ2

� �
. (37)

Clearly, the sets FRðb; tÞ are nested, FRðb; t2Þ � FRðb; t1Þ if t1pt2: The event
FRðbÞ �

S
n FRðb; t=nÞ is the event that uð�Þ exists for some positive time, and, in this

time, has Hs norm no bigger than Rb: An immediate corollary of the above
proposition is that FRðbÞ occurs with probability one.

Corollary 3.2. For s4 1
6
; local existence of the solution uð�Þ in Hs holds almost surely,

PfFRðbÞg ¼ 1. (38)

Proof of Proposition 3.1. We have

Z t

0

eðt�t0ÞLo

m
B
f3

ðt0Þdt0

0

0
@

1
A

������
������

Hs

pc3tm sup
t0pt

kf3
ðt0ÞkHs�1

pcmt sup
t0pt

kuðt0Þk3HspcmtðRbÞ3o
1

3
Rb, ð39Þ

for a suitable constant c. Here, we have used Lemma 2.2 and the Sobolev inequality
(28) of Lemma 2.4 to estimate kf3

kHs�1 ; assuming that s41=6 and using
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s � 1ominð0; 3s � 1Þ: Also, we have chosen toð3cmR2b2Þ�1: Furthermore

Z t

0

eðt�t0ÞLo
0ffiffiffiffiffiffiffi

2T
p

doðt0Þ

 !�����
�����

Hs

o
1

3
Rb, (40)

using that the left side inequality (40) is bounded by cð1þ tÞ supt0pt joðt
0Þj for a

suitable constant c (cf. the proof of Lemma 2.3); this condition holds with
probability exceeding

P sup
t0pt

joðt0Þjp
Rb

3cð1þ tÞ

� �
X1� C exp �

c2R
2b2

tð1þ tÞ2

� �
, (41)

for suitable constants c2; C: Finally, since R43c3 we have ke
tLouð0ÞkHspc3bp 1

3
Rb:

Together with inequalities (39,40) this implies that the right side of the Duhamel
integral equation Eq. (35) is a map of DRðb; tÞ into itself.
It remains to check that the right side of the Duhamel equation Eq. (35) is

contractive for small t. But clearly for two functions u1; u2 2 DRðb; tÞ; with real field
parts f1 and f2 respectively, and for t1pt;

Z t1

0

eðt1�t0ÞLo

m
B
ðf3

1 � f3
2Þðt

0Þ

0

0
@

1
Adt0

������
������

Hs

pc3mt sup
t0pt

kðf2
1 þ f1f2 þ f2

2Þðf1 � f2Þðt
0ÞkHs�1

p3cmtðRbÞ2 sup
t0pt

kðu1 � u2Þðt
0ÞkHs , ð42Þ

by inequality (28) of Lemma 2.4, for a suitable constant c. Thus the Duhamel
integral is a contraction for to1=ð3cmR2b2Þ:
In summary, if toc1=mR2b2Þ; for a suitably small constant c1; and if the stochastic

integral estimate inequality (40) holds, the right side of the Duhamel expression
maps DRðb; tÞ into itself and it is a contraction, so that by the contraction mapping
theorem, Eq. (6) has a unique strong solution in DRðb; tÞ: Inequality (40) holds with
probability at least that given in inequality (41). &

3.2. Global existence

Finally, in this section we provide a global estimate for the non-linear stochastic
evolution uðtÞ: Following Bourgain’s methods for the non-linear wave equation [2],
we set

~uNðtÞ ¼ ð ~uN ðtÞ; ~rðtÞÞ ¼ ððuðtÞ � P4NuoðtÞÞ; ðr � roÞðtÞÞ, (43)

with the positive integer N to be chosen later, P4N projection onto the Fourier
modes fk : jkj4Ng: Here, uðtÞ and uoðtÞ (the linear evolution) are assumed to begin
with the same initial data, uð0Þ ¼ uoð0Þ; and are driven by the same stochastic driving
terms, so that they are not independent: they are coupled. The quantity INðtÞ is
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defined as it would be in the pure deterministic case,

INðtÞ ¼ Eð~uNðtÞÞ, (44)

with E the energy defined by Eq. (9). Set

y� � minf1
3
ð4s � 1Þ; 1

3
ð1� sÞ; gg. (45)

We will assume below that a 2 Hg with g40; and that 1=3pso1:
Our main result is the following.

Proposition 3.3. Let uð0Þ ¼ uoð0Þ; with b ¼ kuð0ÞkHs ¼ kuoð0ÞkHs : Fix R41; y40 and

d40 so that yþ doy�: There exist constants c, C and an No ¼ NoðR;bÞ and t ¼
tðR; bÞ; such that if NXNo and tptNd; then

P sup
t0pt

IN ðt
0Þ4Rb2N2ð1�sÞ

� �
pC exp �

cN2y

tð1þ tÞ2

� �
. (46)

This proposition and Lemma 2.3 give us a global bound:

Corollary 3.4. Let b; yoy�; RX2 be fixed, as in the above Proposition. There exist

constants, c; C and N1 ¼ N1ðb;R; tÞ; such that for any time t, and NXN1;

P sup
t0pt

kuðt0ÞkHs4RbN1�s

� �
pC exp �

cN2y

tð1þ tÞ2

� �
. (47)

Proof of Proposition 3.3. The stochastic differential of IN ðtÞ is given by

dIN ðtÞ ¼ ðIhB ~uN ;mðRuÞ3 � mðR ~uNÞ
3
þ roPpNai � ~r2

þ ~rIhBuo;PpNaiÞdt. ð48Þ

In particular, there are no do or do2 ¼ dt terms, hence the differential is the same as
if we were just considering a wave equation with dissipation. We proceed to estimate
the terms on the right side.
We have that

kðRuÞ3ðtÞ � ðR ~uNÞ
3
ðtÞk2pc00ðkP4NuoðtÞk2k ~uNk

2
1 þ kP4NuoðtÞk

3
6Þ

pc0ðkP4NuoðtÞk2k ~uk
4=3
4 k ~uk2=3

H1 þ kP4NuoðtÞk
3
6Þ

pcðN�skuoðtÞkHsIN ðtÞ
2=3

þ kuoðtÞk
3
HsÞ, ð49Þ

for suitable constants c00; c0; c: Here the first line is obtained by factoring the
difference of cubes and then using u ¼ ~uN þ P4Nuo; the remaining two lines are
obtained by the Sobolev inequalities, first inequality (27), then inequality (26) of
Lemma 2.4. The other factors in Eq. (48) are readily estimated, and we get

dIN ðtÞpcðN�skuoðtÞkHsIN ðtÞ
7=6

þ ðjroðtÞj þ N1�g�skuoðtÞkHs

þ kuoðtÞk
3
HsÞINðtÞ

1=2
Þdt. ð50Þ
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Now assuming that IN ðtÞpRb2N2ð1�sÞ and kuoðtÞkHspNy; with 0oyoy� �
minf1

3
ð4s � 1Þ; 1

3
ð1� sÞ; gg; we obtain

dIN ðtÞpN2ð1�sÞðNyOðN
1
3ð1�4sÞÞ þ N3yOðN�ð1�sÞÞ þ NyOðN�gÞÞdt

pN2ð1�sÞOðNy�y� Þdt. ð51Þ

It follows that IN ðtÞoRb2N2ð1�sÞ for tpT with T ¼ OðNdÞ; doy� � y; provided that
in this time interval, kuoðtÞkHsoNy: Said more precisely, given b;R; there exist an
Noðb;RÞ and a tðd; y; b;RÞ such that for NXNo IN ðtÞ remains less than Rb2N2ð1�sÞ

for a time t, 0ptptNd; provided that kuoðtÞkHs remains less than Ny in this same time
interval.
Thus we have that

P sup
t0pt

IN ðt
0Þ4Rb2N2ð1�sÞ

� �

¼ P sup
t0pt

INðt
0Þ4Rb2N2ð1�sÞ and sup

t0pt
kuoðt

0ÞkHsXNy
� �

pP sup
t0pt

kuoðt
0ÞkHsXNy

� �

pC exp �
ðNy � cbÞ2

c2tð1þ tÞ2

� �
pC1 exp �

c1N
2y

tð1þ tÞ2

� �
, ð52Þ

for tptNd; by inequality (20) of Lemma 2.3 and appropriate new constants C1 and
c1: After renaming of constants and taking No still larger so that Ny

o42cb; the proof
of the proposition is complete. &

Proof of Corollary 3.4. We have that

P sup
t0pt

kuðt0ÞkHs4RbN1�s

� �
pP sup

t0pt
k~uNðt

0ÞkH14
1

2
RbN1�s

� �

þ P sup
t0pt

kuoðt
0ÞkHs4

1

2
RbN1�s

� �
. ð53Þ

Now the first probability on the right side is bounded by

P sup
t0pt

IN ðt
0Þ4

1

2
R2b2N2ð1�sÞ

� �
pC exp �

cN2y

tð1þ tÞ2

� �
, (54)

for N4No by Proposition 3.3. The second probability on the right side of inequality
(53) is bounded by the estimate given in Lemma 2.3, with l ¼ 1

2
RbN1�s

bOðNyÞ:
Thus this probability is negligible compared to the first term on the right side of
inequality (53). Enlarging C completes the proof of the corollary. &
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Remark. The same ideas, in particular estimating IN ðtÞ for any N, can be used to
prove global existence almost surely in the energy norm s ¼ 1; but we do not write
out precise statements here.

4. Large k cut-off systems and an equilibrium invariant measure

4.1. Convergence of finite dimensional cut-off systems

We consider a cut-off version of our system (1) where we retain Fourier modes fkg
with jkjpM ; M a positive integer. Let uM ðtÞ ¼ ðuM ; rM ÞðtÞ ¼ ðfM þ 1

B
pM ; rM ÞðtÞ

denote a solution to the finite dimensional system

iqtuMðtÞ ¼ BuMðtÞ þ 1
B
PpM ðmf3

M ðtÞ þ rM ðtÞaÞ,

drMðtÞ ¼ �ðrMðtÞ � hPpMai;pMðtÞiÞdt þ
ffiffiffiffiffiffiffi
2T

p
doðtÞ, ð55Þ

for initial data uMð0Þ 2 PpML2: The solution uM ðtÞ remains in PpML2 � RK and is
clearly in Hs (for any s), since all Fourier coefficients ûM ;k ¼ 0 for jkj4M: We
remark that under the same assumptions on the coupling functions a; the
conclusions of the previous section, Propositions 3.1, 3.3 and Corollary 3.4, hold
for solutions uM uniformly in M with respective initial data uM ð0Þ ¼ PpMuð0Þ for an
initial uð0Þ 2 Hs; s41=3: In particular the arguments used there are equally valid for
the cut-off systems.
Fix s and let DRðb; tÞ be the set of continuous functions defined in Eq. (36), in

particular functions u bounded in the Hs-norm by Rb with kuð0ÞkHspb; and let
GRðb; tÞ be the probabilistic event defined

GRðb; tÞ � fuð�Þ; uMð�Þ 2 DRðb; tÞ for each Mg, (56)

with uð�Þ the solution to Eq. (1) and uM ð�Þ the solution to Eq. (55).

Proposition 4.1. Fix s41=3; a time t40; and so4s: Then fuM ð�Þg converges strongly to

uð�Þ in Hs uniformly on GRðb; tÞ \ fu j kuð0ÞkHsopbg:

Proof. For notational convenience we will replace the t of the proposition statement
by t1; and work on the time interval t 2 ½0; t1�: We will assume that in this time
interval we have the a priori bounds kuðtÞkHspRb and kuM ðtÞkHspRb; for all M and t.
Given these bounds, we will actually show the stronger result that PpMu � uM ! 0
strongly in H1 and P4Mu ! 0 strongly in Hs; uniformly in t and the initial data with
kuð0ÞkHsopb:
The quantities u and uM satisfy the respective Duhamel relations

uðtÞ ¼

Z t

0

eðt�t0ÞBo

�i

B
ðmf3

þ raÞdt0

ha;pidt0 þ
ffiffiffiffiffiffiffi
2T

p
doðt0Þ

0
@

1
Aþ etBouð0Þ, (57)
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and, for uM with initial data PpMuð0Þ;

uMðtÞ ¼

Z t

0

eðt�t0ÞBo

�i

B
PpM ðmf3

M þ rMaÞdt0

ha; pMidt0 þ
ffiffiffiffiffiffiffi
2T

p
doðt0Þ

0
@

1
Aþ etBo PpMuð0Þ. (58)

We proceed to estimate ðPpMu � uMÞðtÞ in the H1-norm, for 0ptpt1:
From the above integral formulae Eqs. (57,58) one sees that there will be three

contributions to ðPpMu � uMÞðtÞ coming from integrals involving the non-linearity
f3

� f3
M ; ðr � rMÞa; and ha; ðp� pMÞi:

(i) f3
� f3

M -term. We bound the contribution to ðPpMu � uMÞðtÞ by

Z t

0

eðt�t0ÞBo

�im
B

PpM ðf3
� f3

M Þdt0

0

0
@

1
A

������
������

H1

pcðRbÞ2
Z t

0

kP4Muðt0ÞkHs dt0 þ cðRbÞ2
Z t

0

kðPpMu � uM Þðt0ÞkH1 dt0

ð59Þ

for a suitable constant c by the Sobolev inequality (28) with s0 ¼ 0 and s41=3:
(ii) ðr � rM Þa-term. The corresponding contribution to ðPpMu � uM ÞðtÞ is bounded by

Z t

0

eðt�t0ÞBo

�iðr � rMÞ

B
PpMadt0

0

0
@

1
A

������
������

H1

pckak2

Z t

0

kPpMu � uMÞðt0ÞkH1 dt0. ð60Þ

(iii) ha; ðp� pMÞi-term. Let ~uðtÞ ¼ uðtÞ � etLouð0Þ be the difference between uðtÞ and
the solution of the linear equation with dissipation but without noise. We then
bound the contribution to ðPpMu � uMÞðtÞ from the integral of ha; ðp� pM Þi byZ t

0

eðt�t0ÞBo

0

ha; ðp� pMÞidt0

 !�����
�����

H1

pkP4Mak2

Z t

0

kP4M ~uðt0ÞkH1 dt0 þ

Z t

0

e�ðt�t0Þha;BP4Met0Louð0Þidt0
����

����
þ kak2

Z t

0

kðPpMu � uM Þðt0ÞkH1 dt0. ð61Þ

To estimate the second of these integrals on the right side we use the identity

Z t

0

e�ðt�t0Þet0Lo dt0 ¼
etLo � e�t

Lo þ l
� ð�lþ 1Þ

Z t

0

e�ðt�t0Þet0Lo dt0, (62)
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and the bound

et0Lo

L0 þ l
uð0Þ

����
����

H1

pc3
1

Lo þ l
uð0Þ

����
����

H1

pckuð0Þk2, (63)

using Lemma 2.2 (with s ¼ 1), then Lemma 2.1 (with s ¼ 0). Then the second
integral in inequality (61) is bounded by ckP4Mak2kuð0Þk2pckP4Mak2b:
Adding these contributions, inequalities (59,60,61), and using the last estimate, we

arrive at the bound

kðPpMu � uMÞðtÞkH1pcða;RbÞ
Z t

0

kðPpMu � uM Þðt0ÞkH1 dt0

þ cðRbÞ2
Z t

0

kP4Muðt0ÞkHs dt0

þ kP4Mak2

Z t

0

kP4M ~uðt0ÞkH1 dt0

þ cRbkP4Mak2, ð64Þ

where cða;RbÞ is linear in kak2 and quadratic in Rb:
The inhomogeneous terms on the right side of this inequality (64), i.e., the second,

third, and fourth terms, each go to zero, M ! 1 uniformly in t and the data.

(i) Second term of (64): Consider the projection of the integral formula of Eq. (57)
above onto P4MHs: To control the non-linear contribution to kP4Muðt0ÞkHs ; we
use

1

B
P4Mf3

����
����

Hs

¼ kP4Mf3
kHs�1

pMs�s00 kP4Mf3
kHs00�1

pMs�s00 kuk3HspMs�s00 ðRbÞ3, ð65Þ

by the Sobolev inequality (28), with s00 chosen, sos00o1: The a-contribution
presents little difficulty and is OðM�gRbkakHg Þ; while the inhomogeneous term is
estimated kP4MetBouð0ÞkHspc3M

s�sokP4Muð0ÞkHsopc3M
s�sob; by Lemma 2.2.

(ii) Third term of (64): We have that

kP4M ~uðtÞkH1p
Z t

0

P4M
m
B
fðt0Þ3 þ

ðr � roÞðt
0Þ

B
a

� �����
����

H1

dt0

p
Z t

0

kP4M ðuðt0Þ3Þk2 dt0 þ ðR þ c3ÞbtkP4Mak2. ð66Þ

Here, P4Mðuðt0Þ3Þ ¼ P4M ððPp½M=3�uðt
0Þ þ P4½M=3�uðt

0ÞÞ
3
Þ; where ½M=3� denotes

the greatest integerpM=3: Expanding this out, one sees that terms containing a
factor P4½M=3�uðt

0Þ go to zero uniformly for M ! 1 as in our analysis of
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the second term of (64), and the term P4MðPp½M=3�uðt
0Þ
3
Þ is identically zero. The

a-term is OðM�gRbkakHg Þ: It follows that kP4M ~uðtÞkH1 goes to 0 uniformly.
(iii) Fourth term of (64): This term, proportional to a; is OðM�gRbkakHg Þ:

Thus inequality (64), with each of its inhomogeneous terms going to zero
uniformly, M ! 1; implies via Gronwall’s inequality that ðPpMu � uMÞðtÞ goes to
zero in H1 uniformly in t and the data. Since P4MuðtÞ goes to zero uniformly in Hs

as we have seen above, we have that uMðtÞ converges to uðtÞ uniformly in Hs;
provided that kuðtÞkHs and kuMðtÞkHs stay less than Rb for tpt1; i.e., are in GRðb; t1Þ;
and the data uð0Þ satisfies kuð0ÞkHsopb: &

4.2. Equilibrium invariant measure

We proceed now to show the existence of an invariant measure for the complete
system Eqs. (1), but in equilibrium where all temperatures are equal to a common T.
Let n0 be the Gaussian measure referred to in the introduction. For n0; j; p and r are
independent, of mean zero, and with respective covariance 1

B2 ; 1, and 1. With respect
to n0; kuk2Hs has finite expectation for so1=2;Z

kuk2Hs dn0 ¼ 2T
X

k

ð1þ k2
Þ
s�1o1, (67)

hence kfkHs is finite, n0-a.s. By Sobolev inequality (26) of Lemma 2.4, kfk4pckfkHs

for s41=4; so that as random variables kfk4 and kPpMfk4 are also finite n0- a.s.
(Actually n0 is supported on continuous functions, but we do not need this here.) Set

dnMðp;fÞ ¼ Z�1
M exp �

m
4T

Z
f4

M dx

� �
dn0ðp;fÞ,

dnðp;fÞ ¼ Z�1 exp �
m
4T

Z
f4 dx

� �
dn0ðp;fÞ, ð68Þ

with appropriate normalizations

ZM ¼

Z
exp �

m
4T

Z
f4

M dx

� �
dn0; Z ¼ exp �

m
4T

Z
f4 dx

� �
dn0, (69)

and fM ¼ PpMf: Since kfk4 and kPpMfk4 are finite a.s., the Radon–Nikodym
factors expð� m

4T

R
f4

M dxÞ and expð� m
4T

R
f4 dxÞ are bounded and positive a.s., and

the normalizations Z and ZM are positive. The measures nM and n are absolutely
continuous with respect to n0:
The semigroup associated with the cut-off system Eq. (55) acts invariantly on

functions ff ðuÞg of the form f ðuÞ ¼ gðû�M ; . . . ; ûM ; rÞ; with g integrable. The measure
nM is an invariant measure for this semigroup, as can be checked by computing the
generator of the process and showing that its adjoint annihilates nM ; we leave this
exercise to the reader.
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We also have that limM!1 ZM ¼ Z: This is the case by the bounded convergence
theorem: Clearly the exponentials in (69) are bounded by one, and

jkfk4 � kfMk4jpkf� fMk4pckf� fMkHs ! 0; M ! 1 a:s. (70)

since f is in Hs a.s. Thus

exp �
m
4T

Z
f4

M dx

� �
! exp �

m
4T

Z
f4 dx

� �
; a:s. (71)

Let f be a function in the norm closure X̄ of functions depending continuously on
only a finite number of modes,

X �
[
M

ff j f ¼ gðû�M ; . . . ; ûM ; rÞ; g bounded continuousg. (72)

Then again we have by bounded convergence thatZ
f exp �

m
4T

Z
f4

M dx

� �
dn0 !

Z
f exp �

m
4T

Z
f4 dx

� �
dn0, (73)

and so

Z�1
M

Z
f exp �

m
4T

Z
f4

M dx

� �
dn0 ! Z�1

Z
f exp �

m
4T

Z
f4 dx

� �
dn0. (74)

Thus, nM converges to n in a weak-% sense.
For later use, we also note a kind of tightness for the measures fnMg; for so1=2;Z

fkukHs4bg
dnMp

1

ZM

Z
kukHs

b
exp �

m
4T

Z
f4

M dx

� �
dn0

p
1

bZM

Z
kuk2Hs dn0

� �1=2

, ð75Þ

which is arbitrarily small for b large, uniformly in M, by inequality (67).
Finally, we address the invariance of n: Define the semigroups

Stf ðuÞ � Eu½f ðuðtÞÞ�; St
Mf ðuÞ � Eu½f ðuMðtÞÞ�, (76)

where f 2 X̄: (We will assume here for definiteness that the Fourier modes ûM;kðtÞ are
simply constant in time for modes jkj4M :)

Proposition 4.2 (Equilibrium case). The measure n is invariant with respect to the

semigroup St in the sense that for f 2 X̄;Z
Stf dn ¼

Z
f dn. (77)

Proof. Choose s, 1=3oso1=2; and let GRðb; tÞ be the event defined in Eq. (56) (using
the Hs-norm). By Corollary 3.4, we have that for an initial u with kukHspb;

PufG
c
Rðb; tÞgpC exp �

cR2y=ð1�sÞ

tð1þ tÞ2

� �
. (78)
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We identify the R here with 2N1�s in the corollary statement (the R of the corollary
being chosen equal to 2) and appropriately redefine the constant c.
Now let so be chosen, with sosoo1=2 and let f ðuÞ be a bounded function

continuous in the Hs-norm of u: (Such functions are dense in X̄). For kukHsopb and
any �40;

jStf ðuÞ � St
Mf ðuÞj

pjEu½wGRðb;tÞðf ðuðtÞÞ � f ðuM ðtÞÞÞ�j þ 2kf k1PufG
c
Rðb; tÞg

o�, ð79Þ

for R and then M chosen sufficiently large, by the above probability estimate,
and by the uniform convergence of uM to u on GRðb; tÞ \ fu j kuð0ÞkHsopbg;
Proposition 4.1. Consequently, St

Mf ðuÞ ! Stf ðuÞ; for M ! 1 uniformly in u;
kukHsopb:
Finally,Z

Stf dn�
Z

St
Mf dnM

����
����

p
Z

Stf ðdn� dnM Þ

����
����þ
Z

wfkukHso pbgjS
tf � St

Mf jdnM

þ 2kf k1

Z
fkukHso 4bg

dnM . ð80Þ

The first term on the right side goes to zero by weak-% convergence of fnMg to n; the
last term can be made arbitrarily small for b suitably large by tightness inequality
(75), and the middle term then goes to zero by uniform convergence of St

Mf for
kukHsopb: ThusZ

Stf dn ¼ lim
M!1

Z
St

Mf dnM ¼ lim
M!1

Z
f dnM ¼

Z
f dn, (81)

by the above inequality (80), by invariance of nM under ðSt
MÞ

�; and again by weak-%
convergence of the fnMg: This completes the proof of invariance of n for functions
depending continuously on u with respect to the Hs-norm and, by density, invariance
for all f 2 X̄: &

Remark. We emphasize that the question of ergodicity for this equilibrium measure
n remains open, as does the existence of non-equilibrium invariant measures for
differing temperatures.
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