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ABSTRACT OF THE DISSERTATION 

 

STUDENTS‘ MENTAL ACTS OF ANTICIPATING IN SOLVING PROBLEMS 

INVOLVING ALGEBRAIC INEQUALITIES AND EQUATIONS 

 

by 

Kien Hwa Lim 

Doctor of Philosophy in Mathematics and Science Education 

University of California, San Diego, 2006 

 San Diego State University, 2006 

 

Professor Guershon Harel, Chair 

 

Anticipating is the mental act of conceiving a certain expectation without 

performing a sequence of detailed operations to arrive at the expectation. This 

dissertation seeks to characterize students‘ problem-solving in terms of two types of 

anticipating acts: (a) foreseeing an action, which refers to the act of conceiving an 

expectation that leads to an action, prior to performing the operations associated with the 

action, and (b) predicting a result, which refers to the act of conceiving an expectation for 

the result of an event without actually performing the operations associated with the 

event. Harel‘s (in press) triad of determinants—mental act, ways of understanding, and 

ways of thinking—is used to analyze students‘ acts of foreseeing and predicting.  

This research has three objectives: (a) to categorize students‘ ways of thinking 

associated with foreseeing and predicting, (b) to identify the relationships between these 
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ways of thinking and students‘ ways of understanding inequalities/equations, and (c) to 

explore the potential for advancing students‘ ways of thinking associated with 

foreseeing/predicting. To accomplish these goals, fourteen 11
th

 graders enrolled in 

various mathematics courses were interviewed. Four of them participated in one-on-one 

teaching interventions. Non-directive tasks were used to elicit students‘ anticipatory 

behaviors.  

In this study, five ways of thinking associated with foreseeing were identified: 

impulsive anticipation, tenacious anticipation, explorative anticipation, analytic 

anticipation, and interiorized anticipation. Three ways of thinking associated with 

predicting were identified: association-based prediction, comparison-based prediction, 

and coordination-based prediction. In addition, five ways of understanding 

inequalities/equations (I/E) were identified: I/E-as-a-signal-for-procedure, I/E-as-a-static-

comparison, I/E-as-a-proposition, I/E-as-a-constraint, and I/E-as-a-comparison-of-

functions. Students‘ ways of thinking associated with foreseeing/predicting were found to 

be related to the quality of their solutions as well as the sophistication of their ways of 

understanding inequalities/equations.  

One learner‘s improvement was summarized in terms of the change in the 

sub-context (Cobb, 1985) in which she operated, from manipulating symbols in the 

pre-interview to reasoning with symbols in the post-interview. Her operating in the sub-

context of working with numbers helped her to achieve this transition. This finding 

underscores the importance of using numbers as a platform for algebra students to 

explore algebraic expressions and symbolic structures.
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CHAPTER 1: INTRODUCTION 

 

This chapter has five sections. The first section presents some students‘ problem-

solving behaviors in a classroom setting to illustrate the diversity in the ways students 

anticipate as they solve problems in algebra. The second section highlights why students‘ 

act of anticipating deserves explicit attention within the field of mathematics education. 

The objectives of this research and the reasons for choosing algebraic inequalities and 

equations as a context for this investigation are discussed in the third and fourth sections. 

Finally, an organization of the dissertation is outlined in the fifth section. 

 

1.1 Anticipation in Problem-solving Situations 

In a pilot study, a 90-minute classroom interaction was conducted with a group of 

nine high-school calculus students. The students were told that the purpose of the session 

was to understand the way they think as they solve problems in algebra. They worked on 

four problems (see Figure 1.1) and were asked to write down their thoughts as they 

solved each problem. Initially, these students worked on each problem individually. This 

was followed by a class discussion in which the approaches they used to solve the 

problem were polled. Occasionally, the students were asked to share their solution and/or 

their struggles with the class. 
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Figure 1.1: Four tasks used in a pilot study 

Item P2 and Item P3 are discussed below. For Item P2, two students listed all 

positive even numbers less than 25 before working the problem. One of them, Cindy, 

guessed that it was never true after trying three cases: (2, 4), (16, 24) and (22, 22). The 

other student, Cora, found that (2, 4) and (22, 24) did not make the equation true, but 

(24, 22) did; she wrote ―x has to be greater than y‖ for the inequality to be true. Five 

students (Alex, Andy, Brad, Sera, and Sue) started with the largest possible numbers and 

worked downwards, for example, (24, 24), (22, 24), (24, 22) and (22, 22). They most 

likely predicted, prior to plugging in (24, 24), that the inequality could not be true for 

small values such as (2, 4). This act of predicting is what Cindy and Cora did not appear 

to do. Finally, the remaining two students, Adam and Sam, simplified the inequality to 

5x + 5y > 225 and x + y > 45 respectively, prior to substituting (24, 24). These two 

students possibly foresaw that a simplified version would ease their computations.  

 

P1. Find all values of q that make |q – 2| < |q – 8| true. 

P2. x and y can be any positive even numbers less than 25.  

Is x + 2y + 3y + 4x > 225 always true, sometimes true, or never true? 

If it is sometimes true, find the values of x and y that make it true. 

P3. Are there any odd integers for n that satisfy (n – 2)(n – 8) + 10 < 0? 

If yes, find all of them. If no, provide a convincing argument. 

P4. Is 
3

2

n

n -
 < 1 always true, sometimes true, or never true? If it is 

always true or never true, prove it. If it is sometimes true, find 

exactly when it is true. 
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The problem-solving behaviors of Cindy and Cora were qualitatively different 

from the other seven students. Cindy and Cora seemed rather methodological in their 

approach. They first listed all possible values for x and y, selected and tested three pairs 

of values, observed a pattern, and formed a conclusion based on their generalization. One 

may ask why they did not check the largest possible values for x and y, (24, 24). Is it 

because they did not conceive inequality as a magnitude comparison between its two 

sides? Or is it because they anticipated that a pattern would arise from the results of 

checking a few cases? Or is it because they had a procedure to perform? This episode 

raises the question: how ubiquitous are students‘ tendencies to start doing and stop 

―thinking‖ once they have a procedure? 

In the case of Item P3, one student, Alex, substituted n = 1, 5, 7, 9, 11 into the 

inequality. He found that the inequality was false for each substitution. He stated that he 

was ―99.9% confident‖ that ―there are no odd integers that will satisfy this.‖ He then 

substantiated his claim by writing ―I didn‘t try any [numbers] higher than 11 because the 

answer will just keep getting bigger and make the answer more untrue‖ and ―any 

negative number when multiplied [with another negative number] will give you a 

positive number & when [you] add [that] by 10 it will make the answer larger.‖ Alex was 

systematic in his exploration and plugged in numbers to help him see the structure of the 

inequality; after this, he predicted ―never true‖ without having to plug in other numbers.  

Another student, Andy, was goal-oriented in his choice of integers for 

substitution, aiming to make one factor positive and one factor negative. He also 

predicted that negative integers did not work because both the factors would be negative. 
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Both Alex and Andy were attending to the meaning and the quantitative value of the 

symbols. 

In contrast, Cora simplified the inequality to (n – 2)(n – 8) < -10, from which she 

obtained n – 2 = -10 and n – 8 = -10, and then n = -8 and n = 2. She then re-simplifed the 

inequality to n(n – 10) < -26, from which she obtained n = -26 and n = -16. She rejected 

these four values because they were not odd integers. In this problem, Cora manipulated 

the symbols without attending to the quantitative comparison between the two sides of 

the inequality. Her reasoning with symbols without attending to the referents
1
 of those 

symbols is what Harel (1998, in press b) calls non-referential symbolic reasoning. It is 

worth investigating whether there is a relationship between a student‘s tendency not to 

predict and her or his tendency to engage in non-referential symbolic reasoning. 

The students in the pilot study exhibited different problem-solving behaviors: 

anticipating an empirical approach of plugging in numbers, predicting prior to 

performing any actions, anticipating the ease of reasoning with a simpler expression, 

exploring the inequality by plugging in numbers and reasoning with its structure, 

anticipating the plugging in of certain numbers in a goal-oriented manner, and 

anticipating different ways of manipulating symbols. Some of these approaches have 

desirable characteristics, such as being goal-oriented, while others have less desirable 

characteristics such as performing operations without attending to meaning. 

In this research, I aim to categorize students‘ problem-solving behaviors in terms 

of the characteristics of their anticipation. The term ―anticipation‖ used in this research is 

                                                 

1
 In this case the referents are numbers whereas in contextualized problems the referents are usually 

quantities.  
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in accordance with Piaget‘s notion: ―anticipation is nothing other than a transfer or 

application of the scheme … to a new situation before it actually happens‖ (1967/1971, 

p. 195). A scheme involves three components: the perceived situation, the activity, and 

the expected result (von Glasersfeld, 1995). The expected result component of a scheme 

is what allows a person to anticipate. During problem-solving, a few schemes may be 

enacted and coordinated before one arrives at an action. The verb ―anticipate‖ refers to 

the mental act of conceiving a certain expectation
2
 without performing a sequence of 

detailed operations to arrive at the expectation. If the expectation concerns an action to 

be performed, then I use the term foresee. If the expectation concerns a result or 

outcome, then I use the term predict. In other words, one foresees an action but predicts a 

result. 

 

1.2 Why Does Anticipation Deserve Attention in Mathematics Education? 

This section presents arguments for why anticipation deserves attention in the 

field of mathematics education. Three interrelated aspects of the importance of studying 

anticipation are discussed: (a) reasoning and sense-making in mathematics, (b) problem 

solving in mathematics, and (c) learning of mathematics.  

Anticipation and Sense-making 

The phenomenon of applying a newly learned procedure or algorithm to solve a 

problem occurs very often in mathematics classrooms. Many students apply procedures 

they have been taught without having to make sense of what they are doing (see Brown 

                                                 

2
 Conceiving an expectation usually entails transforming images which are generally more compact and 

versatile than the operations they signify. The distinction between images and operations is discussed in 

Chapter 2. 
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et al. 1988). Teachers frequently witness inappropriate use of procedures, what Fischbein 

and Barash (1993) call improper application of algorithmic models. For example, 

consider the following problem that was posed by Cramer, Post and Currier (1993) to 

students in a mathematics methods class: Sue and Julie were running equally fast around 

a track. Sue started first. When she had run 9 laps, Julie had run 3 laps. When Julie 

completed 15 laps, how many laps had Sue run? 32 out of 33 college students in a 

mathematics methods class solved this problem by setting up a proportion, 
9

3 15

x
= , and 

obtained x = 45. These students had applied the proportion algorithm without making 

―sense‖, from an observer‘s perspective, of the problem situation. Because they possess a 

tool, the proportion algorithm, they have little need to make sense of the situation. Many 

students have already developed the habit of spontaneously applying algorithms and 

formulas to solve mathematics problems. Will helping students anticipate lessen their 

tendency to apply algorithms automatically? Are students more likely to make sense of 

the problem situation if they predict a solution and then check their prediction? 

According to Sowder (1992), estimation and mental computation are curricular 

activities that aid students‘ development of number sense. Likewise, in algebra, certain 

activities could promote students‘ development of symbol sense (Fey, 1990; Arcavi, 

1994) and structure sense (Hoch & Dreyfus, 2004). Just as number sense is an intuitive 

feel for numbers in arithmetic, symbol sense is an intuitive feel for structure in algebra. 

According to Arcavi (1994), symbol sense encompasses many features. It includes 

having an intuition for when to use and when to abandon an algebraic approach, reading 

symbolic expressions for reasonableness, being cautious of symbolic illusions (e.g., 
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perceiving ( f(x))
2
 as always greater than | f(x)| ), and choosing appropriate symbols and 

representations (e.g., using 2n – 1 to represent odd numbers). The goals proposed by Fey 

(1990) for students‘ development of symbol sense include (a) the ability to scan an 

algebraic expression to predict the corresponding numeric or graphic pattern; (b) the 

ability to inspect algebraic operations and predict the form of the result; and (c) the 

ability to select the most appropriate form for a particular task, for example factored form 

for finding roots of a polynomial and standard form for differentiating or integrating a 

polynomial. These descriptions portray symbol sense as an ability related to having 

foresights or making predictions.  

Number sense and symbol sense can be viewed as resources that allow students to 

predict prior to performing standard algorithms. Students with number sense can use 

their knowledge of number properties to estimate a computation or check the 

reasonableness of their answers (Sowder, 1992). For example, when asked to mentally 

estimate 922 × 0.34, a student with number sense recognizes 0.34 as approximately 1/3 

and chooses to round 922 to 930, a third of which is 310. A student who is weak in 

number sense may have to mentally perform the paper-and-pencil algorithm by rounding 

922 to 900 and 0.34 to 0.3, multiply 900 by 3 to get 2700, and then move one decimal to 

get 270. In algebra, students with symbol sense can mentally carry out transformations of 

images based on their knowledge of the algebraic structure, while students who lack 

symbol sense will have to perform the operations in an algorithm. For example, when 

asked to find a number that satisfies the inequality 6x + 10 > x + 90, one student may 

compare the slopes of the functions and predict that a large number, such as x = 1000, 

will work; another student may perform a standard equation-solving procedure to obtain 
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x > 16 and give x = 17 as the answer. Just as students are more likely to develop number 

sense when they engage in estimation activities, I conjecture that students are more likely 

to develop symbol sense when they engage in tasks that require them to predict and then 

check their prediction (e.g., problems P2, P3, and P4 in Figure 1.1).  

A desirable problem-solving behavior is one in which the student makes sense of 

the problem, makes a prediction, and then confirms her or his prediction. Consider the 

following problem: Solve 
2 3

2
4 6

x

x

+
=

+
 for x. Arcavi (1994) reported that a student noticed 

that the numerator is half the denominator and said ―OK, so this problem has no solution, 

but what if I ‗solve‘ it anyway?‖ (p. 27). When the student obtained x = -1 1
2

, he was 

puzzled because he expected no solution. He resolved the conflict when he tried 

substituting x = -1 1
2

 into 
2 3

2
4 6

x

x

+
=

+
 and realized it was not permissible because the 

denominator is zero; so x = -1 1
2

 was not a solution. The disposition of first predicting 

and then performing to confirm as exhibited by this student is a desirable goal for 

instruction.  

Anticipation and Mathematical Problem Solving 

According to Halmos (1980), the heart of mathematics is solving problems: ―what 

mathematics really consists of is problems and solutions‖ (p. 519). Many mathematics 

educators (e.g., Brousseau, 1997; Harel, 2001) believe that the development of 

mathematical knowledge occurs through solving mathematical problems for which a 

procedure is not initially known. From a Piagetian perspective, learning involves cycles 

of experiencing disequilibrium, resolving cognitive conflicts, and re-establishing a new 
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equilibrium (Piaget, 1975/1985). Solving problems is probably the best way to 

experience such a process, especially for learning mathematics. Thompson (1985) 

outlines five guiding principles for developing a mathematics curriculum, the first 

principle being that the curriculum must be problem-based. According to Schoenfeld 

(1994), in a problem-based curriculum, ―problems are the major vehicles for introducing 

important issues and their solutions are the major carriers of curricular weight‖ (p. 67). If 

problem solving is the way to develop knowledge, then mathematics educators should 

gain an understanding of how students think as they solve problems in mathematics. 

Schoenfeld (1985) identifies four categories of cognition that provide a 

framework for analyzing problem-solving behaviors: (a) knowledge base, which includes 

both mathematical content and access to the content; (b) use of heuristics, which are rule-

of-thumb strategies employed in solving a problem; (c) control and metacognition, which 

includes planning and managing resources, selecting goals and sub-goals, monitoring and 

assessing progress, and revising and abandoning plans; and (d) belief systems about 

mathematics and doing mathematics. These categories allow mathematics educators to 

contrast behaviors of good problem solvers with those of poor problem solvers.  

However, to account for the development of the above categories, a finer grain of 

analysis is needed to analyze students‘ mental acts
3
 as they solve a problem. According to 

Harel (in press c), ―mental acts are basic elements of human cognition. To describe, 

analyze, and communicate about humans‘ intellectual activities, one must attend to their 

                                                 

3
 The term ―mental act‖ and its associated terms, ways of understanding and ways of thinking, which are 

discussed in Chapter 2, are as defined in Harel (in press a).  
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mental acts.‖ This current research is an attempt to study the ways students solve 

problems by focusing on their mental acts of foreseeing and predicting.  

Anticipation and Mathematical Learning 

Up to this point, I have discussed the importance of studying anticipations 

because of its relation with sense making and problem solving. Now I discuss the role of 

anticipation in mathematical learning.  

Simon, Tzur, Heinz and Kinzel (2004) articulate a mechanism for conceptual 

learning that explains how more sophisticated mathematical conceptions are developed 

from less sophisticated ones. The learning mechanism involves (a) setting a goal; 

(b) enacting and re-enacting (mental or physical) activities, which are coordinated by 

anticipating and retroacting
4
, to attain one‘s goal; (c) attending to the corresponding 

effects; (d) differentiating effects that advance toward one‘s goal from those that do not; 

(e) reflecting on one‘s mental records of the experience with a particular focus on the 

relationship between activities and their effects; (f) identifying regularities among those 

activity-effect relationships; and (g) eventually abstracting a new activity-effect 

relationship. Hence, Simon et al. conceive ―mathematics learning as a reflection on 

activity-effect relationships‖ (p. 325). Two types of reflections are distinguished: 

(a) reflection on the results of an activity in relation to one‘s goal, and (b) reflection on 

the regularities in the activity-effect relationship which results in the formation of a new 

conception. The authors view a conception as ―the ability to anticipate the effect of one‘s 

                                                 

4
 Retroaction refers to the process of revising one‘s earlier actions in the light of new information (Inhelder 

& Piaget, 1964/1969). The verb retroact refers to going back to refine an earlier action based on one‘s 

anticipation of a new outcome for the to-be-renewed action.  
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activity, without mentally or physically running that activity‖ (p. 319). This definition is 

in keeping with Piaget‘s notion of scheme, which is anticipatory in nature. 

Tzur (2003) identifies two stages in the abstraction of a new conception: the 

participatory stage and the anticipatory stage. At the participatory stage, the ability to 

anticipate the effects of an activity is confined to the context of the activity through 

which the activity-effect relationship was developed. As such, the conception is 

provisional and cueing may be needed in a context that differs from the context from 

which the conception was abstracted. At the anticipatory stage, the ability to anticipate 

extends beyond the original context. This means that the conception can be used 

autonomously in new situations. According to Tzur and Simon (2003), the distinction 

between these two stages can be used to account for the ―next day phenomenon,‖ in 

which the conception that was abstracted from an activity on one day is forgotten, in the 

absence of the activity, on the next day. However, the conception may be evoked if 

students are reminded of the previous day‘s activity. These students are considered to be 

at the participatory stage of development of the new conception. It is only at the 

anticipatory stage that students have established the connection between the activity-

effect relationship and the situations where the new conception might apply. Tzur and 

Simon suggest that ―the failure of educational interventions to promote structured 

(object) levels of concepts could be explained by the lack of explicit attention to fostering 

… the anticipatory stage.‖ They acknowledge that the transition from participatory stage 

to anticipatory stage has yet to be explicated. Tzur, via personal communication, added 

that anticipation plays an essential role in the transition.  
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Prediction can be used as a pedagogical means to aid students‘ learning. For 

example, the predict-observe-explain instructional approach (White & Gunstone, 1992) 

used in physics education requires students to predict prior to observing a demonstration. 

In biology education, Lavoie (1999) found that the addition of prediction-discussion 

phase to a three-phase learning cycle―exploration, term introduction, and concept 

application―could improve students‘ process skills, logical-thinking skills, science 

concepts, and scientific attitudes. In mathematics education, Fischbein and Grossman 

(1997) comment that having students predict may improve their understanding of the 

underlying principle in a solution. 

Encouraging the learner to guess intuitively, one creates a challenging 

situation. Another way of achieving this is through facing the student 

with a conflict between a personal guess and a mathematically 

accepted solution. Such a conflict may stimulate the interest of the 

learner and may help him or her to overcome his or her intuitive 

obstacles. Moreover this understanding may contribute to the 

understanding of the mechanisms that shape the answer. (p. 43) 

Getting students to predict results prior to performing calculations may also help them to 

notice certain relationships, generalize from specific cases, and expand the assimilatory 

range of a particular conception. For example, having students predict prior to computing 

whether the result of multiplying 9.29 by 7/6, or by 0.64, is greater or less than 9.29 tends 

to draw their attention to the effect of the multiplier. Upon further reflection, students 

may even advance their understanding of multiplication, moving from viewing 

multiplication as an algorithm-to-follow and/or multiplication as repeated-addition to 

viewing multiplication as enlargement/amplification. In algebra, a student who 

incorrectly predicts that there is no value of x that will make 3(2x – 9) = 6(2x – 9) true 

because 6 is always bigger than 3 is more likely to appreciate the notion of critical value, 
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than another student who applies the standard equation-solving procedure and obtain the 

correct answer of x = 4.5. 

The mental act of anticipating appears to be an important construct in many 

aspects of mathematics education. As discussed above, anticipation plays an important 

role in sense-making, problem solving, concept development, and mathematical learning. 

However, there is virtually no research in mathematics education that focuses explicitly 

on students‘ mental act of anticipating.  

 

1.3 Research Objectives 

This research focuses explicitly on students‘ mental act of anticipating (foreseeing 

or predicting) in the context of solving problems in algebra. One objective of this 

research is to identify and characterize students‘ foresights and predictions as they solve 

problems in the domain of algebraic inequalities and equations. This research explores 

the feasibility of using characteristics of students‘ anticipations as a means to 

communicate the quality of students‘ problem solving.  

The second objective is to study the relation between students‘ anticipations 

(foresights or predictions) and their interpretations of inequalities and equations. Such a 

relation is expected to exist because how students interpret a problem situation should 

affect what and how they anticipate. For example, Cora‘s interpreting the inequality  

(n – 2)(n – 8) < -10 without attending to the quantitative comparison between the two 

sides of the inequality most likely influenced her anticipation of manipulating symbols. 

The third objective is to explore the plausibility of improving the way students 

anticipate (foresee or predict) via a short-term one-on-one teaching intervention. The 
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ways in which students anticipate may be resistant to change. Information on what factors 

can contribute to certain change, and why other change is difficult, will be valuable to 

mathematics educators who wish to improve the ways students work on problems.  

Corresponding to these objectives are three research questions. Because the 

questions include technical terms that are an integral part of the theoretical framework, I 

will present them in Chapter 2 after I explicate the theoretical framework for studying 

students‘ mental act of anticipating. 

 

1.4 Why Study Anticipation in the Domain of Algebraic Inequalities and Equations? 

Algebraic inequalities and equations
5
 were chosen for three main reasons: (a) they 

are foundational concepts in secondary mathematics curriculum, (b) they are not well 

understood among algebra students, and (c) they are rich and suitable contexts for 

studying students‘ mental act of anticipating.  

The Prevalence of Inequalities and Equations in Mathematics 

The notion of equivalence is one of the most important foundational concepts in 

mathematics. It is essential for understanding equality, congruence, and isomorphism. 

Equations and inequalities are a means for expressing the quantitative relationship 

between two or more mathematical objects. Inequalities and equations can be understood 

in many ways. An equation can be conceived of as (a) a constraint to determine the value 

of an unknown; (b) a function relating an output variable to its input variable(s), for 

                                                 

5
 The term inequalities is placed in front of the term equations because students are more likely to attend to 

the variable attribute of a letter in an inequality as compared to an equation because the solution to a single-

variable inequality is a range of unspecified numerical values, whereas the solution to a single-variable 

equation is usually a specific number. This means that inequalities tend to promote a variable conception of 

a letter, whereas equations tend to promote an unknown conception of a letter. 
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example, 2 2z x y= + ; (c) an expression to denote a family of functions/graphs, for 

example, 2 2y x x c= + + ; (d) a formula to model a physical phenomenon, for examples, 

2A rp=  and 
f iv v at= + ; (e) an identity to denote a mathematical property, for 

example, ( )a b c ab ac+ = + ; and (f) a proposition-valued function, for example, 

( )
22 5 5n n+ = +  is true only for n = -2. Fundamentally, an equation/inequality is a 

quantitative comparison between its two sides. However, this conception is not deeply 

understood by students. For example, some students have to re-solve an equation to 

determine if a solution is correct; they often do not know that an incorrect solution will 

yield different values for the two sides of the equation (Greeno, 1982, cited in Kieran, 

1989).  

Students’ Difficulties with Inequalities and Equations 

In a traditional algebra curriculum, a substantial amount of time is dedicated to 

learning and practicing the techniques for solving equations (linear equations, systems of 

linear equations, quadratic equations, and equations involving absolute values, 

exponentials, and logarithm functions). These standard equation-solving procedures have 

probably removed students‘ need to attend to the quantitative comparison between the 

two sides of the equation and the preservation of solution set of the equation. As such, 

many algebra students perceive an equation as a ―do something signal‖ (Behr et al., 

1976, cited in Kieran, 1992); a conception for which they have procedures but not 

necessarily meanings. ―Most of the time algebraic formulae are for some pupils not more 

than mere strings of symbols to which certain well-defined procedures are routinely 

applied‖ (Sfard & Linchevski, 1994a, p. 223). Such interpretations promote algorithm-
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oriented behaviors. To promote sense-making and deductive reasoning, mathematics 

teachers should use tasks that require students to compare quantities and cannot be done 

by mindlessly manipulating symbols. The following are four examples of such tasks:  

 

Figure 1.2: Tasks that can promote comparison of quantities 

In a traditional curriculum, inequalities are taught as an extension to equations in 

the sense that the procedures for solving equations are applicable to solving inequalities, 

with a few exceptions such as flip the sign when multiplying/dividing by a negative 

number, and consider intervals when solving inequalities involving polynomials. Some 

students are even taught to treat inequalities as equations. Under such instruction, 

students do not need to grapple with the meaning of a solution set. A challenge for 

educators is to get students to experience the need for determining the solution set of an 

inequality. Task T4 has the potential of helping students appreciate the need for solving 

inequalities because it is easier to determine a value for x by comparing solution sets, 

13x >  versus 1
3

9x > , than by comparing the original inequalities, 4 11 50x x+ > +  and 

4 22 50x x+ > + . 

 

T1. Given that a = b + 2 is always true, which is larger, a or b?  

(Falkner, Levi, & Carpenter, 1999) 

T2. Which is larger, 2n or n + 2? Explain.  

(Küchemann, 1981) 

T3. Consider (x + 1)(2k – 5) = 3(2k – 5). Is there a value for k that 

makes this equation true for all values of x? 

T4. Consider these inequalities: 4x + 11 > x + 50 and 4x + 22 > x + 50. 

Can you find a value for x that will make one of them true and the 

other false? 



   

 

 

17 

Inequalities/Equations as an Effective Context for Studying Students’ Mental Act of 

Anticipating  

The use of unconventional problems involving inequalities and equations allows 

mathematics educators to gain information about a variety of problem-solving behaviors: 

(a) whether students predict prior to performing a procedure; (b) whether they explore 

via trial-and-error substitution or try different ways to manipulate symbols; (c) whether 

they reason deductively, inductively, or non-referential-symbolically; (d) whether they 

consider the structure of the equation/inequality (e.g., noticing that both sides of the 

equation in T3 are multiples of 2 5k - ); and (e) whether their symbol manipulation is 

goal-oriented or algorithm-oriented. In addition, educators can observe what students do 

in unfamiliar situations. Do they analyze the problem situation? Do they make 

predictions? Do they resort to familiar procedures, such as trial-and-error substitution? 

Do they try to apply and/or adapt their equation-solving algorithms when solving 

inequalities? The context of inequalities and equations allows me to investigate these 

types of questions. 

Most of the tasks used in this study (see Appendix C and Appendix D) encourage 

students to use trial-and-error substitution when they are in doubt. According to Kieran 

(1988), students who have used the trial-and-error substitution method possess a more 

developed notion of equality or balance between the two sides of an equation than those 

who have not. The trial-and-error substitution method requires students to select 

appropriate values for substitution. The selection process may involve prediction. It also 

may involve retroactive anticipation in the sense that the outcome of one substitution 
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affects the choice of what to substitute next. Hence, the domain of algebraic inequalities 

and equations is suitable for initial investigation of students‘ mental act of anticipating.  

 

1.5 Organization of the Dissertation 

In this chapter, I have demonstrated that students‘ problem-solving behaviors can 

be described in terms of the characteristics of their anticipation. I have also discussed the 

objectives of this study, the first of which is to identify and characterize students‘ 

anticipations. The theoretical framework within which this research is conducted and the 

research questions are discussed in Chapter 2. The research design of a two-part study 

that is used to answer those research questions is discussed in Chapter 3. The results of 

the study in relation to the three research questions are reported in Chapters 4, 5 and 6. 

The final chapter offers a summary of the major results, a discussion of instructional 

implications, and suggested avenues for future research. 
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CHAPTER 2: THEORETICAL FRAMEWORK 

 

This chapter is organized into five sections. In the first section, the theoretical 

construct of anticipation is discussed from a Piagetian perspective. In the second and 

third sections, a theoretical framework for analyzing students‘ mental act of anticipating 

and the pedagogical principles guiding the teaching intervention are elaborated. The 

fourth section presents the research questions that guide this study. Issues related to the 

learning and teaching of algebra is discussed in the fifth section. 

 

2.1 Anticipation: A Piagetian Perspective  

In this section, several aspects of anticipation in the context of mathematics are 

discussed. Piaget‘s notion of anticipation is introduced by contrasting intellectual 

adaptation and physiological adaptations. Riegler‘s notion of anticipation is presented to 

highlight the reasons for adopting Piagetian‘s notion for this research. The relation 

between anticipation and knowing is discussed next. Following that, von Glasersfeld‘s 

(1998) elaboration of Piaget‘s notion of anticipation and Cobb‘s (1985) identification of 

three hierarchical levels of anticipation are discussed. 

Piaget’s Notion of Anticipation 

For Piaget (1936/1952), ―intelligence is a particular instance of biological 

adaptation‖ (p. 3-4). Piaget (1967/1971) drew parallels between intellectual adaptation 

and organic (i.e., physiological) adaptation; an essential characteristic of both is that they 

strive towards equilibrium. Organic adaptation refers to the readjustment of the organic 

or sensorimotor structures in response to pressures from the changing environment for 
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survival. Intellectual adaptation refers to the reorganization of the conceptual structures to 

eliminate cognitive conflicts.  

Piaget (1967/1971) highlighted two essential differences between the intellectual 

and organic adaptations: (a) intellectual structures are more conserving, that is, 

intellectual accommodation is somewhat permanent; and (b) ―the second striking 

characteristic of intellectual accommodation is its capacity for anticipation‖ (p. 184); this 

means that our capacity for anticipation is much more pronounced in the realm of 

thoughts than in the domain of reflexes and sensorimotor actions. For Piaget, intelligence 

is not limited to observation of the immediate present and re-presentation of the past, it 

also applies to foresight into the future. This foresight or prediction is possible because of 

our ability to assimilate situations into our existing scheme(s); ―anticipation is nothing 

other than a transfer or application of the scheme … to a new situation before it actually 

happens‖ (p. 195). A scheme, as outlined by von Glasersfeld (1995), involves three 

components: the perceived situation, the activity, and the expected result. The expected 

result component provides the anticipatory feature of a scheme. This component 

constitutes the fundamental difference between a Piagetian scheme and a condition-action 

pair in information processing or a stimulus-response association in behaviorism.  

Piaget’s Notion of Anticipation versus Riegler’s Notion of Anticipation 

Riegler (2001) offers an alternative conception for anticipation. He argues that 

anticipations are the result of internal canalizations, which are involuntary responses that 

bypass consciousness. His notion of canalizations was inspired by Waddington‘s (1957) 

epigenetic landscape whereby the epigenetic system―system in which embryonic 

development is canalized toward certain attractors by control genes which encode 
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programs that interpret structural genes―can be visualized as a ball rolling down through 

a ramifying system of valleys. According to Riegler, ―our thinking is canalized (or fixed) 

with respect to the way we have learned to deal with things … we implicitly anticipate 

that similar issues have similar causes, and thus similar solutions‖ (p. 535).  

Riegler (2001) assumes that ―the mind is populated by schemata which consist of 

merely two parts, a set of conditions and a sequence of actions‖ (p. 539). This 

assumption is consistent with the information processing perspective whereby an 

expert‘s knowledge is viewed as being conditionalized (Simon, 1980). For examples, a 

medical symptom is paired with possible courses of treatment, a chess configuration is 

linked to possible effective moves, and a symbolic form in algebraic expressions is 

linked to certain heuristics. With a repertoire of chucks, which are perceptual 

configurations that are familiar and recognizable, experts are can notice meaningful 

patterns and key features in a domain-specific situation more readily than novices 

(NRC, 2000).  

I find Riegler‘s view of anticipation to be inappropriate for this research. His 

view implies that helping students improve their problem-solving ability would be 

limited to helping them expand their repertoire of knowledge. Piaget‘s notion of 

anticipation, on the other hand, involves expectation on the part of the problem solver. 

From this perspective, problem solvers are viewed as active players and problem solving 

is viewed as more exploratory than procedural, and occasionally serendipitous instead of 

always deterministic. 
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Anticipation as a Function of Knowing 

―Anticipation … derives from a capacity for inference based on information 

previously acquired‖ (Piaget, 1967/1971, p. 185). This means that without information 

extracted from past experience, anticipation will not be possible. According to Piaget, 

there are two functions of knowing: a conservation-of-information function and an 

anticipation function. The conservation-of-information function is associated with 

memory, an instrument of which is a scheme. The anticipation function, on the other 

hand, deals with the application of a scheme to a new situation in which the individual 

conceives certain expectations prior to the unfolding of the events. The anticipation 

function will be discussed first, followed by the conservation-of-information function. 

The anticipation function is found at every level of cognitive mechanisms (Piaget, 

1967/1971). In the domain of sensorimotor actions, the conditioned reflex is anticipatory; 

for example, an infant anticipates to be fed upon being embraced in her or his mother‘s 

arm, or an adult anticipates the presence of another person when her or his shoulder is 

tapped. In the domain of perception, perceptual illusions presuppose anticipation. For 

example, a magician‘s floating object illusion presupposes the anticipation of the object 

falling when released in mid-air. Without an ability to anticipate what should be 

perceived, a person with mental deficiencies or a very young child will not find magic 

acts fascinating. In the domain of scientific thought, scientific investigation is essentially 

anticipatory. For example, anticipation is needed to organize an experiment so as to 

produce certain results that can strengthen or falsify the hypotheses related to the law 

under investigation. In the domain of mathematical thinking, formulation of conjectures 

presupposes anticipation. In the realm of imagination, anticipation allows us to engage in 
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thought experiments that have yet to be, or can never actually be, realized. For example, 

Zeno‘s paradox of a person traversing half the remaining distance to a wall in every 

minute presents an interesting phenomenon that eventually gives rise to two notions of 

infinity: potential infinity and actual infinity. With respect to planning, anticipation is a 

fundamental component in mental simulation―the process of envisioning possibilities in 

the future and developing plans to bring about those possibilities (Taylor et al., 1998). 

The function of anticipation seems to extend into almost every aspect of cognition. 

As for the conservation-of-information function, Piaget (1967/1971) identified 

two processes: (a) recognition―perception of an object or re-presentation of the object 

upon perceiving its index, and (b) evocation―re-construction of a prior experience in the 

absence of the object. ―Evocation is something of a much higher order than recognition 

and presupposes a symbolic function (mental images or language) as well as the 

processes of inference and logical organization necessary for the mental reconstruction of 

the past‖ (p. 187). In terms of images, which are conceived by Piaget and Inhelder 

(1966/1971) as interiorized imitation of actions rather than as stored perception, 

recognition of an object in its absence can be viewed as the enactment of reproductive 

images. Evocation, on the other hand, can be viewed as the construction of anticipatory 

images. A reproductive image corresponds to the re-presentation of an object or an event 

that is already known. In contrast, an anticipatory image corresponds to the imagination 

of an event that results in a combination that has not been previously perceived. An 

example is visualizing, for the first time, the process of obtaining a rhombus-hole in the 

center of a paper by folding the paper twice to reduce it to a quarter of its original size, 

cutting a little triangle off its prime corner, and unfolding it back. 
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In discussing how anticipation affects children‘s action, Piaget and Inhelder 

(1966/1971) distinguish between executional anticipation and evocational anticipation. 

In executional anticipation, one foresees the gesture required to reproduce an event that is 

already known or is currently perceived: for example, a child dropping a rubber ball to 

see the bouncing effect again. In evocational anticipation, one foresees an event that is 

not already known; for example, a child anticipates a bouncing-on-the-water effect when 

he or she drops his or her rubber ball into the swimming pool for the first time. The 

distinction between executional anticipation and evocational anticipation may be adapted 

to differentiate between two types of anticipatory behaviors in mathematics. One type is 

the anticipation of using a known algorithm to solve a problem. For example, one 

anticipates the use of quadratic formula upon seeing 3x
2
 – |x| + 2 = 0. The second type is 

the anticipation of exploring an idea to solve a problem. For example, one explores  

3x
2
 – |x| + 2 = 0 by comparing the terms and concludes accordingly: 3x

2
 dominates |x| for 

|x| > 1 and 2 dominates |x| for |x| < 2, so 3x
2
 – |x| + 2 is always positive. This distinction is 

particularly important in mathematics education because the former type promotes 

memorization while the latter promotes sense-making. 

Solving problems in mathematics presupposes activation of schemes, or 

anticipatory schemas, which allow us to anticipate the consequence of an action prior to 

performing it. Bergson and Selz (cited in Piaget & Inhelder, 1948/1956) defined an 

anticipatory schema as one that provides an individual with an answer prior to ―filling in‖ 

the details in the actual process of arriving at the answer. Piaget and Inhelder explained 

that an anticipatory schema is a ‗grouping‘ of operations where the operations can be 

arranged in direct or reverse order. The ability to mentally arrange and rearrange 
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operations in a different order is what makes a schema anticipatory. The authors 

described the genesis of anticipatory schemata as follows: the repetition of past successes 

in motor activity allows a child to anticipate her or his goal and form a schema
6
; the 

continuation of motor adaptation extends into imitation, interiorization of which 

constitutes images; the evocation of images provides the imaginal dimension in 

anticipation and reconstruction processes; these processes allow actions to be coordinated 

and become reversible and thereby constitute operations; the arrangement of these 

reversible operations constitutes an anticipatory schema. 

Von Glasersfeld’s Three Types of Anticipation 

Von Glasersfeld (1998) elaborates on Piaget‘s notion of anticipation by 

identifying three general types of anticipation: (a) implicit expectations that are present in 

our actions, e.g., the preparation and control of our movements when we grope in the 

dark; (b) explicit expectation of an outcome based on certain cause-effect relationships 

(e.g., predicting that it will soon rain upon noticing that the sky is being covered by dark 

clouds); and (c) anticipation of a desired event and the means for attaining it (e.g., a 

child‘s foresight of the means to get his parent to give in, say by throwing a temper 

tantrum in public). In my attempt to apply von Glasersfeld‘s categories to problem-

solving in mathematics, I encountered three aspects of anticipation: the regulatory aspect, 

the predictive aspect, and the volitive aspect (i.e., goal-related aspect).  

                                                 

6
 Piaget (1970) differentiated schema and scheme based on a figurative-operative distinction: ―the term 

scheme (plural: schemes) is used to refer to operational activities, whereas schema (plural: schemata) refers 

to the figurative aspects of thought―attempts to represent reality without attempting to transform it 

(imagery, perception, and memory)‖ (p. 705). ―A schema is a simplified image (for example, the map of a 

town), whereas a scheme represents what can be repeated and generalized in an action (e.g., the scheme is 

what is common in the actions of ‗pushing‘ an object with a stick or any other instrument).‖ (p. 719). A 

schema is the result of schematizing an image, a process in which some characteristics of the image are 

retained, some are distorted, while others are discarded (Piaget, 1970).  
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Regulatory aspect of anticipation 

Piaget (1947/1950) conceived intelligence as a form of equilibrium, towards 

which all the cognitive structures that arise out of sensorimotor actions, imitations, and 

perceptions tend. According to Piaget (1975/1985), the process of intellectual 

development can be explicated in terms of the equilibration of cognitive structures.  

Anticipation and retroaction are necessary for equilibration to occur. Inhelder and 

Piaget (1964/1969) found, in their studies on children‘s development of classification, 

that ―the development from graphic structures
7
 to operational structures depends on a 

complex interplay of retroactive and anticipatory activities‖ (p. 232). 

Hindsight, or ‗retro-action‘, is the process whereby a subject is led to 

revise his earlier actions in the light of those that have followed: he 

goes back on his moves, or corrects his mistakes. Foresight or 

‗anticipation‘ is the process of internally carrying out [italics added] 

actions which will not be actually performed [italics added] until a 

later stage, and thereby modifying the action that is in fact carried out 

in the present. (ibid, p. xix, translators‘ notes)  

Initially, retroaction and anticipation arise as a result of growing coordination between 

successive actions in the course of a child‘s ongoing exploration. At this stage, the child‘s 

foresight is local. The interplay between anticipation and retroaction provides the 

regulation that sooner or later results in a state of equilibrium. With this equilibrium, the 

child begins to foresee more globally. Eventually, the child can anticipate the several 

phases necessary for the complete classification of a set of objects. In summary, the 

continuous development of reversible operations (e.g., classification, cross-classification, 

                                                 

7
 Graphic structures refer to the figural aspects of thought (i.e., imagery). Piaget and Inhelder (1966/1971) 

maintained that graphic structures are essentially irreversible. Inhelder and Piaget (1964/1969) asserted that 

operational structures which are reversible do not derive directly from imagery, instead they involve 

reflective abstraction.  
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seriation) based on elementary actions (e.g., putting things into piles, separating piles into 

lots, making alignments) necessarily involves regulatory processes of retroaction and 

anticipation. 

In this research, I found that anticipations which are regulatory in nature occur at 

a rudimentary level that can rarely be inferred from students‘ actions and statements. 

Nevertheless, an awareness of this aspect of anticipation allows us to appreciate the 

complexity of students‘ reasoning. The idiosyncrasy we perceive in students‘ reasoning is 

an indication of our lack of understanding of the regulatory processes that occur in their 

minds, to which we have no access. 

Predictive aspect of anticipation 

From a Piagetian perspective, the act of predicting may be conceptualized as 

transforming anticipatory images. Anticipatory images and operations are coupled in that 

anticipatory images correspond to operations and facilitate the functioning of operations 

(Piaget, 1970; Piaget & Inhelder, 1966/1971). However, anticipatory images and 

operations differ in that ―the operations carry out the transformations; the image 

represents them‖ (Piaget & Inhelder, 1966/1971, p. 228). Anticipatory images, being 

figurative,
8
 are subordinate to operations; their role is to imitate rather than to construct. 

As ―figural signifiers‖ (p. 383), anticipatory images can undergo transformations that 

demand much less cognitive load as compared to the execution of the operations, or the 

signifieds. Because they contain fewer details, images are generally more compact and 

                                                 

8
 As opposed to operative which concerns an attempt to transform reality, figurative concerns an attempt to 

represent reality as it appears without transforming it (Piaget, 1970).  
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versatile than the operations they signify. The distinction between anticipatory images 

and operations is helpful for contrasting predicting and performing.  

Piaget and Inhelder (1948/1956) have identified, in a study of students‘ 

conception of projective space, three distinct types of images: (a) a static image of an 

object without consideration for possible transformations even when movements are 

perceived; (b) an image that expresses a phase of an action performed on the object, but 

the image is unable to keep pace with the action because the image constitutes an 

imitation of the action itself; and (c) a dynamic image that is capable of anticipating the 

results of yet-to-be-performed actions because it depicts the coordination of, rather than 

an imitation of, the actions.  

Thompson (1996) connects three levels of coordination of actions to the above 

three types of images: (a) coordination is absent in the first type of images, (b) actions are 

not well-coordinated in the second type, and (c) actions are well-coordinated in the third 

type. Thompson (1994a; 1994b) outlines three stages of development of images of rate: 

(a) image of change in some quantity, say displacement of position or rise in water level; 

(b) loosely coordinated image of two quantities, say distance traveled and time taken; and 

(c) a dynamic image of covariation of two quantities whose measures are in constant 

ratio.  

The following example illustrates how these three levels of coordination can be 

useful in characterizing students‘ predictions. Consider the following problem: Given that 

2/a = b/2, which is larger: a or b? A student at the first level may conceive the image of 

2/2 = 2/2 and conclude that a = b = 2, or perceive proper fractions and conclude 

(association-based) that a > 2 and b = 1 without attending to the equality between the two 
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sides. A student at the second level may plug in numbers, say 1 for a and 4 for b, that 

make 2/a = b/2 true, and infer inductively based on numbers that work. A student at the 

third level will be able to coordinate the changes in values for a and b by reasoning 

(coordination-based), say with 2/2 = 2/2 as the starting point, that as a increases b 

decreases, and vice versa. 

Volitive aspect of anticipation 

According to von Glasersfeld (1998), will is involved in the third type of 

anticipation—foresight of a desired event or goal and the means for attaining it. The 

notion of goal appears in Piaget‘s (1936/1952) discussion of infants‘ coordination 

between means and ends, a stage in the child‘s development of sensorimotor intelligence. 

According to Piaget, this stage marks the emergence of intelligence, whose two 

characterizing elements are now present: the differentiation of goals and the coordination 

of schemes to attain a goal.  

In general, our cognitive actions and operations are goal-driven or volitive, 

although the goal may be implicit. At the most basic level, the goal is to seek cognitive 

equilibrium. At a higher level of consciousness, the goal could be a solution to a problem, 

an explanation for a phenomenon, or a good grade in an examination. To attain one‘s 

goal, one has to take physical and/or mental actions. As a volitive process, anticipation 

allows one to disregard unrelated actions, focus on viable ones, and choose certain 

actions to attain one‘s goal.  

In problem solving, foresight of action is related to strategy selection, planning, 

and control. Most literature on planning and control involves metacognition (see 

Schoenfeld, 1987, 1992; Rickey & Stacy, 2000). The literature that incorporates 
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anticipation into planning and control tends to be in artificial intelligence (AI). The 

underlying strategy in AI models of cognition is mean-ends analysis (Newell & Simon, 

1972). The means-ends analysis refers to the process in which one determines the 

differences between the problem states and the goal state, and looks for ways to eliminate 

those differences. It allows us to attain a goal rapidly, with fewer irrelevant moves and 

minimal excursions into dead ends (Sweller, 1989). According to Sweller, when schemas 

are available for solving the problem, one uses a working-forward strategy; otherwise one 

uses a working-backward strategy (i.e, means-ends analysis).  

In the domain of algebra, the standard procedures for solving linear equations of 

the form ax + b = cx + d are essentially based on the application of means-ends analysis 

(Kieran, 1989). According to Simon (1980), one identifies the desired form of an 

algebraic expression, detects a difference between the current expression and the desired 

form, determines an appropriate algebraic transformation, and examines if the 

transformed expression has the desired form. Anticipation can provide a form towards 

which transformations are directed (Boero, 2001; Steiner, 1994).  

In order to direct the transformation in an efficient way, the subject 

needs to foresee some aspects of the final shape of the object to be 

transformed related to the goal to be reached, and some possibilities of 

transformation. This ‗anticipation‘ allows planning and continuous 

feed-back. (p. 99) 

Consider solving (x – 2)
2
 = (x – 2)(x – 5) as an example. A student who anticipates the 

usefulness of the quadratic formula will manipulate symbols to obtain the standard form 

ax
2
 + bx + c = 0, say by expanding the factors, moving everything to one side, and 

simplifying. A student who anticipates the usefulness of factored form may notice the 

common factor x – 2 on both sides and manipulate symbols towards the factored form 



   

 

 

31 

(x – r1)(x – r2) = 0, say by moving everything to one side and factoring out the common 

factor x – 2. Steiner (1994) analyzed the cognitive requirements for factoring trinomials 

and found that it was important to foresee the transformation before initiating the 

factoring algorithm: ―anticipations are, thus, the core processes in handling 

transformations‖ (p. 253). He claims that ―good teaching helps [a] student to generate 

predictions, hypotheses, or anticipations‖ (p. 253) and to test them. 

To recapitulate, I have identified three aspects of anticipation that correspond to 

von Glasersfeld three general types of anticipation. The first type of anticipation, which 

has a regulatory function, is extremely difficult to infer from students‘ actions and 

statements. The second type, which is predictive in nature, can be inferred from the 

students‘ stated predictions. The third type, which is volitive in nature, can be inferred 

from the actions students take to solve a problem. In this research, I only examine the 

latter two types: the act of predicting results and the act of foreseeing actions. I define 

them as follows: 

 Predicting (a result) is the mental act of conceiving an expectation for the result of an 

event without actually performing the operations associated with the event.  

 Foreseeing (an action) is the mental act of conceiving an expectation that leads to the 

volition for an action, prior to performing the operations associated with the action.  

From a Piagetian perspective one‘s anticipation depends on the scheme(s) that 

one evokes. By definition, schemes are anticipatory in nature. So I use the phrase 

anticipatory scheme to refer to the scheme that governs one‘s act of anticipating and 

predictive scheme to refer to the scheme that governs one‘s act of predicting.  
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Cobb’s Three Hierarchical Levels of Anticipation 

Cobb (1985) suggests viewing children‘s mathematical problem-solving as an 

expression of anticipations. According to Schoenfeld‘s framework, four categories of 

cognition (content knowledge, heuristics, metacognition, and beliefs) influence problem-

solving. Cobb identifies three hierarchical levels of anticipation, which seem to 

correspond to three of the four categories of knowledge, namely beliefs, heuristics, and 

content knowledge. At the global level, students‘ beliefs about mathematics influence 

their anticipation of a certain kind of activity or ―practice‖. In classroom situations, such 

a practice is termed sociomathematical norm (Cobb & Yackel, 1996). An example of 

anticipating a norm is when a student thinks that he must write down every step of the 

solution even when a step is trivial. A contrasting example is when a student capitalizes 

on previous results and skips trivial steps. At the intermediate level, a child anticipates 

using a heuristic for solving a problem. ―A heuristic can be viewed as a metacognitive 

prompt which delimits a subcontext within which the child anticipates she can elaborate 

and solve the problem‖ (Cobb, 1985, p. 124). For example, the anticipation of a guess-

and-check strategy may result in a student operating in the sub-context of plugging in 

numbers. At the most specific level, children‘s expressed conceptual structures dictate 

their anticipations within the heuristically constrained sub-context.  

According to Cobb (1985), higher-level anticipations constrain lower-level 

anticipations. Nevertheless, anticipation does not necessarily occur in a top-down 

fashion. For example, one must interpret the problem before applying a heuristic. This 

initial interpretation is then elaborated and refined within the resulting sub-context. Cobb 

contends that there is a dialectical relationship between the reorganization/refinement of a 
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conceptual structure and the activity of expressing it. While conceptual structure delimits 

anticipations and thereby constrains problem-solving activities, it can be restructured as 

one reflects on the activity, and it can be abandoned when one switches to another sub-

context.  

Cifarelli (1989, 1998) builds on Cobb‘s work by focusing on the connection 

between anticipation and conceptual structures. In his study (1998) on students‘ 

construction of mental representations, he found a gradual buildup of conceptual structure 

as students progressed through solving a series of related word problems. He views these 

structures as ―purposeful organizations of the solvers‘ prior solution activity‖ (p. 259) 

that can guide subsequent solution activity by enabling solvers to anticipate while 

interpreting a new situation. In the initial task, students had to perform the solution 

activity. As students progressed, three levels of solution activity were observed. These 

levels correspond to three levels of conceptual structure: (a) recognition, at which 

students could identify the similarity between the new task and the previous task; 

(b) re-presentation, at which students could mentally ‗run through‘ prior activity and use 

it to anticipate potential difficulties; and (c) structural abstraction, at which students 

could mentally ―run through‖ potential solution activity and draw inferences without 

performing the solution activity. According to this hierarchy, the level of one‘s 

conceptual structure dictates one‘s anticipation.  

In this research, I focused on the relation between students‘ anticipation and 

students‘ interpretation of inequalities and equations. I also attended to the relation 

between students‘ anticipation and the sub-context in which they operate. However, I did 

not attend to the relation between their beliefs about mathematics and their anticipation.  
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2.2 Framework for Analyzing Students’ Mental Act of Anticipating  

As stated in Chapter 1, the goal of this research is to explore the feasibility and 

usefulness of focusing on students‘ anticipation as means to study the ways students 

solve problems. However, students‘ anticipations are mental processes which can only be 

inferred from their actions and statements. To study and characterize students‘ 

anticipation (foresight of action and prediction of result), I employ Harel‘s notions of 

mental act, way of understanding, and way of thinking in his DNR framework
9
 (in press a, 

in press c, 2001).  

Mental Acts 

In this research, students‘ anticipations are conceived as mental acts, which 

constitute humans‘ reasoning: ―mental acts are basic elements of human cognition. To 

describe, analyze, and communicate about humans‘ intellectual activities, one must 

attend to their mental acts‖ (in press c). He provides the following as examples of mental 

acts: interpreting, conjecturing, inferring, proving, explaining, structuring, generalizing, 

applying, predicting, classifying, searching, and problem solving.  

In this framework, the analysis of a particular mental act involves identifying a 

product of the act, which is termed a way of understanding associated with the act, and 

inferring a characteristic of the act, which is termed a way of thinking associated with the 

act.  

Mental acts can be studied by observing peoples‘ statements and 

actions. A person‘s statements and actions are products of her or his 

mental acts; they represent the person‘s ways of understanding 

associated with those mental acts. Repeated observations of one‘s 

                                                 

9
 DNR is an acronym for three pedagogical principles, namely the Duality Principle, the Necessity 

Principle, and the Repeated-reasoning Principle. 
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ways of understanding associated with a given mental act may reveal 

certain characteristics—persistent features—of the act. These 

characteristics are referred to as ways of thinking associated with that 

act. (Harel, in press c). 

Ways of Understanding  

Harel (in press c) defines a way of understanding as ―a particular product of a 

mental act carried out by an individual.‖ Hence, a way of understanding must be 

associated with a mental act. For the mental act of interpreting, what the student actually 

interprets is a way of understanding. For example, one student may interpret the equation 

3x + 7 = 14 as a signal to isolate x, while another student may interpret it as a constraint 

on the value x can assume. These students display two ways of understanding associated 

with the act of interpreting the equation 3x + 7 = 14: equation-as-a-signal-to-isolate-a-

variable and equation-as-a-constraint.  

Likewise, the proof a student produces for an assertion is a way of understanding 

associated with the mental act of proving, and the solution a student produces for a 

problem is a way of understanding associated with the mental act of problem-solving. 

Regarding the act of foreseeing an action, the action a student performs, or says he or she 

will perform, constitutes a way of understanding. Regarding the act of predicting, the 

prediction one makes is the way of understanding. 

Ways of Thinking 

Harel (in press c) defines a way of thinking as ―a characteristic of a mental act. 

Such a characteristic is always inferred from observations of ways of understanding.‖ If 

the student interprets 3x + 7 = 14 as a signal to isolate x without attending to the referent 

of x, then the student‘s mental act can be characterized as devoid of quantitative referent, 

in contrast to a view in which x could represent a quantity such as weight of an marble or 
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a numerical value that makes the equation true. Harel (in press c) calls the former 

behavior the non-referential symbolic way of thinking, which he defines as ―the behavior 

of operating on symbols as if they possess a life of their own, not as representations of 

entities in a coherent reality‖ 

Examples of ways of thinking associated with the mental act of proving are the 

authoritative proof scheme, in which one derives conviction mainly from the authority of 

the teacher or textbook; the empirical proof scheme, in which one derives conviction 

from empirical evidence or visual perceptions; and the deductive proof scheme, in which 

one derives conviction based on the application of rules of logic (Harel & Sowder, 1998). 

Ways of thinking associated with the mental act of problem solving are problem-solving 

approaches, examples of which include a backward-strategy approach involving means-

ends analysis, a forward-strategy approach involving a straightforward application of a 

procedure, a look-for-keyword strategy, and a look-for-a-simpler-problem strategy. 

This research aims to identify categories of ways of thinking associated with the 

mental act of foreseeing and ways of thinking associated with the mental act of 

predicting. For instance, consider the following response of an 11
th

 grader, Nick, in my 

pilot study. Having ascertained that x > 4 made 3.14(6x – 24) > 2.4(6x – 24) true by 

finding the critical value to be 4, Nick found the critical value of 2(2x – 6) < 7(2x – 6) to 

be 3, and predicted that it would be true for x < 3: ―my critical point here is 3, so in this 

case I need to be less than. So I put in x < 3.‖ His prediction is characterized as 

association-based way of thinking because he presumably associated the ―<‖ in the 

inequality with the ―<‖ in his solution. His prediction was probably a consequence of his 

non-referential symbolic way of thinking in his act of interpreting the inequality. Once he 
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attended to the quantitative comparison between the two sides of the inequality, he caught 

his mistake and inferred that x > 3: ―oh crap … in here (2x – 6) I [should] put a positive 

number because I see a 7 is greater than a 2.‖ His way of thinking associated with 

inferring is considered coordination-based because he coordinated x > 3 with the factor 

2x – 6 being positive, a condition that would make the inequality true. This example 

suggests that the association-based way of thinking and the non-referential symbolic way 

of thinking are related, as are the coordination-based way of thinking and the referential 

symbolic way of thinking.  

Reasons for Using these Constructs 

The three constructs—mental act, way of understanding, and way of thinking—

form a triad, as depicted in Figure 2.1. The MA-WoU-WoT triad serves two purposes: 

one for research and one for teaching and learning. For research, the MA-WoU-WoT 

triad provides a researcher with a means to analyze, based on students‘ actions and 

statements, what a student understands of a particular thing or phenomenon (i.e., what 

the product of the student‘s mental act is), and subsequently infer the manner (i.e., 

character of the act) in which the student engages a particular mental act to arrive at that 

way of understanding. By focusing on one mental act at a time, though with the 

awareness that mental acts do not occur in isolation, a researcher can breakdown a 

student‘s thinking into manageable components. Having analyzed a few mental acts that 

are related to one another, the researcher can construct a more complete picture of the 

student‘s thinking. This divide-and-conquer strategy enables researchers to manage the 

complexity in students‘ thinking or problem solving. One advantage of this approach is 
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that the analysis is extremely fine-grained. The accompanying drawback is that this mode 

of analysis is time-consuming.  

 

Figure 2.1: Harel‘s MA-WoU-WoT Triad 

The term ―way of understanding‖ is neutral in the sense that it merely a product of 

a mental act and does not suggest what a student understands or does not understand. 

Nevertheless, a student‘s way of understanding may be desirable or undesirable in 

relation to those that have been accepted by the mathematical community at large.  

For teaching and learning purposes, students‘ ways of understanding and ways of 

thinking can be used by mathematics teachers as descriptors of students‘ mathematical 

knowledge. Helping students‘ to advance their mathematical knowledge can be 

conceived as helping students to progress from less desirable ways of understanding and 

ways of thinking to more desirable ones. Harel (in press c) proposes that teachers ―must 

attempt to identify students‘ current ways of understanding and ways of thinking, 

regardless of their quality, and help students gradually refine and modify them toward 

those that have been institutionalized—those the mathematics community at large accepts 

as correct and useful.‖  

This research aims to identify students‘ ways of thinking associated with 

foreseeing and predicting as well as their ways of understanding associated with 

 

Way of Understanding 
(Product of the Act) 

Mental Act 

Way of Thinking 
(Character of the Act) 
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interpreting algebraic inequalities and equations. When these ways of thinking and ways 

of understanding are made explicit, teachers can be more sensitive to their students‘ ways 

of thinking and ways of understanding. They can then design instructional tasks to help 

their students overcome erroneous ways of understanding or deficient ways of thinking 

and progress toward desirable ways of understanding and ways of thinking. 

 

2.3 DNR-Based Instruction for the Teaching Intervention 

Harel‘s DNR-based instruction in mathematics (in press a, 2001) is a theoretical 

perspective that provides pedagogical principles for helping students advance their ways 

of understanding and ways of thinking.  

DNR-based instruction in mathematics stipulates the conditions for 

achieving critical goals such as provoking students‘ intellectual need 

to learn mathematics, helping them acquire mathematical ways of 

understanding and ways of thinking, and assuring that they internalize 

and retain the mathematics they learn. (Harel, in press a) 

The DNR framework stipulates three foundational principles: the Duality Principle, the 

Necessity Principle, and the Repeated-reasoning Principle, hence the acronym DNR. 

The Duality Principle. Harel (in press a) asserts that ―students develop ways of 

thinking only through the construction of ways of understanding, and the ways of 

understanding they produce are determined by the ways of thinking they possess.‖ This 

principle underscores the importance of incorporating complementary ways of 

understanding and ways of thinking into cognitive objectives for instruction, which 

should help students reason independently, be in control, and ―create‖ mathematics. 

However, many mathematics teachers focus on imparting ways of understanding such as 

definitions, rules, algorithms, solutions, theorems, and proofs, without attempting to help 
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students develop desirable ways of thinking. Some teachers may teach certain ways of 

thinking (e.g., drawing-a-diagram, checking-your-answer, looking-for-pattern) directly to 

students, which is generally ineffective. 

We have observed that teachers often form, at least implicitly, 

cognitive objectives in terms of ways of thinking, but their efforts to 

teach ways of thinking is often counterproductive because these efforts 

do not build on ways of understanding. Conversely, teachers often 

focus on ways of understanding but overlook the goal of helping 

students abstract effective ways of thinking from these ways of 

understanding. (Harel and Sowder, 2005, p. 3) 

Implementing the Duality Principle involves (a) attending to students existing 

ways of understanding and ways of thinking; (b) identifying appropriate cognitive 

objectives, appropriate in the sense that they are aligned with students‘ current ways of 

understanding and ways of thinking, and that they preserve the mathematical integrity of 

the content; and (c) designing activities, with an understanding of the interplay among 

various ways of understanding and ways of thinking, to meet those objectives. 

The Necessity Principle. The Necessity Principle stipulates that ―for students to 

learn what we intend to teach them, they must have a need for it, where ‗need‘ refers to 

intellectual need, not social or economic need‖ (Harel, in press c, p. 501). Intellectual 

need refers to students‘ intrinsic desire to resolve a cognitive conflict, which may arise 

from the incompatibility between their existing knowledge and the problem situation, or 

from their inability to solve the problem with their existing knowledge. The resolution of 

the conflict can potentially lead students to advance their ways of understanding and 

ways of thinking. Hence, ways of understanding and ways of thinking should emerge out 

of a need to solve a problem rather than being taught directly to students. 



   

 

 

41 

The implementation of the necessity principle involves (a) recognizing 

what constitutes an intellectual need for a particular population of 

students relative to the concept to be learned; (b) developing a system 

of problem situations that correspond to their intellectual need, and 

from whose solutions the concept can be elicited; and (c) creating an 

instructional environment in which the student can elicit the concept 

through engagement with the system. (Harel, 2001, p. 208).  

The Repeated-reasoning Principle. Repeated reasoning is not drill and practice of 

routine problems, but rather requires providing opportunities for students to repeat the 

reasoning that is useful for solving a set of seemingly different problems. The Repeated-

reasoning Principle asserts that ―students must practice reasoning in order to internalize, 

organize, and retain ways of understanding and ways of thinking‖ (Harel, in press c, p. 

209). Internalizing a piece of knowledge means being able to apply it autonomously and 

spontaneously in a variety of situations. 

The implementation of the Repeated-reasoning Principle involves (a) sequencing 

problems that can potentially lead students to abstract a certain way of understanding 

(e.g., completing-the-square algorithm) or a way of thinking (e.g., changing-the-form-

without-changing-the-value-to-attain-a-certain-form); (b) incorporating problems that 

allow students to apply and/or adapt their newly learned ways of understanding and ways 

of thinking, and to realize the affordances and limitations of those ways of understanding 

and ways of thinking; and (c) assigning adequate amounts of homework that require 

students to repeat their reasoning and thus retain those ways of understanding and ways 

of thinking. 
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2.4 Research Questions  

Recall from Chapter 1 that the objectives of this research are (a) to identify and 

characterize students‘ anticipations (foresights and predictions) as they solve problems in 

the domain of algebraic inequalities and equations, (b) to study the relation between 

students‘ anticipations and their interpretations of inequalities and equations, and (c) to 

explore the plausibility of improving the way students anticipate via a short-term one-on-

one teaching intervention. Corresponding to these objectives are the following three 

research questions. 

1. What are students‘ ways of thinking associated with the mental acts of foreseeing and 

predicting when they solve problems involving algebraic inequalities/equations? Are 

these ways of thinking related to the quality of their solutions?  

2. What relationships exist between students‘ ways of thinking associated with 

foreseeing/predicting and their ways of understanding inequalities and equations? 

3. What is the potential for advancing students‘ ways of thinking through an 

instructional intervention informed by DNR-based instruction? What factors can 

contribute to students‘ improvement? 

As mentioned earlier, Cobb (1985) contends that one‘s anticipations are embodied 

in one‘s expressed conceptual structures. An expressed conceptual structure can be 

viewed as a way of understanding associated with the mental act of interpreting. In the 

domain of algebraic inequalities and equations, the association between conceptual 

structures and anticipations suggests a relationship between students‘ ways of 

understanding inequalities/equations and their ways of thinking associated with the 

mental act of anticipating (foreseeing or predicting). This relationship is depicted by a 
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dotted curve in Figure 1, which is a schematic representation of the framework for 

analyzing students‘ act of problem-solving in terms of mental acts of predicting, 

foreseeing, and interpreting.  

 

Figure 2.2: A schematic representation of the framework for this research 

 

2.5 The Learning of Elementary Algebra  

Since this research is conducted in the domain of algebraic inequalities and 

equations, it is appropriate to discuss issues related to the learning of algebra, focusing on 

equivalence and structure sense. The first sub-section presents various aspects of algebra. 

The second sub-section focuses on two approaches to the learning and teaching of 

algebra. The third sub-section discusses the notion of structure sense. The fourth sub-

section discusses introduces the notion of process-object duality. The fifth sub-section 

presents some of the challenges algebra students face. The final sub-section highlights 

some desirable ways of understanding and ways of thinking for instruction regarding 

algebraic inequalities and equations.  
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Conceptualizations of Algebra 

The power of algebra lies in its symbolism which took more than 1300 years to 

develop. By leaving out contextual details, algebra provides us a way to solve certain 

problems efficiently, especially those that involve functions. An essential characteristic of 

algebraic reasoning is the possession of control over the symbols (Balacheff, 2001); that 

is, one is able to manipulate the symbols in a goal-oriented and anticipatory manner, 

rather than in a directionless and haphazard manner. However, most students lack this 

control when they are solving problems in algebra (Sfard & Linchevski, 1994a; Vinner, 

1997).  

For students to have control over the symbols with which they work, the symbols 

must be meaningful to them. Symbols become meaningful only when they are associated 

with referents, which are usually numbers or quantities. Thus, a cognitive objective for 

instruction should be to help algebra students to develop a referential symbolic way of 

thinking. Related to this objective are attempts to introduce algebra as a means to 

generalize numerical and geometrical patterns (Kaput, 1999; Carpenter & Franke, 2001), 

or as a means to solve realistic problems that involve two related quantities in functional 

situations (Kieran et al., 1996; Chazan, 2000). The use of variables in each approach is 

rather different: variables as pattern-generalizers in the former and variables as quantity-

referents in the latter. Usiskin (1988) presents four conceptions of algebra and highlights 

for each conception the way variables are used and the key instructions associated with 

the use of variables. These are summarized in the table below. 



   

 

 

45 

Table 2.1: Usiskin‘s (1988) Four Conceptions of Algebra 

Conception of Algebra Use of Variables Key Instructions in 

the Use of Variable 

Algebra as the study of 

procedures for solving 

certain types of problems 

Variables as unknowns and constants,  

e.g., 5x + 3 = 40, (x – 2)
2
 = 25 

Simplify, solve 

Algebra as generalized 

arithmetic 

Variables as pattern generalizers, 

e.g., -x × y = -xy, n × 1/n = 1 

Translate, generalize 

Algebra as the study of 

relationships among 

quantities, including 

functions. 

Variables as quantities whose value 

varies, e.g., V = r
2
h. 

Variables as arguments and names for 

functions, e.g., P(n) = 1000 × 1.05
n
  

Relate, formulate, 

graph  

Algebra as the study of 

structures 

Variable as symbols for manipulation,  

e.g., prove 
2

1

2 1
n

k

k n
=

- =å  

Manipulate, prove 

 

Algebra as the study of procedures for solving certain types of problems 

dominates the other conceptions in a traditional curriculum for algebra. School algebra 

has traditionally been taught as a set of procedures for solving word problems and rules 

for manipulating symbols. The emphasis is on syntactic and procedural aspects at the 

expense of semantic and structural aspects of algebra (Kieran, 1992). This tends to 

promote the belief that algebra is a subject devoid of meaning or is merely a collection of 

―meaningless‖ rules and procedures to follow. Such a belief is undesirable because it 

promotes a non-referential symbolic way of thinking.  

To address this issue, reform efforts have advocated referential approaches. These 

approaches include: (a) generalization of numerical and geometrical patterns and 

generalization about fundamental properties of arithmetic (Kaput, 1999; Carpenter & 

Franke, 2001); (b) a functional and graphical approach with use of technology (Kieran et 
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al., 1996; Yerushalmy & Schwartz, 1993); (c) modeling of physical and mathematical 

phenomena (e.g., Realistic Mathematics Education, see Freudenthal, 1991); and (d) use 

of concrete models like the balance (Filloy and Rojano, 1989; Linchevski & Herscovics, 

1996; Vlassis, 2002), the geometrical model (Filloy and Rojano, 1989), and the 

arithmagon (Pirie & Martin, 1997).  

Referential Approach and Structural Approach 

On the one hand, algebra initially derives its meaning from the referent it 

represents. On the other hand, it derives its power by freeing itself from the referent. In 

Kieran et al.‘s (1996) study on using a technology-supported, functional approach to 

introduce algebra, students were found to be reluctant to simplify expressions that were 

tied to a specific context because they wanted to preserve recognizable links between the 

symbols and the contextual situation. Resnick (1986) argues that the referential aspect of 

algebra is essential for beginning algebra students, but a divorce from referents is 

necessary for complete mastery of algebra.  

Kirshner (2001) distinguishes between the structural approach and the referential 

approach: ―The structural approach builds meaning internally from the connections 

generated within a syntactically constructed system. Referential approaches import 

meaning into the symbol system from external domains of reference‖ (p. 84). Balacheff 

(2001) introduces the term symbolic arithmetic to highlight that in referential approaches 

the control over the solving process is provided by the external domain.  

Algebra is not there, but instead we see the functioning of what I 

would call symbolic arithmetic which has its own rules and domain of 

validity. In some way I would say that symbolic arithmetic is to 

algebra what quantities are to numbers. Both may use the same 

representation system, and even common tools, but they are not 
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submitted to the same control system (this phenomenon is well 

illustrated by studies such as that of the carpenter and the apprentice 

by Nunes, 1993). Without making this explicit, teaching practices tend 

to turn symbolic arithmetic into de facto content to be taught instead of 

algebra – a choice often made by ‗realistic mathematics educator‘. 

(p. 255) 

Both Balacheff (2001) and Kirshner (2001) doubt that an agenda of contextually 

rich applications could help students develop deductive rigor in their algebraic reasoning. 

According to Balacheff, a good command of algebra involves mastery over its 

representation systems, which include operators for manipulating symbols and meta-rules 

for monitoring, strategizing, and decision-making. This implies that the control one has 

should reside in the algebraic world of symbols and not in the concrete world of referents. 

Such control is necessary for doing algebraic proofs. Since symbolic arithmetic provides 

only pragmatic control, doing proofs in algebra, according to Balacheff, will be outside 

the realm of symbolic arithmetic.  

The tension between referential approaches and structural approaches is evident 

in Carolyn Kieran‘s presentation at the 10
th

 International Congress on Mathematical 

Education (ICME) 2004 conference. She raises three open questions pertaining to 

research in the teaching and learning of algebra, two of which incorporate the tension: 

(a) to what extent do instructional approaches that provide students with pragmatic, 

referential control of solution processes prevent students from developing the theoretical 

control that is afforded by syntactic algebra? and (b) to what extent does integrating a 

functional approach and a non-functional equation-based approach exacerbate students‘ 

difficulties in making sense of algebra? These questions reflect an ongoing challenge in 

integrating the referential aspect and the formal aspect of algebra.  
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Integrating the two aspects of algebra would involve mastering the dual role of 

mathematical symbols, namely as signifier and as signified. According to Resnick (1986), 

algebraic expressions derive their meanings from two sources: (a) the referents they 

represent, and (b) the formal system which consists of definitions, principles, and rules. 

―A meaningful expression is one that is legal within the formal system, and the 

application of the correct transformation rules insures that all expressions that are 

generated will be legal‖ (p. 190-191). Resnick hypothesizes that good mathematics 

learners take the time and effort to make sense of the formal rules and link them to their 

intuitive knowledge. She believes that understanding the nature of the links between 

formal representations and intuitive knowledge can expand our understanding of how 

cognitive development proceeds. Investigating students‘ anticipation is probably a viable 

avenue to study the process in which students link the structural aspect of algebra to their 

arithmetic-based intuition. Inequalities and equations provide an excellent domain for 

such studies.  

Symbol Sense and Structure Sense 

Having a good command of algebra requires symbol sense. Symbol sense in 

algebra is analogous to number sense in arithmetic. According to Arcavi (1994), ―having 

symbol sense should include the intuitive feel for when to call on symbols in the process 

of solving a problem, and conversely, when to abandon a symbolic treatment for better 

tools" (1994, p. 26). A concept closely related to symbol sense is what Hoch and Dreyfus 

(2004) call structure sense.  

Structure sense, as it applies to high school algebra, can be described 

as a collection of abilities. These abilities include the ability to: see an 

algebraic expression or sentence as an entity, recognize an algebraic 
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expression or sentence as a previously met structure, divide an entity 

into sub-structures, recognize mutual connections between structures, 

recognize which manipulations it is possible to perform, and recognize 

which manipulations it is useful to perform. (p. 51) 

In their conference paper presentation, Hoch and Dreyfus propose three hierarchical 

levels of abilities associated with structure sense: (a) ability to deal with a complex literal 

term as a single entity; (b) ability to recognize equivalent and identical structures; and 

(c) ability to choose appropriate manipulations to make best use of the structure. These 

abilities are considered desirable ways of thinking associated with the mental act of 

symbol-transforming. 

Associated with the mental act of interpreting a function as a conceptual entity is 

the capitalizing-on-structure way of thinking. For example, a student who recognizes the 

structure of a quadratic equation may think of using the substitution x = 2r + 1 to solve 

2(2r + 1)
2
 + 3(2r + 1) – 9 = 0. However, most students do not use structure sense to solve 

problems. In a study on the effects of parentheses on students‘ use of structure sense, 

Hoch and Dreyfus found that very few students used structure sense, and that the 

presence of parentheses did help some students to attend to structure. For example, none 

of the 31 eleventh-graders in the study solved 
1 1 1

1 1
3 3 72n n

- - + =
+ +

 using structure 

sense (i.e., by noticing that the terms on the left side cancel out) but five out of 29 

eleventh-graders solved 
1 1 1

1 1
1 3 132n n

æ ö æ ö
÷ ÷ç ç- - - =÷ ÷ç ç÷ ÷ç çè ø è ø+ +

 using structure sense.  

The capitalizing-on-structure way of thinking hinges on the ability to recognize 

equivalent and identical structures, which in turn depends on having a profound way of 

understanding equivalence. For example, consider the following three equivalent 
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equations: 2(x – 3)
2
 – 32 = 0, 2(x + 1)(x – 7) = 0, and 2x

2
 – 12x – 14 = 0. Some students 

view equivalence in terms of transformability (Sfard & Linchevski, 1994b); that is, two 

forms are equivalent if one form can be transformed into the other. More advanced 

students view equivalence in terms of having the same solution set. Using Frege's (1892, 

cited in Arzarello et al., 1993) notions of sense and denotation, we can say that the three 

equations provide three different senses, each highlighting a certain feature: vertex, 

x-intercepts, and y-intercept respectively. However, they all have the same denotation: the 

set {-1, 7}. According to Bazzini, Boero and Garuti (2001), algebraic transformation 

involves activation of senses: ―doing algebra means interpreting expressions and relating 

them with senses, coherently with the given denotation‖ (p. 122). However, many 

students do not have the sense necessary for manipulating symbolic expressions. This is 

probably due to their lack of an equivalent-equations-have-same-solution-set way of 

understanding. 

According to Hoch and Dreyfus (2004), structure sense requires the ability to 

recognize and capitalize on equivalent structures. Mastery over this ability presupposes 

versatility in interpreting something (e.g., a function) as a process and an object, and a 

profound understanding of the notion of equivalence.  

Process-Object Duality 

According to Sfard (1991), a mathematical conception has a dual nature. It can be 

conceived operationally as a process or structurally as an object. The processes of 

learning and problem-solving involve an intricate interplay between the two conceptions. 

―The structural approach invites contemplation; the operational approach invites action; 

the structural approach generates insight; the operational approach generates results‖ 
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(p. 28, Sfard paraphrasing Henrici, 1974). Sfard theorizes, based on Piaget‘s scheme 

theory and on historical analysis of mathematical concepts, that the operational 

conception is developed prior to the structural conception during the acquisition of a 

mathematical notion. For example, one has to first conceptualize potential infinity, which 

is conceived as a never ending process, prior to conceptualizing actual infinity, which is 

conceived metaphorically as a ―result of a process without end‖ (Lakoff & Núñez , 2000, 

p. 158). A student is said to truly understand the meaning of infinity only when he or she 

has encapsulated (Dubinsky, 1991) or reified (Sfard, 1991) the on-going process 

(potential infinity) as an object (actual infinity, which is symbolized by ¥ ) on which he 

or she can operate. Sfard contends that even if a new concept is introduced to a student 

structurally, the student will have to interpret it operationally in order to make sense of it. 

One cognitive objective for instruction should be to help students develop an acting it out 

way of thinking; that is, acting it out operationally to make sense of something abstract.  

Sfard (1991) proposes a theory that accounts for the development of a structural 

conception from its operational conception. It involves three phases: (a) interiorization, 

which is marked by the ability to carry out a process via mental operations without 

explicitly performing its operations; (b) condensation, which refers to reduction of a 

complicated sequence of operations into an entity of manageable units; this is marked by 

the ability to think of a ―process as a whole, without feeling an urge to go into details‖ 

(p. 19); and (c) reification, which is said to have occurred when the entity can be thought 

about independently of its process; this is marked by ―a sudden ability to see something 

familiar in a totally new light‖ (p. 19). The reification process is an instance of reflective 

abstraction, a process in which the entity ―proceeds from the actions or operations of the 



   

 

 

52 

knowing subject and transfers to a higher plane … it leads to differentiations that 

necessarily imply new, generalizing compositions at the higher level‖ (Piaget, 1977/2001, 

p. 29). This reification process helps explain the construction of new mathematical 

objects out of existing ones. The reified object, what Greeno (1983) calls a conceptual 

entity, can be taken as input for other processes. According to Harel and Kaput (1991), 

conceptual entities alleviate working-memory load, facilitate comprehension (e.g., seeing 

the relationship between f(x) and f(x – a)), and assist focus of attention on appropriate 

structure in problem solving. In essence, conceptual entities enable us to reason with 

symbols. Hence, symbols (e.g., f(x), Tn, 
n

n

d

dx
) that are signifiers of conceptual entities 

facilitate algebraic reasoning (e.g., f(x) + f(y) = f(x + y) indicates linearity). One cognitive 

objective for instruction should be to help students develop the minimizing-cognitive-load 

way of thinking. Related to this way of thinking are other ways of thinking such as the 

treating-a-collection-of-objects-as-one-entity technique, leaving-out-the-details strategy, 

and looking-for-a-simpler-problem approach. 

In reality, many students fail to make the connection between the structural 

conception and the operational conception. For example, they see an equation as an 

object to be transformed into ―x = ______‖. The only source of meaning is the rules for 

solving the equation (Sfard & Linchevski, 1994b). They operate on the symbols as if the 

symbols ―possess a life of their own‖ (Harel & Sowder, 1998, p. 250) without associating 

to them any quantitative reference. Instantiations of the non-referential symbolic way of 

thinking are commonly observed in students‘ errors such as 
3 5 1

2 5 2

a b

a c

+
=

+
  

3 1

2 2

b

c

+
=

+
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and (x – 6)(x – 9) < 0  x < 6 or x < 9 (Matz, 1980). These ways of understanding (e.g., 

treating inequalities as equations) are what Sfard and Linchevski‘s (1994b) call 

pseudostructural conceptions.  

Pseudostructural conceptions are the conceptions which develop when 

the student, unable to think in the terms of abstract objects, uses 

symbols as things in themselves and, as a result, remains unaware of 

the relations between the secondary and primary processes.
10

 In the 

case of equations (or inequalities), … the primary processes are the 

arithmetic operations encoded in the formulae, the secondary 

processes are those which one must perform on equations in order to 

solve them, and the abstract objects behind the symbols are the truth-

sets. (p. 279).  

According to Sfard and Linchevski (1994b), students with pseudostructural conceptions 

exhibit behaviors such as: (a) making judgments based on the form of expressions 

because the meanings of symbols are the symbols themselves, (b) performing operations 

arbitrarily without justifications, (c) not making connections among different 

representations such as graphs, equations, and schematic diagrams, (d) relying on 

superficial similarities, and (e) confusing one mathematical entity with another. These 

can be viewed as undesirable ways of thinking associated with the mental act of 

interpreting or manipulating symbols. In summary, students‘ lack of understanding of an 

algebraic entity is probably the result of a disconnection between the structural 

conception and the operational conception of the entity. This disconnection contributes to 

students‘ difficulties in algebra.  

                                                 

10
 Primary processes refer to those from which the reified object originated, while secondary processes refer 

to those which operate on the reified object. 
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Students’ Challenges in Algebra 

In this sub-section, I discuss students‘ challenges (a) in accepting lack of closure, 

(b) with object-process duality, (c) in interpreting literal symbols, (d) in working with 

unknowns, (e) in connecting arithmetic and algebra, (f) in interpreting the equal sign, (g) 

with the notion of equivalence, (i) in solving inequalities, and (j) in being goal-oriented.  

Many studies have documented the difficulties students face in the transition from 

arithmetic to algebra. One explanation for the difficulties is the shift in focus. The focus 

in arithmetic is on obtaining numerical answers, while the immediate focus in algebra is 

on formulating and manipulating algebraic expressions without necessarily obtaining a 

numerical result (Booth, 1988).  

Students‘ difficulties in accepting lack of closure. Accepting a lack of closure 

(Collis, 1974, cited in Kieran, 1992) is necessary in algebra. Accepting-lack-of-closure is 

a way of thinking that allows one to work with expressions without reducing them to a 

resultant number. Many students have not developed this way of thinking because they 

are not able to treat expressions as conceptual entities. Herscovics and Chalouh (1984) 

observed students‘ difficulties in accepting 8 × a as the result for a quantity such as the 

area of a particular rectangle. Booth (1984) observed students‘ tendency to have single-

term answers; for example, writing 7ab for 2a + 5b, and introducing a new variable z to 

denote the answer x + y.  

Students‘ difficulties in the dual interpretation of algebraic expressions. Students 

have difficulties in simultaneously interpreting an algebraic expression such as x + 3 as 

both a process, add 3 to n, and a product, a number that is 3 more than n (Booth, 1984). 

Overcoming this cognitive obstacle, which is commonly known as the name-process 
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dilemma (Davis, 1975) or the process-product dilemma (Sfard & Linchevski, 1994a), 

requires students to reify the process into a conceptual entity.  

Students‘ interpretation of literal symbols. While literal symbols represent values 

in algebra, they tend to represent objects in arithmetic, such as m for meters and a for 

apples (Booth, 1988). The phenomenon of literally translating word-for-word from a 

problem statement to symbols is not uncommon among algebra students. For example, 

―there are six times as many students as professors‖ is interpreted by a student as ―6 times 

S is equal to professors‖ (Clement, 1982, p. 19). The student is said to be interpreting the 

letters as objects rather than as unknowns. Küchemann (1981) found that the majority of 

the 13-, 14- and 15-year-old students he studied either treated letters as concrete objects 

or ignored the letters. Only a very small percentage of them interpreted letters as a 

generalized number or as variables. For this item: Is L + M + N = L + P + N true: always, 

sometimes (when), or never? Küchemann found that 51% of the 14-year-old students 

answered ―never‖ and only 25% answered ―sometimes‖ (true when M = P). Most 

students probably thought that different letters stands for different numbers. Such 

students are said to be unaware of the unspecified characteristic of variables (Fujii, 2003). 

Fujii also found that some students hold another view: ―the same letter does not 

necessarily stand for the same number‖ (p. 52). He found that students accepted both 

2, 5, 5 and 4, 4, 4 as the answer for x + x + x = 12. Such students are aware of the definite 

characteristic of variables. Lacking the way of understanding that variables are both 

definite and unspecified, students may find algebra to be inconsistent. 

Students‘ difficulties with unknowns/variables. Beginning algebra students 

generally encounter difficulties while working with unknowns or variables. For example, 
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when a 7
th

 grader was asked to find the result of multiplying 
6

3 1x +
 by x, he responded, 

―How can we multiply by x when we don‘t know what x is?‖ (Davis, 1975, p. 8). 

Herscovics and Linchevski (1994) coined the term cognitive gap to refer to students‘ 

inability to operate on unknowns. In their study on the strategies used by students who 

have not been taught equation solving, only two out of 22 seventh-graders used the 

―grouping unknown‖ strategy to solve equations that have double occurrence of the 

unknown (e.g., 17n – 13n = 32 and 4n + 9 = 7n). Most of them used trial-and-error 

substitution. Overcoming this cognitive gap would require a student to be able to 

conceive an expression such as 7n as both an object and a process. 

Arithmetic-algebra disassociation. According to Lee and Wheeler (1989), many 

of the difficulties students face when learning and doing algebra arise from the 

disassociation between the world of algebra and the world of arithmetic. ―Students 

behaved as though algebra were a closed system untroubled by arithmetic‖ (p. 46). Lee 

and Wheeler found that some students were willing to accept algebraic solutions that 

differed from arithmetic solutions and felt no need to resolve the discrepancies. In their 

study, students were asked to determine if an algebraic statement, such as 
2 1 1

2 1 7 8

x

x

+
=

+ +
, 

1 1 1

6 3 3n n n
- = , and (a

2
 + b

2
)
3
 = a

6
 + b

6
 is definitely true, possibly true, or never true. Only 

10 out of 268 students made attempts to check with numbers. Only one student used a 

counter-example to prove that (a
2
 + b

2
)
3
 = a

6
 + b

6
 is false. None of the students seemed to 

have established a substitution reflex to check their work. These behaviors are considered 

manifestations of the non-referential symbolic way of thinking. 
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Students‘ way of understanding the equal sign. Behr, Erwanger, and Nichols 

(1975) and Falkner, Levi, and Carpenter (1999) documented that elementary graders 

view the equal sign as a signal to perform the computation that precedes it and write the 

result after it. In Falkner et al.‘s study, all 145 sixth-graders thought that either 12 or 17 

should go into the box in 8 + 4 =  + 5. Knuth et al. (2006) found that relatively few 

middle school students, when asked to give meaning for the equal sign in the statement 

―3 + 4 = 7‖, provided a relational definition (e.g. ―same value‖) as compared to 

operational view (e.g. ―add the numbers‖). Students who held a relational interpretation 

of the equal sign, as compared to those who held an operational interpretation, were 

found to perform better in solving linear equations like 4m + 10 = 70 (Knuth et al., 2006) 

and recognizing equivalence in a pair of equivalent equations: 2 ×  + 15 = 31 and 

2 ×  + 15 – 9 = 31 – 9 (Knuth et al., 2005). Hence, teachers should help students 

advance from an operational interpretation of the equal sign to a relational interpretation.  

Falkner et al. recommend instructional tasks (e.g., 4898 + 3 = 4897 + ; given 

that a = b + 2 is true, which is larger, a or b?) that involve comparison rather than 

computation as a means to encourage students to conceive equality as a relationship. 

Lack of understanding equality as a relationship, according to Kieran (1981), is one of the 

obstacles students encounter in their transition from arithmetic to algebra. Conceiving an 

equation as a relation is reified from the ―procedural‖ experience of comparing both sides 

of an equation such as using trial-and-error substitution. Kieran (1988) finds that pre-

algebra students who have used the trial-and-error substitution method possess a more 

developed notion of the balance between the two sides of an equation than those who 

prefer the undoing method of working backwards with inverse operations (e.g., solving 
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4n + 17 = 65 by finding 4n = 65 – 17 = 48 and then n = 48/4 = 12). Failing to conceive an 

equation as a relation, high school and college students may continue to interpret the 

equal sign as a signal to do something: for example, to solve for a variable or to find a 

derivative (Kieran, 1981).  

Students‘ difficulties with the notion of equivalence. Equivalence is a 

foundational concept that underlies all transformations of algebraic expressions. 

However, this concept is inherently difficult for students. In a study on students‘ 

conservation of equation, Wagner (1981) found that some 12-17 year-old students 

perceived that a change in a letter within an equation results in a completely new 

equation. For example, they did not see that the value of W that makes 7 × W + 22 = 109 

true is the same as the value of N that makes 7 × N + 22 = 109 true. Research has shown 

that many students do not relate the validity of a transformation on an equation to the 

preservation of the solution set of the equation. As such, they do not know that only the 

correct solution will yield equivalent values for the two sides in any equation of the 

equation-solving chain (Greeno, 1982, cited in Kieran, 1989). Steinberg, Sleeman and 

Ktorza (1990) found that many students were unable to associate equivalence of 

equations with valid transformations. For example, the students needed to compute the 

solutions to both equations, x + 2 = 5 and x + 2 – 2 = 5 – 2, even though they had 

generated the second equation in the process of solving the first.  

On the other hand, many students confound equivalence with transformability 

(Sfard & Linchevski, 1994b). In their study involving 280 students (14-17 year-old 

students in Israel), Sfard and Linchevski found that only 17% conceived 4x – 11 = 2x – 7 

as being equivalent to (x – 2)
2
 = 0, and only 12% conceived 4x

2
 > 9 as being non-
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equivalent to 2x > 3. For these students, two equations are equivalent if one can be 

―transformed‖ into the other. Hence, one of the cognitive objectives for instruction should 

be to help students, by capitalizing on their referential symbolic reasoning, to develop the 

way of understanding that the referent of an equation is its solution set. 

Students‘ treating inequalities as equations. Garuti, Bazzini and Boero (2001) 

point out that ―the traditional teaching of inequalities … reduces the difficulties inherent 

in the variable concept and the complexity of the solution process by treating inequalities 

as a special case of equations‖ (p. 10). Because of this, many students do not understand 

the conceptual difference between inequalities and equations. Vaiyavutjamai and 

Clements (2006) found that 44% of 9
th

 graders in Thailand gave a single number as the 

answer when asked to solve 3 – 4x ≤ 6x – 7. Many students tended to believe that a 

number that appeared on one side of the final line (the 1 in 1 < x) was the solution to the 

inequality. Students also exhibit a variety of procedural errors in solving inequalities. The 

prevalent source of difficulty comes from the inappropriate analogies between equations 

and inequalities (Tsamir & Almog, 2001; Tsamir et al., 1998). For example, students may 

make incorrect deductions such as x
2
 < 16 implies x < ±4 and 

2 2
1

1

x

x

-
<

+
 implies  

2x – 2 < x + 1. The range of inequalities students can solve depends on the specific 

procedures that have been taught to them. For example, most students in Italy could not 

solve inequalities like x
2
 – 1/x > 0 upon entering the university mathematics courses 

(Boero, 2001). Their to understand an inequality as a comparison between two sides will 

probably prevent them from solving unfamiliar inequalities such as 3x
2
 – |x| + 2 > 0 and 

(4x
2
 – 3x)

2
 + 1 < 0 in a ―meaningful‖ way. 
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Students‘ inability to capitalize on ―structures‖. Many students do not capitalize 

on structure. For example, only 6 out of 33 11
th

-graders in Israel solved 

1 1
6

4 1 4 1

x x
x

x x

æ ö æ ö
÷ ÷ç ç- - = + -÷ ÷ç ç÷ ÷ç çè ø è ø- -

 by attending to its structure and subtracting the function 

1

4 1

x

x

æ ö
÷ç - ÷ç ÷çè ø-

 from both sides (Hoch & Dreyfus, 2004). Most algebra students are not able 

to conceive a function as a conceptual entity, a conception essential for recognizing 

structure. Wagner, Rachlin, and Jensen (1984, cited in Kieran 1989) found that while 

most 9
th

 graders in their study knew that the solution to s/8 – 3 = 14 would not change 

when the letter s is changed to t, they had to solve the equation (t + 1)/8 – 3 = 14 for t 

when asked to determine the value for t + 1. When they were subsequently asked to solve 

4(2r + 1) + 7 = 35 for 2r + 1, only one student solved it directly for 2r + 1. Students, 

especially when they have a procedure, generally do not attend to the structural aspect of 

an equation; thus, for example, they do not see solving 4(2r + 1) + 7 = 35 for 2r + 1 is 

essentially equivalent to solving 4x + 7 = 35 for x.  

Students‘ not being goal-oriented. In general, many students do not explicitly set 

a goal, assess their progress towards it, and/or fail to recognize the attainment of it. 

English and Halford (1995) refer to this deficiency as ―lack of strategic knowledge in 

solving algebraic tasks‖ (p. 232). Wenger (1987) observed that students tend to ―go 

around in circles‖ (p. 219) and seem to choose their next move without having a specific 

goal in mind. Although students may perform legal transformations, they sometimes end 

up with a more complex equation. For example, in trying to solve 1 2 1v u v u= + +  

for v, 34 out of 64 college students were compelled to get rid of the square-roots even 
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though the equation is actually linear in v (Wenger, 1987). In this case, the students did 

not assess whether a particular step would get them closer to their goal. Matz (1982) has 

observed that students tend to perform steps that are applicable but not necessarily 

productive. Matz (1980) observes that ―when students do not assess whether [an action] 

gets them closer towards a goal, they execute steps that are obviously applicable, but not 

productive; their work has an aimless character‖ (p. 148). For example, students may pull 

out a common factor in one step and undo it in another step by multiplying out the newly 

factored expressions. When asked to solve ( )( )1 4 0q q- + =  for q, some students in my 

pilot study multiplied out the factors to obtain the standard form, which they then solved 

either by factoring (i.e., undid what they had done) or using the quadratic formula. These 

behaviors may be described as do what you can and see what happens next.  

To attain a goal, one must work within the constraints of the situation. In the 

context of symbol transforming, one must attend to invariance—the preservation of the 

denotation of an expression when its form is changed. In the case of simplifying an 

inequality or equation, one must preserve its solution set. However, one must recognize 

that expressions are transformed purposefully towards a certain desired form and not 

aimlessly. One cognitive objective for instruction should be to help algebra students to 

develop algebraic invariance, which Harel (in press c) defines as ―the way of thinking by 

which one recognizes that algebraic expressions are manipulated not haphazardly but 

with the purpose of forming a desired structure and maintaining certain properties of the 

expression invariant‖ (p. 14). Harel points out that the completing the square algorithm 

can be taught in a manner that promotes this way of thinking. If students can solve 

(x + T)
2
 = L readily, then they can be challenged, in phases, to manipulate 
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ax
2
 + bx + c = 0 with the goal of attaining the desired from of (x + T)

2
 = L, while ensuring 

that the solution set is preserved. With an algebraic invariance way of thinking, goal-

directed operations become learnable for students. Without it, on the other hand, ―symbol 

manipulation is largely a mysterious activity for students—an activity they carry out 

according to prescribed rules but without a goal in sight‖ (Harel, in press c). 

Desirable Ways of Understanding and Ways of Thinking for Algebraic Instruction 

In an earlier part of this discussion, I mentioned a few ways of understanding and 

ways of thinking that could be incorporated as cognitive objectives for instruction. 

Desirable ways of understanding include understanding that the referent of an equation is 

its solution set, understanding equivalent equations as having same solution set, and 

understanding that variables are both definite and unspecified. Desirable ways of thinking 

include referential symbolic reasoning, capitalizing on structure, acting it out 

operationally to make sense of something abstract, treating a collection of objects as one 

entity, accepting lack of closure, and algebraic invariance.  

Developing these ways of understanding and ways of thinking would require 

students to reason repeatedly with algebraic inequalities and equations far beyond the 

traditional practice of applying standard procedures to solve different families of 

equations and inequalities. For example, students should experience some numerical 

substitutions that make an equation/inequality true and others that make it false. Finding 

all the numbers or ordered pairs that make an equation/inequality true is presumably an 

intrinsic task that students can appreciate. Comparing different solution strategies may 

promote a striving-for-efficiency way of thinking and may encourage reflection. 

According to Davis (1986), as students reflect on the process of solving and notice 
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structures/patterns, they may ―discover‖ rules for rewriting equations/inequalities. With a 

repertoire of equation-rewriting rules, students can begin analyzing each new equation to 

determine a sequence of equation-transformations towards the solution (Davis, 1986). 

Such analysis and reasoning helps students cultivate the algebraic invariance way of 

thinking. 

 

2.6 A Summary of the Theoretical Framework and Research Objectives 

The theoretical perspective in this research is based on Piaget‘s (1967/1971) 

notion of anticipation, von Glasersfeld‘s (1998) three general types of anticipation, and 

Cobb‘s (1985) hierarchical levels of anticipation. Two acts of anticipating are identified: 

foreseeing an action and predicting a result. 

Harel‘s (in press c) MA-WoU-WoT framework is used to analyze students‘ acts 

of foreseeing and predicting. A way of understanding refers to the result/action a student 

actually predicts/foresees, and a way of thinking characterizes the manner in which the 

student predicts/foresees. 

The research has three objectives: (a) to categorize students‘ ways of thinking 

associated with the mental acts of predicting and foreseeing, (b) to identify the 

relationship between these ways of thinking and students‘ ways of understanding 

algebraic inequalities/equations, and (c) to explore the potential for advancing students‘ 

ways of thinking through a short-term instructional intervention that is guided by Harel‘s 

DNR-Based Instruction (2001, in press a). The next chapter presents the research 

methods employed in this study to achieve these objectives.  



   

 

64 

CHAPTER 3: RESEARCH METHODOLOGY  

 

The research design and the methods for studying students‘ mental act of 

anticipating (foreseeing and predicting) are discussed in the first section. Information on 

data collection is presented in the second section. The research instruments are discussed 

in the third section. The data analysis process is described in the fourth section.  

 

3.1 Research Methods 

This study has three parts. The preliminary part consisted of administering a 

written assessment to four classes of 11
th

 graders. In Part 1, clinical interviews (Ginsburg, 

1997) were conducted with 14 eleventh-graders. In Part 2, four learners received one-on-

one teaching interventions.  

Preliminary Part: Written Assessment 

One purpose of administering the written assessment was to give the students a 

feel for the nature of this research and to let them know how their participation in this 

research could contribute to the improvement of mathematics education. A second 

purpose was to use their written responses to select participants for Part 1 of the study. A 

third purpose was for me to gain a general sense of 11
th

 graders‘ algebraic knowledge 

pertaining to inequalities/equations at that particular high school. 

Before administering the written assessment, I used an activity (see Appendix A) 

to get the students acquainted with the format of the written assessment as well as to get 

them interested in this research. During the activity, I emphasized that the focus of the 

research was on their reasoning and not on their memory of how to do stuff. 
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The written assessment consisted of 5 items (see Appendix A). The students were 

asked to write down their initial response to the problem and their subsequent thoughts. 

After the written responses were collected, I introduced the research project and 

encouraged them to participate in both parts of it. I explained to them that an 

understanding of the way students think as they do mathematics can help future teachers 

to teach in a manner that is consistent with the way students think.  

Part 1: Semi-structured Clinical Interviews 

Eleventh graders were chosen because most eleventh graders at this school had 

completed two years of algebra. Since the purpose of the interview was to elicit students‘ 

mental acts of foreseeing and predicting, the tasks were designed to see how students 

would apply their algebraic knowledge to solve unfamiliar problems. This requires that 

the interviewees have some experience in working with algebraic equations and 

inequalities.  

The objective of the clinical interviews was to elicit students‘ foresights and 

predictions. The interviews were semi-structured: they were structured in the sense that a 

standard protocol (see Appendix B) and tasks from a fixed set of items (see Appendix C) 

were used. The interviews were unstructured in the sense that I, as the interviewer, had 

freedom to pursue any direction that I deemed promising in eliciting anticipatory 

behaviors based on the interviewee‘s particular ways of understanding. 

I adopted a two-phase approach for each task in the interviews: a non-interactive 

phase and an interactive phase. In the non-interactive phase, the interviewee solved a 

problem with minimal intervention other than a prompt requesting that the interviewee 

think out loud. I avoided asking subjects to reflect on their thought process during this 
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phase because introspection would disrupt the interviewee‘s flow of thoughts (Ericsson 

& Simon, 1993). However, not all interviewees were comfortable with thinking out loud. 

In that case, the interviewee was asked intermittently, ―can you tell me what you are 

thinking?‖ During this stage, probes were withheld until the interviewee had arrived at an 

answer, a prediction, or an impasse. In the interactive phase, the interviewee might be 

asked to share her or his reasons for certain actions, her or his interpretation of the 

problem statement, the meaning she or he had for certain symbols, etcetera. Whenever 

the interviewee arrived at a conclusion, she or he would be asked, ―On a scale of 1 to 10, 

how confident are you that your answer is correct?‖ followed by ―Why are you ___ (the 

number) confident?‖ If the student was not ―10‖ confident, the student would be asked 

―how can you make it a 10?‖ From that point onward, the interaction was no longer 

structured in the sense that I would ―follow where the child‘s thought leads‖ (Ginsburg, 

1997, p. 49). On a few occasions, impromptu questions or tasks were also posed to test 

certain hypotheses about the interviewee‘s ways of understanding and/or ways of 

thinking.  

My role as interviewer involved (a) putting the interviewee at ease in the 

interview; (b) prompting the interviewee to think out loud and share her (or his) thinking; 

(c) probing the interviewee‘s thinking by getting her to report what she had been 

thinking, to explain her reasons for certain actions, to explain why she thought a certain 

thing, or to rate her level of confidence; (d) ensuring that I understood the interviewee‘s 

interpretation of the tasks and subsequently, if necessary, helped her to interpret the task 

as intended; and (e) managing the flow of the interview, for instance, posing follow-up 
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questions to pursue certain interesting avenues associated with interviewee‘s responses 

and negotiating the transition from one task to another. 

In the introductory statements during the interview (see Appendix B), I 

emphasized the intent of the interview―to understand how students think and not to test 

whether they know how to do certain things correctly. This emphasis aimed to minimize 

the tendency of interviewees to engage the interview with the ―school mathematics‖ 

mentality (Nunes et al., 1993), in which she (or he) might feel obliged to apply 

procedures taught to them. The emphasis on thinking instead of performing was 

reinforced throughout the interview by focusing on the interviewee‘s level of confidence 

of her answer instead of the correctness of her answer. Once the interviewee had 

indicated a confidence level of 10 (most confident) and had communicated her reason for 

her confidence, we would proceed to the next task, or conclude the interview if that was 

the last task. Likewise, if the interviewee indicated that she could not increase her 

confidence level any higher, we would also move on to the next task. 

Part 2: Teaching Interventions 

Four learners participated in the second part of the study. Each learner went 

through a series of five 60-minute problem-solving sessions followed by a post-

intervention interview. I chose to work with one learner at a time because I found, in my 

pilot studies, that I was not able to keep track of two or more students‘ thought processes 

simultaneously, especially when they were taking different lines of reasoning. The nature 

of the teaching intervention was also a consideration. If the setting involved a common 

milieu where students worked together on something such as a computer simulation or a 

physical instrument, then having two or more students would be appropriate because the 
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individual lines of reasoning would revolve around the ―public‖ line of reasoning. 

However, the setting for this teaching intervention was paper-and-pencil problem-

solving, which is inherently a private endeavor rather than a team effort. 

One purpose for this part of the study was to explore the potential in advancing 

students‘ ways of thinking. Another purpose was to have additional data for developing 

the categories for ways of thinking associated with anticipating. This data, in contrast to 

the interview data, provided a better sense of learners‘ robustness in their ways of 

thinking and the influence of problem situations on their ways of thinking. 

For this interventions, I focused on ―breath‖ rather than ―depth‖ because I wanted 

to maximize the opportunity for learners to solve problems. My strategy was to get them 

to engage with a variety of problems so as to help them to improve their ways of thinking 

associated with problem-solving.  

The teaching interventions in this research are not considered teaching 

experiments (Steffe & Thompson, 2000), which generally involve creating theoretical 

models for students‘ development of mathematical concepts such as rate of change, 

derivative, and equivalent inequalities. I found that creating models to represent the 

change in learners‘ ways of thinking associated with foreseeing/predicting was not 

possible in this study because change in ways of thinking does not occur in phases and is 

usually not linear.  

Nevertheless, I found many features of Steffe and Thompson‘s (2000) teaching 

experiment model to be appropriate for my teaching interventions. One such feature is 

the coupling of the teaching component with the research component: while a teaching 

experiment strives to enhance students‘ ways of understanding of equations and 
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inequalities and ways of thinking associated with anticipating, hypotheses are generated 

during and after each teaching episode (i.e., problem-solving session). After testing 

hypotheses about students‘ ways of understanding and ways of thinking during a 

teaching episode, the instructor uses his findings to plan the teaching actions for the next 

session. In terms of research, the features of a teaching experiment offered me: (a) the 

flexibility to pose questions and tasks so as to increase the chance of observing the 

learner‘s foresights/predictions; (b) the opportunity to construct and test hypotheses 

about the learner‘s ways of understanding and ways of thinking associated with 

foreseeing/predicting; and (c) the flexibility in tailoring a lesson to the learner so as to 

work at the boundaries of her or his mathematical knowledge.  

My interactions with the learner were guided by Piaget‘s (1970) theory of 

learning and Vygotsky‘s (1978) zone of proximal development. I consider learning to be 

the process by which learners construct new knowledge from their existing knowledge as 

they interpret and make sense of a situation. As a teacher, my role is to create 

opportunities for learning, to provoke intellectual need, and to pose questions that shift 

the learner‘s attention. To advance a learner‘s ways of understanding and ways of 

thinking, non-cognitive factors that facilitate learning were incorporated into the teaching 

intervention. I strove to create a positive, non-threatening learning environment and to 

arouse the learner‘s interest in the lessons. To achieve this, I tried to help the learner feel 

challenged and in control of her or his learning, as well as having a sense of success in 

―creating‖ mathematics and gaining insights. 

The planning and the implementation of a problem-solving session were in 

accordance with Simon‘s (1995) hypothetical learning trajectory. In designing the entire 
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intervention for a learner, I identified learning objectives, created activities, and 

anticipated a hypothetical learning process――a prediction of how the students‘ thinking 

and learning will evolve in the context of the learning activities‖ (Simon, 1995, p. 136). 

The hypothetical learning trajectory was constantly revised because the actual learning 

trajectory tended to be different.  

The designing, sequencing, and assigning of tasks were based on Harel‘s DNR-

based instruction (in press a). In accordance with the Duality Principle, tasks were 

tailored to the individual learner‘s ways of understanding and ways of thinking 

simultaneously. In accordance with the Necessity Principle, tasks were designed to 

necessitate, and to help the learner to acquire, the target ways of understanding and ways 

of thinking. The tasks were supposed to be challenging yet within the learner‘s zone of 

proximal development (Vygotsky, 1978). During the problem-solving sessions, I posed 

questions to guide the learner towards certain desirable ways of thinking in a non-

intrusive manner. If the learner began to engage in non-referential symbolic reasoning, I 

posed appropriate questions to get the learner to attend to meaning. In accordance with 

the Repeated-reasoning Principle, meaningful tasks were used to get the learner to apply, 

to experience the limitations of, and to refine, her or his existing ways of understanding 

and ways of thinking. Tasks were sequenced so that the learner could reason repeatedly 

and thereby internalize and retain certain desirable ways of understanding and ways of 

thinking. Homework was assigned as a means to foster repeated reasoning, but only two 

learners completed the homework assignments with a motivation to learn.  

All the tasks used in the problem-solving sessions involved only one variable. 

Thus, the interviewee‘s responses to the two-variable tasks in the post-interview were 
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valuable for providing information about possible improvement in the learner‘s ways of 

understanding and ways of thinking beyond the settings in which they occurred. 

Each teaching intervention was concluded with a post-interview. From the 

learner‘s perspective, the last session was just another problem-solving session. From my 

perspective, the purpose was to assess any change in the learner‘s ways of thinking 

associated with foreseeing/predicting. Six tasks were used in all the post-interviews; they 

were chosen from the set of tasks used in the pre-interviews.  

Finally, this study did not attribute changes in a student‘s ways of thinking solely 

to the teaching intervention. Establishing such a causal relationship was not necessary 

because this research was not concerned with the effectiveness of the instructional 

intervention. For this reason, interviewees who did not participate in the teaching 

intervention did not have a post-interview. 

 

3.2 Data Collection  

Site for the Study 

The site for this study was a public middle/high school in Southern California that 

spanned grades 6 through 12. One unique feature of this school is that it is a university-

based charter school that practices detracking—one track for all students, although 

different students within a particular grade level may be taking content courses at 

different levels. For example, the majority of 11
th

 graders at this school are enrolled in 

Pre-calculus, with some in Calculus and some in Algebra II. 

This school aims to provide an intensive college preparatory education for low-

income students who are motivated to become the first generation in their families to 
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graduate from a four-year university. The enrollment in 2004/2005 was approximately 

780 students with 59% Hispanic, 22% Asian, 13% African American, and 6% White. 

Although the school is located in an affluent neighborhood, about 90% of the students 

come from non-affluent neighborhoods and are bused in.  

Selection of Participants 

The participants for this study were recruited from the four 11
th

 grade university-

preparatory periods
11

 in the school (the recruitment script is in Appendix E). Prior to the 

recruitment, the students were asked to complete a written assessment: 67 out of about 90 

students completed the written assessment. 

Eight students (Ali, Chela, Jose, Maria, Noel, Talia, Raul, and Vito) indicated 

interest in participating in both parts of the study (the clinical interviews and the teaching 

interventions), and another 23 students indicated interest in only Part 1 of the study. All 

eight students who indicated interest in both parts were included for Part 1. Another six 

students were selected, based on their written responses and the mathematics class in 

which they were enrolled, to form a diverse group of interviewees with different levels of 

competence in mathematics. In total, I interviewed 4 Algebra II students, 4 Pre-calculus 

students, 5 Calculus students, and 1 student taking Calculus II at a university affiliated 

with the school.  

Out of the eight students who were interested in both parts of the study, four 

learners (Vito, Ali, Talia, and Chela) were chosen for Part 2. Jose and Pham were not 

                                                 

11
 University-preparatory periods (commonly known as advisory periods) involve 30 minutes of reading 

(Kick-Back-and-Read program) and 30 minutes of doing mathematics (Kick-Back-and-Calculate) each 

week. Other activities were aimed at helping students to develop skills like test-taking, notes-taking, 

etcetera. 
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chosen because they demonstrated desirable ways of thinking in their interviews. Maria 

and Noel were not chosen because they had weak foundation in algebra and arithmetic, 

and I anticipated that an intervention with them would be at a pre-algebra level. My goal 

was to select four learners with different ways of thinking but similar levels of 

competence in algebra.  

Data Collection Process 

The interviews and the problem-solving sessions were conducted during 

university-preparatory periods. The participants were pulled out from their classrooms 

and interviewed either in an adjacent discussion room or in another classroom. All the 

sessions were videotaped and audiotaped.  

The interviews were transcribed during the period of data collection. I conducted 

an initial analysis of the interview data before starting the teaching interventions. The 

purpose of this preliminary analysis was to determine an overall plan for the teaching 

intervention for each learner. The overall plan included (a) cognitive objectives in terms 

of ways of understanding and ways of thinking, (b) tasks to achieve these objectives, and 

(c) a hypothetical learning trajectory (Simon, 1995). The overall plan for each learner 

was modified during the course of the teaching intervention. 

The four teaching interventions were conducted in two rounds: Vito and Ali 

participated in the first round, and Talia and Chela were in the second round. I met with 

each learner on average once a week over a period of five to six weeks. Each problem-

solving session was transcribed prior to the next session. Interesting segments were 

analyzed to determine the cognitive goals and instructional tasks for the next session.  
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At the end of the teaching intervention, the learners were asked to write a 

summative report on their participation in the tutoring sessions. Approximately a year 

later, they were asked to comment on the change in the way they learn mathematics and 

solve mathematics problems, as well as what they had learned from their participation in 

the project. Talia‘s responses are included in Appendix F.  

The written assessment and recruitment was completed in February 2005. The 

interviews were conducted in February-April 2005. The teaching interventions for Vito 

and Ali were conducted in May-June 2005 and those for Talia and Chela in June-July 

2005.  

 

3.3 Research Instruments 

The main objective of this research was to study students‘ mental acts of 

foreseeing and predicting. The tasks used in the interviews and the problem-solving 

sessions were critical factors for success. These tasks were developed and refined during 

my pilot work, in which I interviewed 13 students and held a total of 17 problem-solving 

sessions with 3 of them. I also tested out certain items in a written assessment with 84 

Algebra 2 students at a different high school. I tested the four tasks listed in Figure 1.1 

with a group of 9 calculus students in another high school.  

The appropriateness of the tasks used in the clinical interviews is discussed next. 

Following that, I present rationales for using certain tasks in the problem-solving 

sessions. 
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Characteristics of the Interview Tasks 

Two types of tasks were used in the interviews: single-variable tasks and two-

variable tasks. As mentioned earlier, only single-variable tasks were used in the teaching 

intervention. This approach allowed me to feel confident that changes in students‘ 

responses to two-variable tasks from the pre-interview to the post-interview were not a 

consequence of having done similar tasks in the problem-solving sessions. Figure 3.1 lists 

the six items used in the post-interview (see Appendix C for the problem set from which 

tasks were used in the pre-interview). 

 

Figure 3.1: Items used in the post-interview 

One important characteristic of the tasks is that they were intended to be non-

routine for the students; in other words, these tasks are not typically found in algebra 

textbooks. Although these tasks were generally unfamiliar to the interviewees, they were 

―meaningful‖ for the interviewees in the sense that they seemed to engage the 

interviewees. 

 

S2. Is there a value for x that will make the following statement true? 

(2x – 6)(x – 3) < 0 

S5. Is the following statement always true, sometimes true, or never true? 

(x + 1) + (x + 2) + (x + 3) + … + (x + 99) + (x + 100) < 100x 

T1. Given that 5a = b + 5, which is larger: a or b? 

T2. p and q are odd integers between 20 and 50. For these values,  

is 5p – q > 2p + 15 always true, sometimes true or never true? 

T3. Given that m is greater than n, can m – 14 ever be equal to 7 – n? 

T4. Consider (x + 1)(2k – 7) = 3(2k – 7). 

Is there a value for k that makes this equation true for all values of x? 
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Another characteristic of the tasks is that they were non-directive; they did not 

direct students to do perform certain actions. Examples of directive tasks, in contrast, 

include, ―solve (2x – 6)(x – 3) < 0 for x‖, ―simplify (x + 1) + (x + 2) + … + (x + 100)‖ and 

―solve for b: 5a = b + 5‖. In addition, the tasks were phrased in the form of a question so 

that interviewees could make a prediction, if they chose to, prior to doing any work.  

A third characteristic is that the tasks could be approached in a variety of ways, 

such as by reasoning with the structure of the inequality/equation, by manipulating 

symbols, or by plugging in numbers. This characteristic was designed to elicit a greater 

variety of anticipatory behaviors. In addition, the tasks were structurally different from 

each other. However, the same format was intentionally used for items S1, S2, S3, and S4 

so that the interviewees can focus on the inequalities/equations. In addition, I wanted to 

reduce the cognitive load required to interpret the first few tasks so as not to overwhelm 

the interviewee, especially at the beginning of an interview. Psychologically, familiarity 

is presumably more comforting. Using the same format was a means to minimize the 

interviewee‘s stress level. 

Each inequality/equation was carefully designed to serve certain purposes. For 

example, consider (2x – 6)(x – 3) < 0. The factored form was chosen to see whether an 

interviewee would capitalize on its structure, or would immediately expand the factors to 

obtain the standard form, a move that is counter-productive. The factor 2x – 6 was chosen 

to be twice of the factor x – 3 so that there is only one critical value, making the 

inequality false but the corresponding equation (2x – 6)(x – 3) = 0 true. The factor x – 3 

was intentionally made to be simple so that those who attend to structure would notice 

the relation between 2x – 6 and x – 3. For another example, consider Item T2. The 
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functions in the inequality 5p – q > 2p + 15 were chosen such that there was only one pair 

of values for p and q in the interval (20, 50) that will make the inequality false. The 

extreme values of 21 for p and 49 for q allowed me to determine whether students were 

goal-oriented in their choices of numbers for substitution. The ―greater than‖ sign was 

chosen instead of a ―less than‖ sign to see whether students would falsify their claim that 

the inequality is always true after finding a few pairs of values that made it true. Having p 

appear on both sides of the inequality allowed me to see whether students would simplify 

the inequality, say to 3p – q > 15, to ease their reasoning. 

Characteristics of Tasks used in the Problem-solving Sessions  

The general characteristics of the items used in the teaching intervention were 

similar to those used in the interviews. In addition to assessing learners‘ ways of thinking, 

the problem-solving sessions were aimed at helping learners learn. Occasionally, a non-

directive task was used to focus on certain ways of understanding such as the notion of 

solution set. For example, ―what is the solution set for x(6x + 8) < 0?‖ 

The tasks used in the teaching intervention were not designed to prepare the 

learners to do well in the post-interview (compare the interview tasks listed in Appendix 

C with problem-solving-session tasks listed in Appendix D). Nevertheless, the tasks were 

designed to help students develop desirable way of thinking and ways of understanding, 

which were supposed to improve learners‘ responses for the tasks in the post-interview. 

One of the cognitive objectives for the teaching intervention was for students to 

reason with structure. Hence, many of the tasks were aimed at promoting the attending-



   

 

 

78 

 

to-structure way of thinking. An example of such a task is Item TE1-VN5b
12

: ―Suppose 

we want to make 2x + 2222 < 8x + 88 never true. Is it possible to change one of the 

numbers (2, 2222, 8, 88) so as to make it never true?‖ Another example is Item TE5-TN4: 

―Is the following statement always true, sometimes true, or never true? (x – 3)
2
 + 1 > 0‖. 

A second objective for all four learners was to help them develop desirable ways 

of understanding for solution sets and equivalent inequalities. To achieve this objective,  

I used the problems like the following: ―Consider these two inequalities:  

5x + 10 > x + 5000 and 4x > 4990. Is there a value for x that will make one of them true 

but will make the other false?‖ (Item TE2-VN2). I also created tasks to test a learner‘s 

understanding of equivalent inequalities. An example is ―Write an inequality that has the 

same solution set as, but looks different from 2x – 10 > 50 – x‖ (Item TE5-VR3).  

Tasks used in the problem-solving sessions were individually tailored to each 

learner. The type of tasks used could be the same, but the inequalities/equations were 

often different. For example, the pair of equivalent inequalities used for Vito (TE2-VN2) 

and Ali (TE2-AN3) was 5x + 10 > x + 5000 and 4x > 4990, whereas the pair used for 

Talia (TE3-TN3) and Chela (TE2-CN2) was 6x + 15 < 0 and 8x + 20 < 0. The functions in 

the former pair are related additively, whereas those in the latter pair are related 

multiplicatively.  

Certain tasks were created specifically to help a learner deal with certain ways of 

understanding. An example is the follow-up to Item TE3-TN3, in which Talia did not 

notice the multiplicative relation between the two functions (Chela did). To help Talia 

                                                 

12
 The code TE1-VN5b stands for Teaching Episode 1 for Vito, New item, Fifth item in the session, Part b 

of the task. The code TE5-TR3 stands for Teaching Episode 5 for Talia, Reuse-of-a-homework-task, Third 

item in the session. 
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extend her way of thinking from comparing functions additively to comparing functions 

multiplicatively, I created tasks to help her develop the way of understanding that 

8x + 20 is a multiple of 6x + 15. I assigned these two items for homework: ―Consider 

these two functions y1 = 6x + 15 and y2 = 8x + 20. Can you find the relationship between 

these two functions?‖ and ―Try to use algebra to show why the ratio between the two 

functions is always 4/3‖. In her homework, she observed the multiplicative relation from 

a table of numerical values, but was not able to show algebraically why the ratio is 

always 4/3. So I created Item TE5-TR3: ―(a) Find the function 2

1

y

y
. (b) What do you 

expect to get if you were to solve 
8 20 4

6 15 3

x

x

+
=

+
?‖ 

There were some differences between the teaching interventions in the first round 

for Vito and Ali and those in the second round for Talia and Chela. After finding that 

their developing a structural understanding for the linear inequality of the form 

Ax + B < Cx + D did not contribute much to improving Vito‘s and Ali‘s ways of thinking, 

I focused on quadratic inequalities in factored form for Talia and Chela.  

In the second round of teaching interventions, I included tasks that could promote 

an awareness of the danger of ―blindly‖ applying a newly learned idea. For example, I 

sequenced Item TE2-TR2 (―Is there a value of y that makes 2y + (4y – 9) ≤ 0 true?‖) after 

Talia had learned the critical point method in solving Item TE1-TN2b (―What is the 

solution set for x(6x + 8) < 0?‖).  

Another difference between the two rounds of interventions is that tasks that 

foster prediction based on the structural property of inequality were used in problem-
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solving sessions for Talia and Chela, but not in those for Vito and Ali. An example is 

Item TE3-TN5a: ―When I plug x = 61 into 5(8x – 20) < 10(8x – 20), the output value for 

the function on its LHS is 2340. What is the output value for the function on its RHS?‖  

In this section, I have discussed how the characteristics of the tasks were designed 

in accordance with the research objectives and tailored to individual learners. I have also 

highlighted some differences between the two rounds of teaching interventions.  

 

3.4 Data Analysis  

There were two rounds of analyses. The first round was conducted during the data 

collection phase, in the transition period between Phase 1 (clinical interviews) and 

Phase 2 (teaching interventions) of the study. Having selected four learners for the 

interventions, I analyzed their responses to the items in the pre-interview. I identified 

their general ways of thinking—general in the sense that these ways of thinking were 

associated with problem-solving, rather than specific mental acts such as foreseeing, 

predicting, inferring, and interpreting. Examples of these ways of thinking included non-

referential symbolic reasoning, association-based reasoning, inductive reasoning, 

considering-for-falsity, being-goal-oriented, and being-algorithm-oriented. I also 

identified deficient ways of understanding such as interpreting-an-inequality-as-an-

equation and conflating-quadratic-formula-with-quadratic-function. I analyzed the 

responses of interviewees who performed well in order to generate a list of desirable 

ways of thinking that could be set as learning objectives for the four participants. 

Examples of these desirable ways of thinking included reasoning-with-structure, 
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reasoning-with-generality-in-mind, algebraic invariance, and coordinating-goal-

condition-action.  

The second round of analysis was comprehensive and was conduced after all data 

had been collected. The data was analyzed in the following order: (a) Talia‘s pre-

interview and post-interview, (b) Talia‘s teaching intervention, (c) pre-interview and 

post-interview for the other three learners, (d) interviews for the remaining 9 learners 

who did not participate in Part 2 of the study (Noel‘s interview was discarded because of 

her weakness in arithmetic), and (e) teaching intervention for Chela. I began with one 

learner because I wanted to identify the change in Talia‘s ways of thinking and consider 

how that change could be characterized. Another reason for focusing on one particular 

learner was to minimize the variance so that I could more quickly get a handle on how to 

infer the learner‘s mental act of anticipating from the learner‘s actions and statements. In 

this sequence of analysis, pre- and post-interview data from the 4 learners were used to 

create the categories for ways of thinking associated with foreseeing/predicting. 

Interview data from the 9 interviewees (Part 1 only) was used to test and refine those 

categories. 

I analyzed the data in three phases that correspond to the three research questions. 

The results of the analysis are reported in Chapters 4, 5, and 6, respectively. 

Phase 1: Developing Categories 

I began the analysis by identifying observation categories (Clement, 2000) for 

students‘ ways of thinking associated with foreseeing/predicting, and students‘ ways of 

understanding inequalities/equations. These categories were derived from the data using 

a constant comparative approach (Glaser & Strauss, 1967) in the sense that existing 
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categories were subject to modification as incoming data were analyzed against them. 

The analysis involved, (a) identifying instances of the mental acts of foreseeing and 

predicting (inferred from student‘s actions and statements); (b) generating, comparing, 

and refining categories for ways of understanding and ways of thinking; and (c) 

consolidating and collapsing some of the categories. The consolidated categories were 

further revised and refined in light of new information generated in subsequent phases of 

the analysis.  

Phase 2: Identifying Relations between Ways of Thinking and Ways of 

Understanding 

In the second phase of the analysis, a portion of the data was coded using the 

consolidated categories of observation categories. Tables of codes were created for 

interviewees‘ responses to two pre-interview items, namely Item Pre-T1 and Item Pre-

S2. The purpose was to help me notice patterns of relations among ways of thinking 

associated with foreseeing/predicting, ways of understanding inequalities/equations, 

quality/correctness of solutions, and the sub-context (Cobb, 1985) in which students were 

operating. The data were re-analyzed, this time to establish the nature of the relations, 

which were formulated as theoretical concepts (Clement, 2000). The ultimate goal was to 

integrate these theoretical concepts as hypotheses in a theoretical model. For the 

purposes of this research, I did not attempt to construct such a model because it goes 

beyond the scope of this particular study. 

Phase 3: Accounting for Change 

A table of codes was created for each learner to make noticeable the change from 

the pre-interview to the post-interview in the learner‘s ways of thinking associated with 



   

 

 

83 

 

foreseeing/predicting, ways of understanding inequalities/equations, quality/correctness 

of solutions, and sub-context in which the learner was operating. Episodes of all five 

problem-solving sessions for Talia were analyzed to gain a general sense of her ways of 

thinking and ways of understanding. I later re-visited the data to account for significant 

transitions as well as to account for the change in her ways of thinking and ways of 

understanding. A similar analysis was conducted for Chela. As for Vito and Ali, the 

analysis was mainly on their pre-interview and post-interview and not on their problem-

solving sessions because their pre-to-post improvements were marginal. These results are 

discussed in detail in Chapter 6. 
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CHATPER 4: STUDENTS’ WAYS OF THINKING ASSOCIATED WITH 

FORESEEING/PREDICTING 

 

There are three chapters on results and discussions. They correspond to the three 

research questions: (a) What are students‘ ways of thinking associated with the mental 

acts of foreseeing and predicting when they solve problems involving algebraic 

inequalities/equations? Are these ways of thinking related to the quality of their 

solutions? (b) What relationships exist between these ways of thinking and their ways of 

understanding inequalities and equations? (c) What is the potential for advancing 

students‘ ways of thinking through an instructional intervention informed by DNR-based 

instruction?  

This chapter addresses the first question and begins by contrasting two students‘ 

responses to highlight the need for attending to ways of thinking associated with 

anticipating. This is followed by a description of five ways of thinking associated with 

anticipating and three ways of thinking associated with predicting that were identified in 

this study. 13 interviewees‘ responses to two interview tasks were analyzed to see if there 

was a relationship between their ways of thinking and the quality of solution. I conclude 

with a discussion on why these ways of thinking are important in mathematics education. 
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4.1 A Comparison of Two Students’ Responses 

Two interviewees‘ responses are used to compare the way they approach the first 

item in the interview, namely Item Pre-S1
13

: ―Is there a value for x that will make the 

following statement true? (6x – 8 – 15x) + 12 > (6x – 8 – 15x) + 6‖ Both interviewees, 

Talia and Pham, were 11
th

 graders enrolled in Calculus.  

For the excerpts used throughout the result chapters, I used the following 

conventions. Three spaced ellipsis points, …, within a sentence denotes omission of 

phrases. A pair of parentheses like, ( ), denotes a comment. A pair of square brackets, [ ], 

denotes an additional phrase.  

Excerpt 01: Talia‘s initial response  

Talia: Is there a value for x that will make the following statement 

true? Of course there is. Let see, umm. 

Lim: Why did you say ―of course, there is‖? 

Talia: Because, well, I figure there should be an answer to this 

problem, and, um, let‘s see, I was taught to combine like terms. 

I was taught this (>) is actually an equal sign. 

Lim: OK. 

Talia: To solve it like I would solve an equation. … (She obtained 

-9x + 6 = -9x and then wrote 6 > 0.) Umm, that doesn‘t [seem] 

right, because x has canceled out. What did I do wrong? … 

OK. Is there a value for x that will make the following 

statement true? Maybe there isn‘t. 

 

Excerpt 02: Pham‘s initial response 

Pham:  OK. Let‘s see. The stuffs in the parentheses are the same. 

Umm, OK, first I guess I would combine all like terms. … (He 

got -9x + 4 > -9x – 2). Umm, now it‘s asking is there a value 

for x that will make the following statement true. Umm, let me 

see, I think 4 and -2, so you have a common term (i.e. -9x). 

                                                 

13
 The code Pre-S1 stands for Pre-interview, Single-task Item 1. The code Post-T1 stands for Post-

interview, Two-variable Item 1. The code TE3-CN4 stands for Teaching Episode 3 for Chela, New item, 

Fourth item in the session. The code TE2-TR1 stands for Teaching Episode 2 for Talia, Reuse-of-a-

homework-task, First item in the session. 
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OK, so it‘s, you have a -9, so anything [positive] that you 

multiply will [make it] a negative number, and this (+4) is 

positive. Let‘s see, yes, there is a value because… this, this 

[left] side will be greater. I guess, if it (-9x) was positive then, 

so is this side (-9x). So any negative number would make the 

statement true. … Umm, I think all numbers would make the 

statement true. 

  

One difference between these two responses is that Pham arrived at the correct 

answer but not Talia. Another difference is that Talia‘s way of understanding of 

inequality is weaker than Pham‘s. Talia interpreted the inequality as a task to isolate x 

and treated it as an ―equation‖, whereas Pham treated the inequality as a comparison of 

two algebraic expressions. A third difference is the manner in which they approach the 

problem. How can we characterize the thinking
14

 that underlies the actions these two 

students took to solve this problem? 

Both Talia and Pham combined like terms. Recall that within a Piagetian 

perspective, action presupposes anticipation. Therefore, we can assume that Talia and 

Pham had anticipated, or foresaw, the expediency of combining like terms. As previously 

stated, a way of understanding associated with foreseeing refers to the action one actually 

anticipates. Hence, both Talia and Pham are said to have the same way of understanding: 

combining like terms. Both of them were spontaneous in their foresight of combining like 

terms. However, the spontaneity in Talia‘s anticipation was characteristically different 

from that in Pham‘s. Upon seeing the problem, Talia immediately thought of what she 

could do to the inequality, rather than thinking about what the question was asking. Her 

act of anticipating had an element of impulsiveness, impulsive in the sense that she had 

                                                 

14
 The thinking that underlies their actions is related to their understanding of inequality, and this relation is 

discussed in Chapter 5.  
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routinized a particular way of understanding (i.e., combining like terms is a routine for 

her to solve certain inequalities/equations). I categorized her way of thinking associated 

with foreseeing as impulsive
15

 anticipation
16

. This way of thinking is inferred when a 

student immediately applies a procedure without considering its appropriateness. 

Pham, on the other hand, noticed that ―the stuffs in the parentheses are the same‖ 

and combined like terms with the probable intent of obtaining a simpler form. He might 

have predicted in his mind that the left side was always larger than the right side and was 

confirming his prediction. He seemed to have interiorized the usefulness of combining 

like terms and was capitalizing on his understanding that it would be easier to reason with 

simpler expressions. Thus his way of thinking was coded as interiorized anticipation. 

This way of thinking is inferred when a student spontaneously applies her or his 

interiorized way of understanding to a problem situation that is familiar to her or him. In 

order to have interiorized one‘s way of understanding of a concept, one must have 

abstracted the way of understanding to the next level of understanding by reorganizing 

                                                 

15
 I considered using the term routinized anticipation, which is a good contrast for interiorized anticipation. 

On the other hand, impulsive anticipation is a good contrast for analytic anticipation. I chose impulsive 

anticipation because impulsiveness is a characteristic that is more readily observed in students‘ actions and 

statements. Moreover, being impulsive implies having algorithmatized a particular way of understanding, 

but the converse may not be true. 
16

 I considered using the phrase impulsive anticipative scheme. From a Piagetian perspective, associated to 

a mental act is the activation of scheme(s). Since the anticipative scheme governing Talia‘s act of 

anticipating results in an impulsive response, I could use the term impulsive anticipative scheme to describe 

her way of thinking associated with her anticipating. However, I chose to use impulsive anticipation to 

characterize her act of anticipating because it describes her anticipatory behavior and does not imply her 

possession of an impulsive anticipative scheme, which can be viewed as a conceptual tool. The analysis 

required for inferring one‘s anticipative scheme is more demanding than for categorizing an act of 

anticipating. This is because one‘s anticipative scheme cannot be inferred from a single act of anticipating. 

The analysis conducted in this study was insufficient to infer the scheme underlying the students‘ mental 

acts. A direction for future research is to identify and characterize students‘ anticipatory/predictive 

schemes.  
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one‘s conceptual structures, which one can then autonomously, but not necessarily 

spontaneously, apply to new situations.
17

 

With respect to the mental act of predicting, Talia‘s impulsiveness is reflected in 

her prediction. Upon seeing the problem, she predicted ―of course there is‖ because she 

figured that ―there should be an answer to this problem.‖ She seemed to have associated 

her having a procedure for isolating x with the inequality having a solution.
18

 Because of 

this, I categorized her way of thinking characterizing her prediction as associated-based 

prediction. This way of thinking is inferred when a student predicts by merely associating 

two ideas without establishing the basis for making such an association. Talia‘s 

prediction of ―maybe there isn‘t‖ upon observing the disappearance of x from the 

inequality is also considered association-based because she associated the disappearance 

of x with the nonexistence of a value for x that would make the inequality true. 

Pham, on the other hand, did not explicitly make a prediction, so I cannot 

comment on his way of thinking associated with predicting. However, when anticipating, 

he reasoned with -9x + 4 > -9x – 2. His way of thinking associated with foreseeing is 

                                                 

17
 If a student has internalized, but not interiorized, a particular way of understanding, then the student is 

able to autonomously and spontaneously apply a particular way of understanding in familiar situations but 

not in new situations because the student has not abstracted it to a higher level. For example, one who has 

internalized the quadratic equation in factored form can autonomously and spontaneously solve problems 

of the form (ax + b)(cx + d) = 0, whereas a student who has interiorized it would be able to that as well as 

to apply it to solve autonomously, but not necessarily spontaneously, novel equations such as 

 (3x + 8)(x – 2) = 5(3x + 8) and (2x
2
 – 8)(4 – y)

2
 = 0. I chose the term interiorized anticipation over 

internalized anticipation to emphasize that the internalization must be beyond being able to autonomously 

apply an algorithm or a routine.  
18

 This association may be a consequence of her perceiving the didactical situation in the interview to be 

similar to that in her regular mathematics classroom. She might be thinking ―there should be an answer to 

this problem otherwise you wouldn‘t have asked me.‖ However, her engagement in the tasks and her 

verbalizing of her thoughts suggest that we had established a didactical contract by which she was 

supposed to put her best effort to solve the problem. So her responding to the problem situation in a manner 

that is similar to how she would respond in a regular classroom situation indicates her beliefs about 

learning mathematics. 
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considered analytic anticipation because he identified the goal of determining whether 

there is a value of x that will make the new inequality true, and anticipated the usefulness 

of reasoning with the common term -9x.  

By comparing Talia‘s and Pham‘s initial responses to Item Pre-S1, I have 

introduced four ways of thinking: impulsive anticipation, interiorized anticipation, 

analytic anticipation, and association-based prediction. A total of five WsoT associated 

with foreseeing and three WsoT associated with predicting emerged from the data.  

 

4.2 Ways of Thinking Associated with Foreseeing 

The five ways of thinking associated with the act of foreseeing include impulsive 

anticipation, interiorized anticipation, analytic anticipation, explorative anticipation, and 

tenacious anticipation. Definitions and examples will be provided for each of theses ways 

of thinking. 

Impulsive Anticipation 

Impulsive anticipation is defined as the way of thinking in which one 

spontaneously proceeds with an idea that comes to mind, without analyzing the problem 

situation and without considering the relevance of the anticipated action to the problem 

situation. This way of thinking is inferred when a student rushes into a procedure or acts 

out the first idea that comes to mind. As discussed in the previous section, Talia‘s 

foresight of combining like terms is characterized as impulsive anticipation because she 

jumped into the equation-solving procedure. 

When a student exhibits impulsive anticipation, the student does not seem to be 

―anticipating‖ because the student is merely acting out what comes to mind. However, 
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according to Piaget, anticipation is presupposed in all actions. We may view impulsive 

anticipation as a case where the element of anticipation is negligible, just like an empty 

set is a set and a zero vector is a vector. 

Interiorized Anticipation 

Interiorized anticipation is defined as the way of thinking in which one 

spontaneously proceeds with an idea without having to analyze the problem situation 

because one has interiorized the relevance of the anticipated action to the situation at 

hand. Notice that both interiorized anticipation and impulsive anticipation are 

spontaneous in nature. The difference is that interiorized anticipation capitalizes on 

interiorized ways of understanding that are appropriate for the problem situation. For 

example, Pham‘s foresight of combining like terms was based on his understanding of the 

effectiveness of combining like terms, which facilitated his comparison of the two sides 

of the inequality. 

Analytic Anticipation 

Analytic anticipation is defined as the way of thinking in which one analyzes the 

problem situation and establishes a goal or a criterion to guide one‘s actions. It is inferred 

when a student attempts to understand the problem statement, studies the constraints, 

identifies a goal, imagines what-if scenarios, and/or considers alternatives. Pham‘s 

foresight of reasoning with the common term -9x is characterized as analytic anticipation 

because it was goal-oriented in that it was aimed at comparing the functions, -9x + 4 and 

-9x – 2. 
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Explorative Anticipation 

Explorative anticipation is defined as the way of thinking in which one explores 

an idea to gain a better understanding of the problem situation. It is inferred when a 

student performs an action to get a sense of the mathematical terrain of the problem 

situation, to test the usefulness of an idea to the situation at hand, to test one‘s prediction, 

or to explore different cases or numbers. For example, consider Raul‘s response to Item 

Pre-S1. Raul was an 11
th

 grader taking Pre-calculus. Like Talia and Pham, Raul also 

anticipated combining like terms.  

Lim: Or, what are you thinking now? 

Raul: How to, how to solve this problem. 

Lim: Yeah, OK. 

Raul: If I, if I should combine the x‘s first. I think I should. … (He 

eventually obtained -9x > -9x + 10.) ... You‘re supposed to 

add the 9 to this side, but it would cancel the x.  

 

Unlike Talia and Pham, Raul did not spontaneously anticipate combining like terms. He 

was exploring the usefulness of combining like terms. As such, his foresight of 

combining like terms is categorized as explorative anticipation.  

Tenacious Anticipation 

Tenacious anticipation is defined as the way of thinking in which one maintains 

and does not re-evaluate her or his way of understanding of the problem situation in light 

of new information. The way of understanding in this case could be a prediction, a 

problem-solving approach, a claim, or a conclusion. Tenacious anticipation is inferred 

when a student encounters, or is presented with, new information but hold on to her or his 

way of understanding of the problem situation without considering alternative approaches 

and without considering that her or his claim might be false.  
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As an example of tenacious anticipation, consider Vito‘s response to Item Pre-S5: 

―Is the following statement always true, sometimes true, or never true? 

(x + 1) + (x + 2) + (x + 3) + … + (x + 99) + (x + 100) < 100x‖. Vito was an 11
th

 grader 

taking Pre-calculus. He predicted it was never true. He plugged in 2 for x to obtain 

3 + 4 + 5 + … + 101 + 102 < 200 and commented ―if you add these two (101 and 102), 

that‘s already 203. So it‘s always going to be greater.‖ When challenged ―you only 

consider one number though, x equals 2‖, he plugged in -2 for x. Focusing on the last two 

terms he got 195 < -200. He predicted that any negative number would make it true and 

confirmed by plugging in -5 for x. When I changed the inequality to 

(x + 98) + (x + 99) + (x + 100) < 100x, Vito maintained his way of understanding that the 

last two terms sufficed to be greater than 100x and predicted ―never true because this is 

the same as this. You‘re just adding right here, … just the last 2, and it would be, umm, 

greater than the right hand side.‖ When challenged, he plugged in 0.5 for x, and that 

confirmed his prediction. Vito was so tenacious in his way of understanding that he 

seemed to choose numbers to support his prediction rather than to falsify it.  

In this section, five ways of thinking associated with foreseeing have been 

presented. These ways of thinking can be divided into two groups based on their 

desirability from the perspective of mathematics education. Impulsive anticipation is 

undesirable because it minimizes one‘s engagement with the problem situation. 

Tenacious anticipation is undesirable because it tends to confine one‘s way of 

understanding. The remaining three ways of thinking are considered more desirable. 

Explorative anticipation and analytic anticipation require active engagement with the 

problem situation on the part of the problem-solver. Interiorized anticipation speeds up 
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one‘s problem solving by capitalizing on one‘s interiorized ways of understanding. 

Identifying these ways of thinking provides a means for mathematics educators to 

characterize and communicate students‘ problem-solving. 

 

4.3 Ways of Thinking Associated with Predicting 

As discussed in Chapter 1, the terms foreseeing and predicting are used to 

distinguish the two aspects of anticipation; namely the foresight of an action to 

accomplish something, and the prediction of a result prior to performing an action. In 

general, these two acts do not occur independently of one another. Foreseeing an action 

to accomplish something inevitably invokes an expectation on its accompanying result, 

and predicting a result necessarily involves mentally carrying out some operations to 

arrive at the result. Nevertheless, one of these aspects may dominate a particular 

behavior, and the aspect I examine depends on whether a person‘s primary goal is to 

come up with an action or to predict something.  

Recall that what the student actually predicts is referred to as the way of 

understanding associated with the mental act of predicting, and the character underlying 

her or his prediction is referred to as her or his way of thinking. Three ways of thinking 

associated with predicting were identified from the data in this research: association-

based prediction, coordination-based prediction, and comparison-based prediction. 

Definitions and examples will be provided for each of theses ways of thinking. 

Association-based prediction 

Association-based prediction is defined as the way of thinking in which one 

predicts a result or an answer by associating two ideas without establishing the basis for 
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making such an association. It is inferred when a student‘s prediction is based on a mere 

association between the situation at hand and an idea that comes to mind without thinking 

about the appropriateness of the association. An example of this way of thinking is 

Talia‘s prediction that ―of course there is‖ a value of x that would make  

(6x – 8 – 15x) + 12 > (6x – 8 – 15x) + 6 true. Her prediction was based on her association 

between her having a procedure and the inequality having a solution.  

Coordination-based Prediction 

Coordination-based prediction is defined as the way of thinking in which one 

predicts by coordinating quantities or attending to relationships among quantities. It is 

inferred when a student considers how the change in one entity affects that in another. 

Consider Pham‘s response to Item Pre-S3: ―Is there a value for x that will make the 

following statement true? 1.2x + 3456 < 7 + 8.9x‖. Pham predicted ―yes, eventually‖ and 

explained ―8.9 is so much bigger than [1.2], as long as it‘s bigger than the multiple (i.e., 

coefficient) of this (1.2x). The right side has a bigger multiple (coefficient) than the left 

side. So, eventually some numbers will make it larger than the left side.‖ Pham‘s 

prediction was based on a dynamic comparison of the two functions where he 

coordinated the input value of x with the output values of 1.2x and 8.9x.  

The next example highlights an essential difference between coordination-based 

prediction and the third type of prediction, namely comparison-based prediction. 

Consider Ida‘s initial response to Item Pre-S1: ―Is there a value for x that will make the 

following statement true? (6x – 8 – 15x) + 12 > (6x – 8 – 15x) + 6‖.  

Ida: Since they are both the same right here, I‘m guessing that just 

because this has … plus 12 and this has a plus 6, no matter 
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what value of x I put in, this will always be true because it has 

a greater [sign]. 

 

Ida‘s prediction was most likely based on her understanding that the output value of the 

function 6x – 8 – 15x changes as the input value of x changes. If that is the case, her 

prediction would involve coordination among the input-value of x, the output value of 

6x – 8 – 15x, the output value of the left side, and the output value of the right side. 

Hypothetically, if her response did not include the phrase ―no matter what value of x I put 

in,‖ and if she were interpreting 6x – 8 – 15x as a non-quantitative object rather than as a 

function, then her prediction of ―always true‖ would be characterized as comparison-

based prediction. 

Comparison-based Prediction 

Comparison-based prediction is defined as the way of thinking in which one 

predicts by comparing two elements or situations in a static manner. It is inferred when a 

student compares the values of two quantities without considering change and without 

coordinating them with other conditions or quantities. For example, Vito predicted that 

there was no value for x that will make 1.2x + 3456 < 7 + 8.9x true and explained ―you 

are always going to add 3456, and this is higher than this one, than 7.‖ Unlike Pham, he 

did not coordinate the change in value of x with the change in the value of 1.2x and that 

of 8.9x. His prediction was based on a comparison of the two constant terms, so his 

prediction is characterized as comparison-based prediction.  

The intricacy in Karen‘s prediction in Item Pre-S1 is worth discussing.  

Karen: (After failing to isolate x from the equation that she derived: 

( )9 8 14 9

9 9

x x- - + -
=

- -
) … I have no idea. 
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Lim: Or can you predict just by looking at this [(6x – 8 – 15x) + 12  

> (6x – 8 – 15x) + 6]? 

Karen: No, it won‘t.  

Lim: What do you mean it won‘t? 

Karen: There won‘t be, I mean, this, umm, well this plus 12 and this 

plus 6, and they are the same here. So I, I‘m guessing that this 

side will always be more than this side. 

Lim: M-hmm.  

Karen: So that this, but I don‘t know what, but I forgot how to make it 

true. But I think this side is always going to be more because 

there is 12 there, and I‘ve 6 there. … 

Lim: So you, based on that would still skip, or would choose an 

answer? 

Karen: I would skip it because you need to know what value for it, 

makes this true … find the value of x that makes this true. 

 

Karen‘s guess of the left side being greater than the right side was based on a static 

comparison between the two sides of the inequality. Unlike Ida, she treated the common 

expression 6x – 8 – 15x as a non-quantitative object. Her prediction that there would not 

be a value of x that would make the inequality true might be due to her interpreting the 

inequality as an equation. Her prediction seemed to be based on an association between 

the inequality having a solution and her getting ―x is on one side and a number on the 

other side.‖ If so, her prediction is coded as association-based prediction despite the fact 

that she performed a static comparison. Nevertheless, a code was not assigned to her 

prediction because she would not have made a prediction on her own accord.  

In this section, three ways of thinking associated with predicting were presented. 

Association-based prediction is considered undesirable because making associations 

without considering their basis prevents students from making connections among, and 

gaining a deeper understanding of, the mathematical ideas involved. Comparison-based 

prediction seems undesirable because making static comparisons does not offer students 

the opportunity to practice mental coordination of quantities. Coordination-based 
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prediction is considered desirable because students have the opportunity to practice 

mental coordination of entities such as relating the change of one quantity to that of 

another quantity. These three ways of thinking offer educators a means to communicate 

the sophistication in students‘ mathematical thinking. 

Table 4.1 summarizes the eight categories that were developed from the data in 

this research. These categories may not be robust because they emerged from the analysis 

of a very small sample of students. Moreover, they are based on a single domain of 

mathematics, namely the domain of algebraic inequalities and equations. Further research 

is needed to refine and expand these categories. 

Table 4.1: Definition for Ways of Thinking Associated with Foreseeing/Predicting 

Category Definition 

Interiorized 

anticipation 

Spontaneously proceeds with an idea without having to analyze the 

problem situation because one has interiorized the relevance of the 

anticipated action to the situation at hand 

Analytic 

Anticipation 

Analyzes the problem situation and establishes a goal or a criterion 

to guide one‘s actions 

Explorative 

anticipation 

Explores an idea to gain a better understanding of the problem 

situation 

Tenacious 

anticipation 

Maintains and does not re-evaluate one‘s way of understanding 

(prediction, problem-solving approach, claim, or conclusion) of the 

problem situation in light of new information 

Impulsive 

anticipation 

Spontaneously proceeds with an idea that comes to mind without 

analyzing the problem situation and without considering the 

relevance of the idea to the problem situation 

Coordination-

based prediction 

Predicts by coordinating quantities or attending to relationships 

among quantities 

Comparison-

based prediction 

Predicts by comparing two elements or situations in a static manner 

Association-

based prediction 

Predicts by associating two ideas without establishing the basis for 

making such an association 
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4.4 Relation between Students’ Ways of Thinking and Their Quality of Solution 

The second part of the first research question states ―Are students‘ ways of 

thinking related to the quality of their solutions?‖ To answer this question, 13 students‘ 

responses to two interview tasks were analyzed in terms of the ways of thinking that I 

have just described.  

The two items used were Item Pre-T1 and Item Pre-S2. The problem statement for 

Item Pre-T1
19

 is, ―Given that 5a = b + 5, which is larger: a or b?‖ There is a follow-up 

question to this item: ―Given that 5a = b + 5, can a and b be equal to each other?‖ The 

problem statement for Item Pre-S2 is, ―Is there a value for x that will make the following 

statement true? (2x – 6)(x – 3) < 0‖. One reason for choosing these two items is the 

greater variety in students‘ responses for these two items as compared to the other items. 

A second reason is that they are substantially different tasks. Item Pre-T1 is a two-

variable task, involves an equation, and requires students to compare the relative 

magnitude of the two variables. Item Pre-S2 is a one-variable task, involves an inequality, 

and requires students to realize that no values of x would make the inequality true. 

Table 4.2 and Table 4.3 compare the 13 interviewees‘ responses to Item Pre-T1 

and Item Pre-S2 respectively. Their ways of thinking associated with foreseeing, their 

ways of thinking associated with predicting, and their correctness of solution (Item Pre-

T1) or quality of explanation (Item Pre-S2) were coded. A binary code is used for entries 

pertaining to ways of thinking. A ―1‖ indicates that a particular way of thinking is 

present, and an empty box indicates its absence.  

                                                 

19
 The phrasing of the problem—which is larger, a or b—does not suggest the possibility that either 

variable could be larger. So, interviewees who did not consider that possibility were asked if the other 

variable could be larger. 
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The 13 interviewees in tables 4.2 and 4.3 are listed in a certain order (with 

students exhibiting more sophisticated ways of thinking listed first) to facilitate the 

comparison between students‘ ways of thinking and the quality of their 

solutions/explanations. The list of interviewees in Table 4.2 include Pham, Raul, Jose, 

Quy, Chela, Ali, Talia, Ida, Bella, Maria, Elsa, Karen, and Vito. In the table, they are 

represented by the first letter of their name. The ordered list of interviewees in Table 4.3 

is slightly different: Pham, Quy, Raul, Jose, Chela, Vito, Karen, Ali, Elsa, Bella, Talia, 

Ida, and Maria.  

Table 4.2: Comparison Among 13 Interviewees Based on Their Response to Item Pre-T1 

Interviewee P R J Q C A T I B M E K V 

Mathematics Course  C C C C2 A2 PC C A2 C A2 PC PC PC 

Grade in Mathematics Course B A B A B B B C C A C B A 

W
o
T

  

F
o
re

se
e
in

g
 

Interiorized 

anticipation 
1 1 1 1          

Analytic  

anticipation 
  1  1 1 1 1 1 1    

Explorative 

anticipation 
1 1 1 1 1 1 1 1 1 1 1 1 1 

Tenacious 

anticipation 
           1 1 

Impulsive 

anticipation 
            1 

W
o

T
 

P
re

d
ic

ti
n

g
 Coordination-based 

prediction 
1  1  1 1   1     

Comparison-based 

prediction 
  1 1 1 1 1 1     1 

Association-based 

prediction 
        1 1 1  1 

Correctness of solutions 2 2 1 1 1 0 1 1 1 0 0 0 0 

 

A ternary code is used for ―correctness of solution‖ category in Table 4.2. A ―2‖ 

indicates that the interviewee gave correct answers to both the original question and the 



   

 

 

100 

 

follow-up question, a ―1‖ indicates a correct answer for the original question but an 

incorrect answer for the follow-up question, and a ―0‖ indicates incorrect answers for 

both questions.  

Table 4.2 suggests that the desirability of students‘ ways of thinking is related to 

the correctness of their solutions. The two students who answered both parts of the 

problem correctly exhibited interiorized anticipation. Except for Ali and Maria, all the 

students who exhibited analytic anticipation answered the original question correctly. 

Except for Ali, all the students who exhibited coordination-based prediction answered the 

original question correctly. Except for Bella, all the students who exhibited association-

based prediction answered both parts incorrectly. Two students exhibited tenacious 

anticipation and/or impulsive anticipation, and they answered both parts incorrectly. In 

summary, students who exhibited more desirable ways of thinking such as interiorized 

anticipation, analytic anticipation, and coordination-based prediction achieved better 

scores than students who exhibited less desirable ways of thinking such as tenacious 

anticipation, impulsive anticipation, and association-based prediction. 
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Table 4.3: Comparison Among 13 Interviewees Based on Their Response to Item Pre-S2 

 

Interviewee P Q R J C V K A E B T I M 

Mathematics Course  C C2 C C A2 PC PC PC PC C C A2 A2 

Grade in Mathematics Course B A A B B A B B C C B C A 

W
o

T
  

F
o

re
se

e
in

g
 

Interiorized 

anticipation 
1 1 1           

Analytic  

anticipation 
  1 1 1   1 1 1 1   

Explorative 

anticipation 
1 1 1 1 1 1 1 1 1 1 1 1 1 

Tenacious 

anticipation 
             

Impulsive 

anticipation 
          1   

W
o
T

 

P
re

d
ic

ti
n

g
 Coordination-based 

prediction 
  1 1 1 1 1       

Comparison-based 

prediction 
         1    

Association-based 

prediction 
  1        1   

Quality of explanation 2 2 1 1 1 2 1 2 0 0 0 0 0 

 

For ―quality of explanation‖ category in Table 4.3, a ―2‖ indicates that the 

response sufficiently explains why the inequality is never true. An example is Quy‘s 

response: ―if x is less than 3, then … both of these [factors] would be negative, which 

makes it positive, and it‘s still not true. And if x is greater than 3, it would make them all 

positive, and it would still not be true. So, there is no value for x that would make it true.‖ 

A ―1‖ indicates that the explanation is incomplete. An example is Jose‘s explanation: ―[x 

being equal to] 3 is the closest that‘ll get to anything (the function) below 0, but it gets to 

0 [not below 0],‖ but his assumption that the vertex of the parabola was at (3, 0) was 

empirically-based. A ―0‖ indicates that no explanation is provided as to why there could 

be no values of x that would make the inequality true other than empirical results. 
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Table 4.3 suggests the existence of certain relationships between ways of thinking 

and quality of explanation. All the students who exhibited interiorized anticipation scored 

a ―1‖ or ―2‖. Likewise, all the students who exhibited coordination-based prediction also 

scored a ―1‖ or a ―2‖. However, only four out of seven students who exhibited analytic 

anticipation scored a ―1‖ or a ―2‖. This suggests that analytic anticipation does not 

necessarily leads to success.  

The relations betweens students‘ ways of thinking and their quality of 

solution/explanation are discussed below and are substantiated by students‘ responses to 

these two tasks. These responses are organized in terms of the relations between certain 

ways of thinking associated with foreseeing/predicting and certain aspects of their 

problem solving that lead to favorable solution/explanation. 

Association-based Prediction is Related to the Non-referential Symbolic Way of 

Thinking 

For Item Pre-T1 (involving 5a = b + 5), Bella, Maria, Elsa, and Vito exhibited 

association-based prediction and did not arrive at a correct answer for either question. 

Bella, Elsa, and Vito initially predicted that a would be bigger than b because 

multiplication has a greater effect than addition. For example, Vito commented ―I would 

say a because you‘re multiplying by 5 and then right here you are just adding.‖ Their 

association of the arithmetic operation with the magnitude of the variable indicates that 

they did not attend to the meaning of the equal sign, which in this situation refers to the 

equivalence in value between the two sides.  

Maria also did not attend to the equivalence characteristic of an equal sign. Upon 

incorrectly obtaining a = b/5, she predicted that ―b is going to be bigger than 5 in order to 
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divide.‖ She associated b being greater than 5 with b/5 not being a proper fraction 

because she was focusing on the division on the right side instead of the equivalence 

between the two sides: ―because if you do a smaller number, it‘s going to be a fraction, 

and b is going to be smaller than a.‖ 

For Item Pre-S2, Raul and Talia demonstrated association-based prediction. When 

Raul obtained 
12 8

4

i±
 as the solutions for (2x – 6)(x – 3) = -1, he predicted that 

numbers in the neighborhood of 3 would make the equation true. His association-based 

prediction was a consequence of his way of understanding imaginary numbers, a 

pseudostructural conception (Sfard & Linchevski, 1994b) under which he worked with i 

without knowing/remembering the primary process that is encapsulated by the object i.  

Talia‘s association-based prediction was a consequence of her lack of 

understanding of the quadratic formula. When Talia obtained 3 from the quadratic 

formula, she rejected 3 as a solution because 3 < 0 is false. She associated 
26 6 4(1)(9)

2

± -
 

with (2x – 6)(x – 3); that is, she associated the root of a function with the output-value of 

the function. Her association-based prediction indicates that she was doing mathematics 

without attending to the referent or meaning of a symbol, which Harel (1998, in press c) 

labels the non-referential symbolic way of thinking.  

Discussion. The data suggests a strong relation between association-based 

prediction and the non-referential symbolic way of thinking. For students to advance to 

referential symbolic reasoning, their non-referential symbolic tendency and/or 

pseudostructural conception must be allowed to surface. Hence, we should provide 
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students opportunities to predict. Upon detecting students‘ association-based predictions, 

we can pose questions or offer activities that can help students address their inappropriate 

associations and thereby cultivate the habit of attending to meaning. The implementation 

of this instructional strategy is discussed further in Chapter 6. 

Impulsive Anticipation is Related to the Forward-Strategy Approach 

There were only two instances of impulsive anticipation: Vito for Item Pre-T1 and 

Talia for Item Pre-S2. This low frequency might be due to the characteristics of the tasks. 

The tasks were intentionally designed to minimize impulsive behaviors so that other 

anticipatory behaviors could be observed. 

Vito demonstrated impulsive anticipation for Item Pre-T1: ―Given that 5a = b + 5, 

which is larger: a or b?‖ 

Vito: I don‘t know, because this (a) could be any number and this (b) 

one could be any number too. a could equal, let‘s say 4, and 

then b could equal 9. So then that‘s 20, and that‘s 9 plus 5 is 

14. So then a would be larger. And then if I plug in the other 

way, a for 9, and b equals 4, you get 45 and then 5 plus 4, 9. So 

a … would be larger.  

 

Vito spontaneously thought of plugging in numbers into the equation without attempting 

to understand the problem situation. His foresight of plugging in 4 for a and 9 for b is 

coded as impulsive anticipation because he acted out the first idea that came to his mind, 

that is, plugging in numbers to determine the answer.  

Talia demonstrated impulsive anticipation for Item Pre-S2: ―Is there a value for x 

that will make the following statement true? (2x – 6)(x – 3) < 0‖. Talia immediate 

response was ―Yes. Let‘s see, I think we have to multiply out first.‖ Her anticipation is 
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considered impulsive because she spontaneously expanded the expression without 

studying the inequality. She then used the quadratic formula and obtained 3.  

Discussion. Both Vito and Talia spontaneously applied a procedure without 

appearing to study the problem situation. Their impulsive anticipation is related to their 

having a procedure. Their problem-solving behavior can be characterized as a forward-

strategy approach which, according to Sweller (1989), is used when schemas are 

available. Conversely, if a student engages in means-ends analysis, which is considered a 

backward-strategy approach, then the student is considered as exhibiting analytic 

anticipation. Forward-strategy and backward-strategy are considered problem-solving 

approaches, which are ways of thinking associated with the act of problem-solving. 

Tenacious Anticipation is Related to Inflexible Reasoning 

Karen demonstrated tenacious anticipation and scored a ―0‖ for Item Pre-T1. She 

approached the problem by creating a table of values for a and b based on 5a = b + 5. 

With these ordered pairs (2, 5), (5, 20), and (10, 45), she inferred that b was larger. When 

asked if a could be greater than b, she explored ―what if a is 100, that (5a) would be 500, 

and that (b) would have to be four hundred and something. No, I don‘t think a can be 

larger than b.‖ Her anticipation of plugging in 100 for a is considered explorative. When 

asked if a could be equal to b, she then considered plugging in 1 for a: ―Well, at this 

point, this (5a) is 5, and this (b) has to be zero… Umm, so if this (a) is 3, it‘ll make that 

15. … Nope, a can‘t be bigger than b.‖ Surprisingly she overlooked that (1, 0) was a 

counter-example to her statement. Her anticipation of plugging in 3 for a is coded as 

tenacious anticipation because she used it to support her prediction and ignored the case 

that falsified her prediction.  
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On this same item, Vito was tenacious in his way of understanding of the 

situation: if a were larger than b, then 5a would be greater than b + 5. So when asked if a 

could be greater than b, he responded ―no because you‘re multiplying, if you‘re multiply 

a larger number to 5, it will be a larger answer than, having b [plus 5], like what I did 

right here (where (9, 4) made 5a greater than b + 5).‖ His anticipation of using his 

previous example of plugging in (9, 4) is considered tenacious anticipation because he 

did not attempt to consider other possibilities. Similarly, when asked if a could be equal 

to b, he responded ―ngm-mm, cause the same thing‖ and plugged in 5 for both a and b to 

communicate his point. 

Discussion. Both Karen and Vito engaged in explorative anticipation. However, 

their ―exploration‖ was constrained by their tenacious anticipation in that they did not 

attempt to change their way of understanding of the problem situation. Karen was so 

tenacious in her way of understanding that she overlooked a counter-example she had 

computed. Vito was so tenacious in his way of understanding that he provided supporting 

evidence without considering the possibility of being wrong.  

Tenacious anticipation is an indication of students‘ lack of flexibility in their 

problem solving. When students engage in tenacious anticipation, they tend to do 

mathematics without an element of doubt. To counter tenacious anticipation, mathematics 

teachers should provide learning situations that foster desirable ways of thinking such as 

considering-alternatives and considering-falsity (i.e., attempting to ―falsify‖ one‘s way of 

understanding).  
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Coordination-based Prediction is Related to Reasoning with Change 

For Item Pre-T1, five interviewees demonstrated coordination-based prediction. 

For the follow-up question, Pham predicted that a could be equal to b because he was 

interpreting the problem graphically as involving two functions: ―what I would do is I 

would just graph it. Treat this as one function. Treat that as a different, another function.‖  

Jose, Chela, Ali and Bella predicted that b would be larger to compensate for the 

greater effect of multiplication in 5a than the addition in b + 5. Consider Ali‘s response. 

Ali: Um, b is larger, because anytime you multiply something it‘s 

going to be [larger], I guess. And you‘re comparing an addition 

[to] multiplication … the addition have to be bigger because, in 

this case, you‘re having 5 multiplied by a. In this case you have 

5 added by b. So if you want to get them to be the same thing, 

then b will have to be larger. 

 

Ali‘s prediction of b being larger is characterized as coordination-based prediction 

because it involves coordination and compensation. He saw that for b + 5 to be equal to 

5a, a larger value for b is needed to compensate for the greater effect of multiplication as 

compared to addition.  

For Item Pre-S2, Raul, Jose, Chela, Vito and Karen exhibited coordination-based 

prediction. I shall use Chela‘s and Raul‘s responses to illustrate how their coordination-

based prediction led them to an explanation. Chela predicted that the inequality (2x –

 6)(x – 3) < 0 could not be true because she coordinated the input values of x and the 

product of the output value of each factor: ―whatever you plug in … if this (2x – 6) comes 

up positive, I think this one (x – 3) will always come up positive. If this one is negative, it 

will come out negative. And it will still never be, err, less than zero.‖ 
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Raul predicted that 2x
2
 – 12x < -18 represents a parabola after plugging in 1, 4, 

and 6 and finding the left side to be -10, -16, and 0, respectively. His prediction of a 

parabola is considered coordination-based because it was based on his observation that as 

x changes from 1 to 4 to 6 the output decreased from -10 to -16 and then increased to 0. 

This prediction led him to create a table for the function (2x – 6)(x – 3) and sketch its 

graph, from which he then explained ―it wouldn‘t go passed the 0, x-axis.‖ These 

examples illustrate that coordination-based prediction tends to involve reasoning with 

change. 

Discussion. A fundamental aspect of algebra is that it is a study of functions, 

relations, and joint variation (Kaput, 1999). The notion of function inevitably involves 

change, yet many algebra students tend to view function as an action involving 

manipulation of objects, such as plugging in an input value to get an output value, what 

Dubinsky and Harel (1992) would call the action conception of function. Opportunity for 

students to engage in reasoning that fosters change and coordination provides students 

with experiences that would help them in developing a process conception of function, 

which involves ―imagining a transformation of mental or physical objects that the subject 

perceives as relatively internal and totally under his or her control‖ (Dubinsky & Harel, 

1992, p. 20). However, the development from action conception of function to process 

conception of function is beyond the scope of this research.  

Analytic Anticipation Facilitates Problem Solving 

Talia and Ida are the only students who arrived at the correct answer for Item Pre-

T1 without exhibiting interiorized anticipation or coordination-based prediction. Their 

success may be attributed to their engagement in analytic anticipation and explorative 
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anticipation. They identified the equation 5a = b + 5 as a constraint to guide their 

plugging in of numbers. Talia‘s response is discussed in Chapter 6. Ida‘s response is 

discussed here. 

Ida: So I have to think of 2 variables that will make these two 

equations equal to themselves. So, if this was 5 (i.e. b = 5), 5 

plus 5 equals 10, 5 times 2 equals 10. So if these are my 

variables, I have to say that b is larger. I can [try] with another 

one. 3, yeah. b is larger. 

Lim: b is larger. Can a be larger than b? 

Ida: Hmmm? Oh, let‘s see. (12 seconds elapsed) Yes it can. Like 

for example, -2 times 5 would give me -10. And then -15 plus 

5 would give me -10. And -10 (probably meant -15) is smaller 

than -2. 

 

Ida‘s foresight of plugging in 5 for b to determine the value of a is considered analytic 

anticipation because it was geared towards her goal of finding a pair of values that would 

make the equation true and then comparing the values. Her foresight of plugging -2 for a 

is considered explorative anticipation in that she was exploring if negative numbers 

would change the result. With analysis and exploration, Ida was able solve this problem 

correctly.  

For Item Pre-S2, Raul, Jose, Chela, and Ali exhibited analytic anticipation  

and provided an explanation for why (2x – 6)(x – 3) < 0 has no solution. Their  

reasoning showed that they acted with purpose. Raul foresaw solving the equation  

(2x – 6)(x – 3) = -1 as a means to check if the parabola would go below the x-axis.  

Jose anticipated plugging in 1 for x to falsify his original prediction that ―there is no  

value of x that will make the statement ( 2 19
24

x x- = , which is incorrectly derived from  

(2x – 6)(x – 3) = -1) true.‖ Ali‘s foresight of plugging in a number smaller than 3 was 

aimed at making both factors negative, the product of which he mistakenly thought would 
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be negative. Chela anticipated ―a way where one of these has to be a negative, and one 

[positive]. I [want to] get a negative out of here (2x – 6) and a positive number out of here 

(x – 3).‖  

Discussion. Analytic anticipation facilitates problem solving in that it provides 

students with a sense of direction in their exploration. Analytic anticipation complements 

explorative anticipation in that it helps to guide one‘s exploratory actions.  

Analytic Anticipation Does Not Ensure Success 

For Item Pre-T1, Maria and Ali exhibited analytic anticipation but scored a ―0‖. 

Maria provides an interesting case because she demonstrated analytic anticipation but 

scored ―0‖ for both tasks. She analyzed the problem situations, but her weak foundation 

in algebra prevented her from making progress. Her response to Item Pre-T1 is provided 

below: 

Maria: Which is larger? a or b? OK. Well, there are two distinctive 

differences. I‘m just thinking, errr, this is multiplying 5, this is 

adding 5. So, what number, two different numbers, how would 

you know that? It would depend on which number you put it, 

… but umm, I don‘t think I should simplify this one because, 

you can‘t sim-, you can but, like you can divide the 5, but then 

what would be the purpose of that? I mean, oh… they both 

equal to each other (got a = b by canceling the two 5‘s in 
5

5

b +
) 

… if I simplify it, cause this goes into that (she probably meant 

one 5 goes into the other 5).  

 

Maria studied the equation, noticed the different operations, and was aware of the 

variability in a and b. So her anticipating, and rejecting, the possibility of dividing both 

sides by 5 is considered analytic anticipation. However, her weakness in algebraic 

manipulation led her to consider canceling the two 5‘s and obtain a = b. Realizing her 
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mistake, she went back to her original foresight of dividing both sides by 5, but she still 

did not preserve the solution set. 

Maria: Oh, no, no, no, it‘s not, I‘m sorry, it will be that, cause that‘s 

divide by everything (got a = b/5 from 
5

5

5

5 ba
 because she 

canceled the 5 in numerator b + 5 with the 5 in the 

denominator). So which one would be larger? Well, since this 

number was dividing. Let me rewrite it (5a = b + 5) so it‘s 

equal to b, or it could be that (b = 5a – 5), I‘m just writing a 

different format.  

Lim: M-hm. 

Maria: Maybe to spark something in my head or something, comes 

back, so minus 5, it will be 5a minus 5 (wrote b = 5a – 5). So 

this one (a = b/5) we see division going on.  

 

She then explored the fruitfulness of solving for b. Upon obtaining b = 5a – 5, she went 

back to reason with a = b/5, probably because the former involves two operations 

whereas the latter involves only division. Maria demonstrated analytic anticipation and 

explorative anticipation, but she was not successful because she manipulated symbols 

without attending to algebraic invariance. She was engaging in the non-referential 

symbolic way of thinking. 

Ali also demonstrated analytic anticipation and scored a ―0‖ for Item Pre-T1, even 

though he engaged in referential symbolic reasoning and considered falsity. 

Lim: So do you think a can be bigger than b? 

Ali: Ummm, let‘s see, it might, it might be bigger than b. Umm, if I 

were to do 5 times, errr, so you want, OK, a is to be bigger 

than b. … Arrr, I don‘t think [so] because right now I‘m 

thinking … no, it can‘t. 

Lim: No, no, it can‘t. 

Ali: But then, I have a feeling that, you know there might, I, I‘m 

thinking right now if I do something like errr, if I were [do] 

like 5 times 5, it‘s like 25. No. 

Lim: No. 

Ali: It‘s not going to happen because, you know, b is being added 

by 5. If 5 were a bigger number like, like 20 or something. 
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Lim: M-hmm. 

Ali: If 5 were like 20 (i.e., 5a = b + 20), then I could have said like 

B was 5. 

Lim: Hmmn. 

Ali: a was 5. 

 

In the midst of exploring examples, Ali foresaw changing the equation to 5a = b + 20 in 

order to illustrate that a could equal b if the constant term were 20 instead of 5. He might 

be thinking that, if the equation could not be changed, b would have to be larger than a. 

That way of understanding most likely stopped him from considering other possibilities 

further. Although Ali was analytic and goal-oriented in his reasoning, his conviction in 

his way of understanding prevented him from succeeding in this problem. 

 For Item Pre-S2, Elsa was one of the three students who exhibited analytic 

anticipation but scored a ―0‖. Her analytic anticipation complemented her explorative 

anticipation. Her choice of plugging 0.1 and -10 was aimed at making x
2
 – 12x + 18 less 

than 0. From the results she obtained in her exploration, she explained why she initially 

thought positive numbers could not work: ―squaring the numbers in there would just 

make it bigger. And adding 18, it would just make it bigger. But now that I see it, the 12x 

could have made it less than 0.‖ Her foresight that 12x could make it smaller led her to 

explore by plugging in 1, 2, 3, and 4 for x. She obtained 8, 2, 0, and 2 respectively as the 

output values for x
2
 – 12x + 18. However, she was surprised by the directional change in 

the output value when she plugged in 4 for x: ―that‘s weird, because this number was 

going down, and then it went back up again.‖ Her lack of success was due to her lack of 

structural understanding for quadratic functions. I conjecture that if she were to have 

reasoned with the factored form, her engagement in analytic anticipation and explorative 

anticipation would have led her to an explanation for the non-existence of a solution.  
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Discussion. Analytic anticipation is a desirable way of thinking because it 

involves reasoning with the problem situation, studying the constraints, identifying a 

goal, thinking ahead, making connections, and/or considering hypothetical situations. 

However, it does not necessarily lead to success in problem solving if a student reasons in 

a non-referential symbolic manner. Also, ways of understanding that are necessary for 

solving the problem may not emerge from students‘ anticipations alone. Collaborative 

group work or teacher intervention may be necessary to facilitate the emergence of 

certain ways of understanding. This instructional principle is related to Vygotsky‘s 

(1978) notion of zone of proximal development, which stipulates that a student can attain 

certain ways of understanding under the guidance of a teacher, or in collaboration with 

peers, that could not be achieved alone. 

Interiorized Anticipation Provides Efficiency in Problem Solving 

Pham and Raul answered the follow-up question in Item Pre-T1 correctly and 

exhibited interiorized anticipation. Both of them spontaneously foresaw the use of a 

graphical approach. Consider Pham‘s response to the follow-up question: ―Given that 

5a = b + 5, can a and b be equal to each other?‖  

Pham: Yeah, I would think so because, um, really what I would do is I 

would just graph it. Treat this as one function. 

Lim: M-hmm. 

Pham: Treat that as a diff-, another function and … 

Lim: How would you graph, you know, if you want to share with 

[me]. 

Pham: y equals 5, let‘s just say y equals 5, 5x. This one, b plus 5. So x 

plus 5. 

Lim: Ar-huh. 

Pham: Um, … we want to know when these two (5x and x + 5) are 

equal. Wait, we are saying it equal already. Oh, OK, yeah, OK. 

Um, a and b, right here when you are talking about a, in your 

question, a and b are like different numbers right? Or they can 
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be [the same], so I‘m just going to make it a common variable 

5x equals 5 plus x. 

 

Pham spontaneously foresaw graphing the two functions as y = 5x and y = x + 5. For a 

moment, he was not sure if he could assign the same letter x to both variables a and b. He 

soon realized that he wanted to make them equal to each other, and foresaw solving 

5x = x + 5 and obtained 1.25 for x. His foresight of graphing the two functions and of 

solving 5x = x + 5 for x are both considered interiorized anticipation because he had 

reified the primary processes of graphing into graphs, and of equating to two functions 

into equation. These structural conceptions (Sfard, 1991), which are necessarily 

interiorized, helped make his problem solving efficient. 

For Item Pre-S2, Pham, Raul, and Quy exhibited interiorized anticipation. Quy‘s 

understanding of factored form enabled her to anticipate an explanation: ―if x is less than 

3, then … both of these [factors] would be negative, which makes it positive, and it‘s still 

not true. And if x is greater than 3, it would make them all positive, and it would still not 

be true. So, there is no value for x that would make it true.‖ Students who lack such 

understanding of factored form would have to engage in explorative anticipation, analytic 

anticipation, and/or coordination-based prediction. For example, Karen explored by 

plugging 1 and -2 for x, and then predicted that no values of x would make the inequality 

true. She coordinated the negative input values of x, the output value of each factors, and 

the product.  

Karen: If x is a negative number, you are subtracting, so, the [result] of 

the first one will be negative, and the [result] of the second one 

would be negative, and a negative times a negative would be 

positive which is going to be greater than 0. So, that can‘t be 

true.  
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She foresaw that the same reasoning would hold for a positive small number. Unlike 

Quy, Karen‘s understanding of the structure of the function had to emerge from analyzing 

the results that she obtained from her exploration by plugging in numbers. 

Discussion. Interiorized anticipation is an indication of mastery of a particular 

concept. A ―problem‖ ceases to be a problem for someone who has mastered the 

mathematics related to the problem. On the other hand, one may exhibit interiorized 

anticipation for certain parts of the task but not all. In that case, interiorized anticipation 

makes problem solving more efficient without trivializing it.  

Although interiorized anticipation is a desirable goal for students, it should not be 

an immediate cognitive objective for instruction. Since interiorized anticipation is 

something that students will automatically exhibit once they have interiorized the ways of 

understanding for solving a certain class of problems, we should help students cultivate 

desirable ways of thinking, such as analytic anticipation, coordination-based prediction 

and considering falsity, that can empower them to develop those ways of understanding 

through a variety of problem-solving situations.  

Explorative Anticipation is a Part of Problem Solving  

Interestingly, all the interviewees exhibited explorative anticipation in both items. 

I have three hypotheses for this phenomenon. One hypothesis is that the interviewees 

participated in this research with an understanding that they were expected to share their 

reasoning as they were solving a problem. This might influence them to engage more 

with the tasks in the interview than they normally would in classroom situations. Another 

hypothesis is that the interview problems were not typical textbook tasks and were 
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phrased in a manner that made sense to them, which allowed them to explore their ways 

of understanding of the problem situation.  

The third hypothesis is that explorative anticipation is an inevitable part of 

problem-solving. If that is the case then explorative anticipation seems to be a trivial 

category. However, explorative anticipation may be absent in situations where the  

task is no longer a ―problem‖ for the student. For example, Quy could solve 

1.2x + 3456 < 7 + 8.9x (Item Pre-S3) by isolating x so efficiently that she was not 

interested in predicting the answer, even when asked. Also, explorative anticipation may 

be absent in situations where the student is not engaged with the problem. In this case, the 

category of explorative anticipation may be useful in classroom situations to differentiate 

students who are engaged in a problem from those who are not. 

As a category of ways of thinking associated with foreseeing, explorative 

anticipation does not convey information about the quality of students‘ problem solving. 

To characterize students‘ problem solving, we will have to study students‘ mental act of 

exploring and focus on their ways of understanding and ways of thinking associated with 

exploring. That is beyond the scope of this research. 

 

4.5 The Relevance of These Ways of Thinking to Mathematics Education 

The primary objective of this research is to develop categories of ways of thinking 

associated with the mental acts of foreseeing and predicting. Ways of thinking associated 

with foreseeing provide mathematics educators with the vocabulary to communicate the 

way students approach a problem: whether they (a) hastily apply a procedure, (b) are 

tenacious in their way of understanding, (c) explore different ideas, (d) analyze the 
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problem situation and identify a goal, and (e) spontaneously apply their ways of 

understanding that are pertinent to the problem situation. These descriptions correspond 

to impulsive anticipation, tenacious anticipation, explorative anticipation, analytic 

anticipation, and interiorized anticipation. An awareness of these categories can help 

mathematics teachers to be more explicit about their goal of advancing students from 

being impulsive and tenacious to being analytic and explorative. 

Instruction that leads students to predict can counteract students‘ tendency of 

rushing to apply procedures when they are assigned a problem. Having explicit terms to 

characterize the ways students predict allows teachers to differentiate desirable ways of 

thinking associated with predicting from less desirable ones. I have suggested that 

coordination-based prediction is desirable because it promotes reasoning that involves 

change and coordination, while association-based prediction is undesirable because it 

tends to foster the non-referential symbolic way of thinking. Having made these 

distinctions explicit, mathematics educators can design and implement instructional 

activities that aim to help students progress from association-based prediction to 

coordination-based prediction.  
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CHAPTER 5: RELATING STUDENTS’ WAYS OF THINKING ASSOCIATED 

WITH FORESEEING/PREDICTING WITH THEIR WAYS OF 

UNDERSTANDING INEQUALITIES/EQUATIONS 

 

How a student understands a problem situation affects the action the student 

foresees and/or the result the student predicts. This may subsequently modify the 

student‘s understanding of the problem situation. Therefore, the mental acts of foreseeing 

and predicting are related to the mental act of interpreting. The second research question 

for this study focuses on the relationships between ways of thinking associated with the 

mental act of foreseeing/predicting and ways of understanding associated with the mental 

act of interpreting, particularly students‘ interpretations of inequalities and equations.  

This chapter begins by revisiting the comparison of Talia‘s and Pham‘s responses 

for Item Pre-S1 in order to highlight the relations between their ways of thinking 

associated with foreseeing/predicting and their ways of understanding 

inequalities/equations. This is followed by definitions for, and examples representing, the 

five ways of understanding inequalities/equations that were identified in this study. These 

categories are then used to extend the previous discussion of the 13 interviewees‘ 

responses to Item Pre-T1 and Item Pre-S2. Finally, the relationships between their ways 

of thinking associated with foreseeing/predicting and their ways of understanding 

inequalities/equation are explored.  
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5.1 Revisiting the Comparison of Two Students’ Responses 

In Chapter 4, Talia‘s and Pham‘s responses to Item Pre-S1 were compared. The 

problem statement for Item Pre-S1 is, ―Is there a value for x that will make the following 

statement true? (6x – 8 – 15x) + 12 > (6x – 8 – 15x) + 6‖.  

Recall that Talia responded ―Of course there is … there should be an answer to 

this problem, and, um, let‘s see, I was taught to combine like terms. I was taught this (>) 

is actually an equal sign. To solve it like I would solve an equation.‖ As discussed 

previously, Talia‘s foresight of combining like terms is characterized as impulsive 

anticipation and her prediction of ―of course there is‖ is characterized as association-

based prediction. She seemed to interpret the inequality as a signal to isolate x and treated 

it as an ―equation‖. Her impulsive anticipation and association-based prediction appeared 

to be consequences of her interpreting the inequality as a signal to do something. 

Pham, on the other hand, noticed that ―the stuffs in the parentheses are the same,‖ 

combined like terms with the intent of obtaining a simpler form, obtained  

-9x + 4 > -9x – 2, noticed the constant terms, and focused on the common term -9x.  

Pham: Umm, let me see, I think 4 and -2, so you have a common term 

(i.e., -9x). OK, so it‘s, you have a -9, so anything [positive] that 

you multiply will [make it] a negative number, and this (+4) is 

positive … this, this [left] side will be greater. I guess, if it 

(-9x) was positive then, so is this side (-9x). So any negative 

number would make the statement true. 

 

Pham‘s reasoning with -9x suggests that he was interpreting it as a function
20

 whose 

output depends on the input variable x. It is likely that his analytic anticipation of 

                                                 

20
 Pham‘s interpretation of -9x as a function was supported by his response to another item where he could 

sketch the graph by reasoning with the structural attributes of (2x – 6)(x – 3) and reason with its graph: ―[it 

can‘t] go below the x-intercept because … like comes down, hit the x-axis and comes right back up.‖ 
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reasoning with the common term -9x was supported by his interpreting the inequality as a 

comparison between two functions. 

The above discussion suggests that students‘ ways of thinking associated with 

foreseeing/predicting are related to their ways of understanding inequalities/equations. 

The categories of ways of thinking associated with foreseeing/predicting were presented 

in Chapter 4. The categories for ways of understanding inequalities/equations are 

presented below. 

 

5.2 Ways of Understanding Inequalities/Equations 

 Based on my analysis of the data, I identified a total of five ways of 

understanding inequalities/equations (I/E). They are I/E-as-a-signal-for-a-procedure, 

I/E-as-a-constraint, I/E-as-a-proposition, I/E-as-a-static-comparison, and I/E-as-a-

comparison-of-functions. Definitions and examples are provided for each of these ways 

of understanding. 

I/E-as-a-signal-for-a-procedure Interpretation 

The inequality/equation-as-a-signal-for-a-procedure interpretation is defined as a 

way of understanding in which one interprets an inequality/equation as a signal to do 

something such as isolating the variable, plugging in numbers, or applying a procedure. 

This interpretation is inferred when a student treats the inequality/equation as an object to 

be worked on. For example, the inequality (6x – 8 – 15x) + 12 > (6x – 8 – 15x) + 6 was a 

signal for Talia to isolate x. 
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I/E-as-a-constraint Interpretation 

The inequality/equation-as-a-constraint interpretation is defined as a way of 

understanding in which one interprets an inequality/equation as a condition that 

constrains the values the variable(s) can take. This interpretation is inferred when a 

student plugs in certain numbers to make the inequality/equation true or false. For 

instance, compare Chela‘s and Vito‘s responses to Item Pre-T2: ―p and q are odd integers 

between 20 and 50. For these values, is 5p – q > 2p + 15 always true, sometimes true or 

never true?‖ Chela‘s choice of 21 for q was aimed at making the inequality true: ―I‘m 

trying to minus a number that‘s less than what I‘m going to get here (5p). So I don‘t take 

so much from this, so it can be bigger than that.‖ Vito, on the other hand, plugged in 

numbers to test three possible cases: (25, 35) for p < q, (45, 25) for p > q, and (33, 33) for 

p = q. He did not capitalize on the structure of the inequality to guide his choice of 

numbers. Vito did not interpret the inequality as a constraint, whereas Chela did.  

The I/E-as-a-constraint interpretation is also inferred when a student constructs an 

inequality or an equation to constrain the variability of variable(s). Consider Raul‘s 

response to Item Pre-T3: ―Given that m is greater than n, can m – 14 ever be equal to  

7 – n?‖  

Raul: So I‘ll just set up an equality, m minus 14 equals 7 minus n. … 

I was trying to make both of them equal to 0. If m was 14, it 

would be zero, and, if n was 7, it would be 0 as well. Alright, 

so, given that m is greater than n, can m minus 14, yes. I think 

yes. 

 

From m – 14 = 7 – n, Raul thought of equating both sides to 0 and found a pair of values 

for m and n, namely (14, 7) to work. Using the same strategy, he obtained another two 

pairs, (15, 6) and (16, 5), that would work. He also found that (10, 11) would work for the 
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condition ―given that m is less than n.‖ When the condition was changed to ―given that m 

equals n,‖ he spontaneously predicted that is ―maybe, in between, 10.5 and 10.5‖. Raul‘s 

use of the equation to constrain the values of m and n is an indication of his I/E-as-a-

constraint interpretation. 

I/E-as-a-proposition Interpretation 

The inequality/equation-as-a-proposition interpretation is defined as a way of 

understanding in which one conceives an inequality/equation as a proposition whose truth 

value depends on the input value(s) of its variable(s). For example, Chela‘s response, ―I 

would try to plug in numbers to see if it works,‖ indicates that she was interpreting the 

inequality (6x – 8 – 15x) + 12 > (6x – 8 – 15x) + 6 as a proposition. This interpretation 

was observed most frequently in Item Pre-S5 and Item Pre-T2 because these items 

require students to determine whether the inequality is always true, sometimes true, or 

never true.  

I/E-as-a-comparison-of-functions Interpretation 

The inequality/equation-as-a-comparison-of-functions interpretation is defined as 

a way of understanding in which one interprets an inequality/equation as a comparison of 

expressions that are conceived as either input-output processes that involve dynamic 

transformation of quantities, or as reified objects (Sfard, 1991) that encapsulate the input-

output process. These two descriptions correspond to Dubinsky and Harel‘s (1992) 

process conception of function and object conception of function respectively.  

For example, consider Jose‘s response to Item Pre-S3: ―Is there a value for x that 

will make the following statement true? 1.2x + 3456 < 7 + 8.9x‖. 
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Jose: Oh. Um, I would think the statement is true, because this (1.2x) 

is, um, increasing by a very small amount. … At a certain 

point, this (8.9x), this is much bigger increase in value. 

Lim: M-hmm. 

Jose: Or a bigger slope. So, the x will be, [8.9x] increase much more 

rapidly. So at [some] point, it will cross this equation 

(7 + 8.9x). 

Lim: Mmm, mmm. 

Jose: If I draw these graphs, this equation (1.2x + 3456) will be 

going at a constant slope. And this, and this equation (7 + 8.9x) 

will be going, shooting up like that (he drew a steeper line). 

 

Based on Jose‘s comment—―[1.2x] is increasing by a small amount … At a certain point, 

this (8.9x), this is much bigger increase in value‖—his way of understanding 

1.2x + 3456 < 7 + 8.9x is coded as I/E-as-a-comparison-of-two-functions. Likewise, 

Pham‘s way of understanding the inequality -9x + 4 > -9x – 2 is also considered an 

inequality-as-a-comparison-of-functions interpretation. 

I/E-as-a-static-comparison Interpretation 

The inequality/equation-as-a-static-comparison interpretation is defined as a way 

of understanding in which one interprets an inequality/equation as a comparison of non-

varying entities such as numerical values or arithmetic operations. This interpretation is 

inferred when a student is reasoning with particular instances that involve specific input 

values. For example, Vito compared the two sides of 5p – q > 2p + 15 by plugging in 

pairs of numbers, such as (25, 35), (45, 25), and (33, 33). His comparisons are considered 

static because he did not attend to the change in the output values in relation to the 

change in input values.  

Although arithmetic operations are mathematical functions, a comparison of two 

arithmetic operations is considered static rather than dynamic when the operations are 

treated as actions to be performed on numbers rather than as input-output processes. 
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Consider Bella‘s prediction to the problem, ―Given that 5a = b + 5, which is larger: a or 

b?‖ Her prediction that ―a is larger because you‘re multiplying‖ is considered I/E-as-a-

static-comparison because she was merely comparing the multiplication in 5a with the 

addition in b + 5 without interpreting 5a and b + 5 as functions.  

Determining whether a student‘s interpretation is I/E-as-a-comparison-of-

functions or I/E-as-a-static-comparison may be challenging at times. For instance, 

consider Karen‘s reasoning for Item Pre-S2. She first explored by plugging 1 and -2 into 

(2x – 6)(x – 3) < 0. She then predicted that no values of x would make the inequality true. 

Her prediction is considered coordination-based prediction because she coordinated the 

negative input values of x, the output value of each factor, and the product. 

Karen: If x is a negative number, you are subtracting here, so the 

product (result) of the first one (factor) will be negative, and 

the product (result) of the second one (factor) would be 

negative, and a negative times a negative would be positive 

which is going to be greater than 0. 

 

From her response alone, it is unclear whether her ―negative number‖ was based on the 

single instance of x = -2 or a non-specific negative number. When she extended her 

reasoning to a ―positive number‖, she seemed to be thinking about the specific instance 

of x = 1. If that is the case, her way of understanding the equation (2x – 6)(x – 3) < 0 

would be coded as equation-as-a-static-comparison. 

Karen: And if you put a positive number in here, the same thing is 

going to happen, you‘re going to get, cause you are subtracting, 

you are going to get two negative numbers multiplied together, 

and that‘s going to be positive, which is greater than 0. And if 

you put like 3 in, for the second part (x – 3), you get 0, and 

anything times 0 is 0. That‘s equal 0 but it‘s not less than 0. 
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It is unlikely that her reasoning was based on a generic positive number whose value may 

vary in the interval (0, 3) because if she did she would have noticed that x = 3 would also 

make the factor 2x – 6 zero. This conjecture was confirmed by her subsequent lack of 

conviction: ―I‘m thinking that there might be one number because I‘ve only tried a couple 

numbers.‖ This example highlights the intricacy in differentiating between comparison of 

functions and static comparison. This example also highlights that coordination-based 

prediction is not tightly coupled with the I/E-as-a-comparison-of-functions interpretation, 

that is, it can also be based on the I/E-as-a-static-comparison interpretation. 

Table 5.1 summarizes the five categories of ways of understanding 

inequalities/equations that were developed from the data in this research. They are listed 

in order from most sophisticated to least sophisticated. The next section addresses the 

relation between the sophistication in students‘ ways of understanding 

inequalities/equations and the desirability in their ways of thinking associated with 

foreseeing/predicting.  

Table 5.1: Definitions for Ways of Understanding Inequalities/equations 

Category Definition 

I/E-as-a-comparison-

of-functions 

As a comparison between its two sides with a process 

conception of function.  

I/E-as-a-constraint As a condition that constrains the values the variable(s) can 

take 

I/E-as-a-proposition As a proposition whose truth value depends on the input 

value(s) of its variable(s) 

I/E-as-a-static-

comparison 

As a comparison between its two sides in an unchanging 

manner 

I/E-as-a-signal-for-a-

procedure 

As a signal to do something such as to isolate the variable, to 

plug in numbers, or to apply a procedure 
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5.3 Results on Interviewees’ Ways of Understanding Inequalities/Equations 

Students‘ ways of thinking associated with foreseeing and predicting for two 

interview items, namely Pre-T1 and Pre-S2, were discussed in Chapter 4. Table 5.2 and 

Table 5.3 are extensions of Table 4.2 and Table 4.3, into which ways of understanding 

inequalities/equations are inserted. 

Table 5.2:  Comparing Interviewees‘ Response to Item Pre-T1 in Terms of Ways of 

Thinking (WoT) and Ways of Understanding (WoU) 

 

Interviewee P R J Q C A T I B M E K V 

Mathematics Course  C C C C2 A2 PC C A2 C A2 PC PC PC 

Grade in Mathematics Course B A B A B B B C C A C B A 

W
o
T

  

F
o
re

se
e
in

g
 

Interiorized 

anticipation 
1 1 1 1          

Analytic  

anticipation 
  1  1 1 1 1 1 1    

Explorative 

anticipation 
1 1 1 1 1 1 1 1 1 1 1 1 1 

Tenacious 

anticipation 
           1 1 

Impulsive 

anticipation 
            1 

W
o
T

 

P
re

d
ic

ti
n

g
 Coordination-based 

prediction 
1  1  1 1   1     

Comparison-based 

prediction 
  1 1 1 1 1 1     1 

Association-based 

prediction 
        1 1 1  1 

W
o

U
 

In
eq

u
a

li
ti

es
/E

q
u

a
ti

o
n

s I/E-as-a-comparison-

of-functions 
1 1 1           

I/E-as-a-constraint 1 1 1 1 1 1 1 1 1 1  1 1 

I/E-as-a-proposition           1   

I/E-as-a-static-

comparison 
    1 1 1 1 1 1 1  1 

I/E-as-a-signal-for-a-

procedure 
         1   1 

Correctness of solutions 2 2 1 1 1 0 1 1 1 0 0 0 0 
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Table 5.3:  Comparing Interviewees‘ Response to Item Pre-S2 in Terms of Ways of 

Thinking (WoT) and Ways of Understanding (WoU) 

 

Interviewee P Q R J C V K A E B T I M 

Mathematics Course  C C2 C C A2 PC PC PC PC C C A2 A2 

Grade in Mathematics Course B A A B B A B B C C B C A 

W
o

T
  

F
o

re
se

e
in

g
 

Interiorized 

anticipation 
1 1 1           

Analytic  

anticipation 
  1 1 1   1 1 1 1   

Explorative 

anticipation 
1 1 1 1 1 1 1 1 1 1 1 1 1 

Tenacious 

anticipation 
             

Impulsive 

anticipation 
          1   

W
o
T

 

P
re

d
ic

ti
n

g
 Coordination-based 

prediction 
  1 1 1 1 1       

Comparison-based 

prediction 
         1    

Association-based 

prediction 
  1        1   

W
o
U

 

In
eq

u
a
li

ti
es

/E
q

u
a
ti

o
n

s I/E-as-a-comparison-

of-functions 
1 1 1 1    1 1     

I/E-as-a-constraint  1 1 1 1   1 1 1 1 1  

I/E-as-a-proposition              

I/E-as-a-static-

comparison 
    1 1 1   1  1 1 

I/E-as-a-signal-for-a-

procedure 
   1  1     1   

Quality of explanation 2 2 1 1 1 2 1 2 0 0 0 0 0 

 

One difference between the two tables is that there are more instances of I/E-as-a-

constraint in Table 5.2 than in Table 5.3, while there are more instances of I/E-as-a-

comparison-of-functions in Table 5.3 than in Table 5.2. I/E-as-a-constraint seems to be 

more pertinent for Item Pre-T1, whereas I/E-as-a-comparison-of-functions seems to be 
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more pertinent for Item Pre-S2. This suggests that the ways of understanding that 

students enact are influenced by the nature and characteristics of the task. 

It is interesting to study the consistency/inconsistency, for each student, between 

the two items in each category. For example, Pham exhibited coordination-based 

prediction in Item Pre-T1 but not in Item Pre-S2, and exhibited I/E-as-a-constraint in 

Item Pre-S2 but not in Item Pre-T1. Repeating the same procedure for all 13 interviewees 

and counting the number of mismatches for each category, the following results were 

found: 1 for interiorized anticipation (i.e., 1 mismatch out of 13), 4 for analytic 

anticipation, 0 for explorative anticipation, 2 for tenacious anticipation, and 2 for 

impulsive anticipation; 6 for coordination-based prediction, 8 for comparison-based 

prediction, and 6 for association-based prediction; 3 for I/E-as-a-comparison-of-

functions, 5 for I/E-as-a-constraint, 1 for I/E-as-a-proposition, 4 for I/E-as-a-static-

comparison, and 3 for I/E-as-a-signal-for-a-procedure. On average, there are 1.8 

mismatches (14%) for ways of thinking associated with foreseeing, 6.7 mismatches 

(51%) for ways of thinking associated with predicting, and 3.2 mismatches (25%) for 

ways of understanding inequalities/equations. These figures suggest that ways of thinking 

associated with foreseeing are usually more ―stable‖ than ways of thinking associated 

with predicting. 

Surprisingly, few relations between the sophistication of ways of understanding 

and the quality of solutions can be found. In both tables, students who exhibited I/E-as-a-

comparison-of-functions, with the exception of Elsa, scored at least a ―1‖. In Table 5.2, 

both students who exhibited I/E-as-a-signal-for-a-procedure scored a ―0‖, but in Table 

5.3, only one out of the three students who exhibited I/E-as-a-signal-for-a-procedure 
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scored a ―0‖. These observations suggest that the quality of solutions is more related to 

ways of thinking associated with foreseeing/predicting than ways of understanding 

inequalities/equations. This hypothesis is not surprising because a desirable way of 

understanding inequalities/equations without effective means to explore and analyze a 

problem situation is unlikely to lead to success. On the other hand, possessing effective 

means to explore and analyze a problem situation can help one to replace undesirable 

way of understanding inequalities/equations with a more appropriate one. 
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5.4 Relation between Students’ Ways of Thinking Associated with Foreseeing/ 

Predicting and Their Ways of Understanding Inequalities/Equations 

To determine whether students‘ ways of understanding inequalities/equations are 

related to their ways of thinking associated with foreseeing/predicting, each occurrence of 

students‘ way of understanding were examined to investigate possible relations with 

ways of thinking. Table 5.4 highlights the relations between the sophistication in 

students‘ ways of understanding inequalities/equations and the desirability in their ways 

of thinking associated with foreseeing/predicting. Relations to somewhat neutral 

categories, such as explorative anticipation, comparison-based association, and 

inequality-as-a-proposition, were not included in Table 5.4.  

Table 5.4: Relating Desirability of WoT and Sophistication of WoU 

 More Sophisticated WoU Less Sophisticated WoU 

I/E-as-a-

Comparison-of-

Functions 

I/E-as-a-

Constraint 

I/E-as-a- 

Static-

Comparison 

I/E-as-a- 

Signal-for-a-

Procedure 

Pre-T1 Pre-S2 Pre-T1 Pre-S2 Pre-T1 Pre-S2 Pre-T1 Pre-S2 

M
o

re
 D

es
ir

a
b

le
  

W
o
T

 

Interiorized 

Anticipation 

Jose 

Pham 

Raul 

Pham 

Quy 

Pham 

Raul 

Quy     

Analytic 

Anticipation 

 Ali 

Elsa 

Ali 

Chela 

Ida 

Maria 

Talia 

Ali 

Bella 

Chela 

Elsa 

Ida 

Jose 

Raul 

Talia 

Maria  Maria  

Coordination

-based 

Prediction 

 Jose 

Raul 

 

Ali 

Bella 

Chela 

  Karen 

Vito 

  

L
es

s 
D

es
ir

a
b

le
 

W
o

T
 

Association-

based 

Prediction 

    Bella 

Elsa 

Vito 

  Talia 

Tenacious 

Anticipation 

  Karen  Vito    

Impulsive 

Anticipation 

      Vito Talia 
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Four specific relations were identified: (a) I/E-as-a-signal-for-a-procedure is 

related to association-based prediction and impulsive anticipation; (b) I/E-as-a-constraint 

is related to analytic anticipation; (c) I/E-as-a-comparison-of-functions is related to 

coordination-based prediction; and (d) interiorized anticipation involves I/E-as-a-

comparison-of-functions or I/E-as-a-constraint. 

I/E-as-a-signal-for-a-procedure is Related to Association-based Prediction and 

Impulsive Anticipation  

Only Talia and Vito exhibited impulsive anticipation, and both of them exhibited 

the I/E-as-a-signal-for-a-procedure interpretation. Talia‘s association-based prediction is 

also related to her I/E-as-a-signal-for-a-procedure interpretation.  

Talia approached Item Pre-S2 in the same manner as she had approached Item 

Pre-S1. Her initial response was, ―Is there a value of x that will make the following 

statement true? Yes. Let‘s see, I think we have to multiply out first.‖ She expanded the 

factors without considering the structure of the inequality. Her prediction of ―yes‖ and 

her impulsive anticipation of expanding the factors seemed to be a consequence of her 

interpreting the inequality (2x – 6)(x – 3) < 0 as a signal for her to manipulate symbols. 

Upon obtaining x
2
 – 6x + 9 < 0, she used the quadratic formula and obtained 

26 6 4(1)(9)

2

± -
. She commented, ―that reduces to 3, which is less than 0 (wrote 3 < 0). 

That‘s not true.‖ Her rejection of 3 as a solution was based on her associating the root of 

a function with the output-value of a function; that is, associating 
26 6 4(1)(9)

2

± -
 with 

(2x – 6)(x – 3). This association was a consequence of her failure to attend to the meaning 
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of the symbols and her procedural orientation, both of which are related to her I/E-as-a-

signal-for-a-procedure interpretation. 

Similarly, Vito exhibited I/E-as-a-signal-for-a-procedure interpretation and was 

not attending to the meaning of the symbols in Item Pre-T1: ―Given that 5a = b + 5, 

which is larger: a or b?‖ Vito interpreted the inequality as an object into which values 

were plugged: ―a could be any number and this (b) one could be any number too. a could 

equal, let‘s say 4, and then b could equal 9. So then that‘s 20, and that‘s 9 plus 5 is 14. So 

then a would be larger.‖ His foresight of plugging in 4 for a and 9 for b is coded as 

impulsive anticipation because he acted out the idea that came to his mind: plugging in 

numbers to determine the answer. His inference/prediction that ―a would be larger‖ is 

association-based in that he associated the output of the functions with the value of the 

variable. His conflation of 5a and b + 5 with a and b respectively was due to his non-

referential symbolic way of thinking, which is generally related to the I/E-as-a-signal-for-

a-procedure interpretation. 

Discussion. The I/E-as-a-signal-for-a-procedure interpretation tends to result in 

impulsive anticipation because when a student interprets an inequality or equation as a 

signal to do something, such as to isolate the variable or to plug in numbers, the student is 

more likely to rush into actions than to analyze the problem situation. In addition, the I/E-

as-a-signal-for-a-procedure interpretation tends to result in association-based prediction. 

When a student interprets an inequality as task, the student tends to focus on the 

procedure rather than the meaning, and when the student reasons in a non-referential 

symbolic manner, the student is more likely to engage in association-based reasoning. 
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I/E-as-a-constraint is Related to Analytic Anticipation  

For Item Pre-S2, eight students (Ali, Bella, Chela, Elsa, Ida, Jose, Raul, Talia) 

exhibited the I/E-as-a-constraint interpretation and analytic anticipation. This 

interpretation allowed them to be goal-oriented in their reasoning. For example, it 

allowed Raul to formulate and solve (2x – 6)(x – 3) = -1 as a means to check if the 

parabola would go below the x-axis. In also allowed Jose to construct the equation  

2x
2
 – 12x = -19 from which he thought he could find a value of x that would satisfy  

2x
2
 – 12x + 18 < 0.  

Chela‘s reasoning was aimed at making the inequality true: ―I‘m trying to find a 

number that will make this one (2x – 6) positive and this one (x – 3) negative.‖ After 

exploring by plugging in numbers, she deduced ―if this comes up positive, I think this 

one will always come up positive. If this one is negative, it will come out negative.‖ Her 

goal of trying to make (2x – 6)(x – 3) negative presupposed her interpreting the inequality 

(2x – 6)(x – 3) < 0 as a constraint which values of x must satisfy. 

The I/E-as-a-constraint interpretation influenced Talia to plug in 2 for the x in the 

second factor (x – 3) so as to make (2x – 6)(x – 3) negative. Representing the first factor 

2x – 6 by X, she obtained (X)(-1) and thought that x = 2 could make the inequality  

(2x – 6)(x – 3) < 0 true. She overlooked the x in the first factor 2x – 6 and treated it as a 

variable instead of assigning to it the same value of 2. Nevertheless, her foresight of 

plugging in 2 is considered goal-oriented and is characterized as analytic anticipation. 

While her initial interpretation of inequality as a task, as discussed previously, 

contributed to her impulsive anticipation, her subsequent interpretation of inequality as a 

constraint facilitated her analytic anticipation.  
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For Item Pre-T1, the I/E-as-a-constraint interpretation also contributed to some 

students‘ (Ali, Chela, Ida, Maria, and Talia) analytic anticipation. Ida‘s interpretation of 

5a = b + 5 as a constraint allowed her to reason in a goal-oriented manner: ―I have to 

think of 2 variables (values) that will make these two equations (functions) equal to 

themselves (each other).‖ Ida‘s strategy was to plug in a value for b into the equation to 

constrain the value of a, and Maria used this same strategy.  

Chela and Talia used a different strategy. Their strategy was to assign a particular 

value to both 5a and b + 5 and use the two constraints, say 5a = 10 and b + 5 = 10, to 

obtain values for a and b. This strategy presupposed interpreting 5a = b + 5 as a 

constraint. In contrast, Elsa‘s plugging in (4, 5) and (5, 4) was not aimed at satisfying 

5a = b + 5. Failing to make the equation true with those values, she incorrectly inferred 

that ―neither of them has to be larger.‖ 

Discussion. The examples above suggest that the I/E-as-a-constraint interpretation 

facilitates students‘ goal-orientation in their reasoning, which is an attribute of analytic 

anticipation. Interpreting an inequality/equation as a constraint tends to focus a student‘s 

attention on the inequality/equation, and/or leads the student to foresee actions that would 

make the inequality/equation true or false. Such foresight is considered analytic 

anticipation. 

I/E-as-a-comparison-of-functions is Related to Coordination-based Prediction  

Raul and Jose exhibited the I/E-as-a-comparison-of-functions interpretation and 

coordination-based prediction while attempting Item Pre-S2. Jose‘s interpretation of the 

equation 2 19
24

x x- =  as a dynamic comparison allowed him to coordinate the change in 

the input value of x with the change in the output value of the function x
2
 – x. He 
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predicted that ―there is no value of x that will make the statement true because … as x 

increases the x squared increases and, so it (the difference) doesn‘t go below 1 (1 being 

greater than 19/24).‖ He soon realized ―oh, when x equals 1, it may work.‖ 

The I/E-as-a-comparison-of-functions interpretation allowed Raul to predict the 

behavior of the function (2x – 6)(x – 3) from the results that he had obtained by plugging 

numbers into 2x
2
 – 12x < -18: ―Maybe this will be a parabola. It doesn‘t go less than 0.‖ 

His prediction was considered coordination-based because it was based on his 

observation that the output value for 2x
2
 – 12x decreased from -10 to -16 and increased to 

0 as x increased from 1 to 4 and then to 6. His conceiving 2x
2
 – 12x < -18 as a dynamic 

comparison between the function 2x
2
 – 12x and -18 allowed him to relate its down-then-

up behavior with the parabolic behavior of (2x – 6)(x – 3).  

Discussion. The I/E-as-a-comparison-of-functions interpretation supports 

reasoning that involves change and coordination, which are features of coordination-

based prediction. However, I/E-as-a-static-comparison may suffice to allow coordination-

based prediction that does not involve change. An example of this (seen earlier) is 

Karen‘s coordination of the negative input values of x, the output value of each factor, 

and the product of the two output values in (2x – 6)(x – 3).  

Interiorized Anticipation Involves I/E-as-a-comparison-of-functions or I/E-as-a-

constraint 

Pham and Raul exhibited interiorized anticipation, I/E-as-a-comparison-of-

functions, and I/E-as-a-constraint while attempting Item Pre-T1. They conceived the 

situation as a comparison of two functions, foresaw the use of a graphical approach, and 
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solved 5x = x + 5 to determine the value when a and b are equal each other. Consider 

Raul‘s response:  

Raul: I think if, if this was a graph, both of these would be linear. 

And, that‘s just be, say y equals 5x and this one is going to be y 

equals b plus 5, so x plus 5. Um, wherever these two cross, it 

would be where a is equal to b. … If I can graph these two and 

see if there is a point where they crossed … (gesturing to use 

the graphing calculator) 

Lim: M-hmm, so you need a calculator. What if we are not allowed 

to use the calculator, are you able to find that, without using a 

calculator? 

Raul: May be if I set these equal to each other? … (He wrote and 

solved 5x = x + 5) … So x is five-fourths. 

 

Raul‘s interiorized anticipation of comparing the two functions graphically presupposed 

his conceiving the equation 5a = b + 5 as a comparison between two functions. His 

formulation of the equation 5x = x + 5 presupposed an understanding of equation as a 

constraint. 

For Item Pre-S2, Pham and Quy exhibited interiorized anticipation and the I/E-as-

a-comparison-of-functions interpretation. Pham spontaneously commented that ―if it 

[(2x – 6)(x – 3) < 0] wasn‘t true, then the whole graph would be above the axis.‖ Pham‘s 

graphical reasoning presupposes the I/E-as-a-comparison-of-functions interpretation. 

Quy, on the other hand, foresaw reasoning with cases: ―If x is less than 3, then … both of 

these [factors] would be negative, which makes it positive, and it‘s still not true. And if x 

is greater than 3, it would make them all positive, and it would still not be true.‖ Her 

reasoning with an interval rather than specific numbers suggests that she was interpreting  

(2x – 6)(x – 3) as a function.  

Discussion. Interiorized anticipation is generally associated with more 

sophisticated ways of understanding because interiorized anticipation, by definition, 
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requires one to be able to not only autonomously and spontaneously apply one‘s ways of 

understanding in a familiar situation, but also to apply them in novel situation. Less 

desirable interpretations, such as I/E-as-a-signal-for-a-procedure and I/E-as-a-static-

comparison, are usually internalized but not interiorized. Hence, spontaneous foresights 

associated with such interpretations tend to be impulsive anticipations rather than 

interiorized anticipations. In general, one‘s existing ways of understanding determine 

one‘s interpretation of the problem situation, which in turn influences one‘s foresight 

and/or prediction.  

To recapitulate, less sophisticated ways of understanding are related to less 

desirable ways of thinking associated with foreseeing/predicting. Conversely, more 

sophisticated ways of understanding are related to more desirable ways of thinking. The 

I/E-as-a-signal-for-a-procedure interpretation tends to lead to impulsive anticipation, and 

it tends to foster a non-referential symbolic way of thinking from which association-

based prediction results. The I/E-as-a-constraint interpretation facilitates goal-oriented 

reasoning, which is an attribute of analytic anticipation. The I/E-as-a-comparison-of-

functions interpretation supports reasoning that involves change and coordination. Such 

reasoning tends to promote coordination-based prediction. Interiorized anticipation has to 

be supported by sophisticated ways of understanding, such as I/E-as-a-constraint and I/E-

as-a-comparison-of-functions. 
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CHAPTER 6: CHANGE IN STUDENTS’ WAYS OF THINKING 

 

In the previous two chapters, categories for ways of thinking associated with 

foreseeing/predicting and ways of understanding inequalities/equations were introduced. 

In this chapter, I focus on the change in students‘ ways of thinking associated with 

foreseeing/predicting. The third research question for this study asks, ―What is the 

potential for advancing students‘ ways of thinking through an instructional intervention 

informed by DNR-based instruction?‖ To answer this question, I will provide an in-depth 

discussion of one learner. Talia was chosen for this case study because she demonstrated 

the most improvement.  

This chapter is organized into seven sections: (a) Talia‘s improvement from the 

pre-interview to the post-interview; (b) Talia‘s transition from manipulating symbols to 

reasoning with symbols; (c) probable factors in the teaching intervention that could 

account for Talia‘s improvement; (d) difficulties Talia encountered in the teaching 

intervention; (e) ways of thinking and ways of understanding of three other learners; 

(f) two interesting phenomena identified from this analysis; and (g) a recapitulation of the 

main points. 

 

6.1 Talia’s Pre-interview and Post-interview Comparison 

 At the time of this study, Talia was an 11
th

 grade high school student enrolled in 

Calculus. In the pre-interview, like most of the students in the study, Talia began by 

working on items S1 and S2. However, she spent 30 minutes on these two items alone. 

Most of the other students in this study took approximately 60 minutes to complete the 
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following sequence of items: S1, S2, S3, T1, T2, S5, T3, and T4 (see Appendix C for the 

complete list of items from which interview tasks were selected). To make sure that Talia 

had an opportunity to work on items T1 and T2 in the remaining 30 minutes of her pre-

interview, I deviated from the standard sequence and directed her attention to items T1 

and T2. After completing these, she then worked on Item S3. Item S5 was replaced by 

Item S6 because I anticipated that she would spend too much time trying to apply 

formulas related to arithmetic progression to solve Item S5 (since she did not attend to 

meaning when she worked on S1 and S2). Talia spent an additional 15 minutes on Item 

T3. In summary, for her pre-interview, Talia completed S1, S2, T1, T2, S3, S6 and T3 in 

approximately 75 minutes. 

For the post-interview, all four learners completed the same sequence of tasks—

S2, T1, T2, S5, T3, and T4—within 60 minutes. Therefore, there are only four tasks that 

were common in both interviews for Talia: S2, T1, T2, and T3.  

Table 6.1 compares Talia‘s pre-interview and post-interview results in terms of 

ways of thinking associated with foreseeing, ways of thinking associated with predicting, 

ways of understanding inequalities/equations, and quality of solution/explanation. The 

same coding scheme used in previous tables, such as Table 4.2 and Table 5.2, is used in 

Table 6.1. For ways of thinking and ways of understanding, a ―1‖ indicates presence and 

an empty box indicates absence. For quality of solution/explanation, a ―2‖ indicates a 

correct solution/explanation, a ―1‖ indicates a partially correct solution/explanation, and a 

―0‖ indicates an incorrect solution or inappropriate/no explanation. 
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Table 6.1: Pre-and-post Comparison of Talia‘s Response to Interview Items 

 

 Pre-Interview Post-Interview 

Interview Item S2 T1 T2 T3 S2 T1 T2 T3 
W

o
T

  

F
o

re
se

e
in

g
 Interiorized anticipation         

Analytic anticipation 1 1 1 1 1 1 1 1 

Explorative anticipation 1 1 1 1 1 1 1 1 

Tenacious anticipation         

Impulsive anticipation 1        

W
o

T
 

P
re

d
ic

ti
n

g
 Coordination-based prediction     1 1 1 1 

Comparison-based prediction  1    1  1 

Association-based prediction 1        

W
o

U
 

In
eq

u
a
li

ti
es

/

E
q

u
a
ti

o
n

s 

I/E-as-a-comparison-of-functions     1 1  1 

I/E-as-a-constraint 1 1 1 1 1 1 1 1 

I/E-as-a-proposition   1    1 1 

I/E-as-a-static-comparison  1  1     

I/E-as-a-signal-for-a-procedure 1   1     

 Quality of solution/explanation 0 1 2 1 2 1 2 2 

 

According to Table 6.1, Talia‘s appeared to improve in several ways: 

(a) impulsive anticipation in the pre-interview, but not in the post-interview; 

(b) association-based prediction in the pre-interview, but coordination-based prediction in 

the post-interview; and (c) the I/E-as-a-signal-for-a-procedure and inequality-as-a-static-

comparison interpretations in the pre-interview, but the I/E-as-a-comparison-of-functions 

interpretation in the post-interview. In terms of the quality of her solutions, Talia 

demonstrated an improvement for two of the four tasks. 

In the discussion that follows, I present Talia‘s improvement in terms of (a) ways 

of thinking associated with foreseeing, (b) ways of thinking associated with predicting, 

and (c) ways of understanding inequalities/equations. Although the improvements are 

presented separately, they are interrelated. At the end of this section, Talia‘s 

improvements are discussed in terms of the sub-contexts (Cobb, 1985) in which she was 

operating. 
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Improvement in Ways of Thinking Associated with Foreseeing 

As shown in Table 6.1, Talia exhibited impulsive anticipation in the pre-interview 

but not in the post-interview. Although she exhibited analytic anticipation in all four 

items in both interviews, she had a greater disposition to be analytic in the post-interview 

than in the pre-interview. Her responses for Item S2 and Item T3 are used to illustrate her 

impulsiveness in the pre-interview and her tendency to be analytic in the post-interview. 

Impulsive anticipation in the pre-interview 

Talia exhibited impulsive anticipation in the pre-interview, but not in the post-

interview, on Item S2: ―Is there a value for x that will make the following statement true? 

(2x – 6)(x – 3) < 0‖ In the pre-interview, Talia was impulsive in that she expanded the 

expression without studying the inequality, used the quadratic formula, obtained 

26 6 4(1)(9)

2

± -
, and commented ―that reduces to 3, which is less than 0 (wrote 3 < 0). 

That‘s not true.‖  

In the post-interview, Talia analyzed the inequality with the goal of making the 

function (2x – 6)(x – 3) < 0 less than zero, and foresaw the sub-goal of making one factor 

positive and one factor negative. 

Talia: Um, 2x minus 6 times x minus 3 is less than 0. So … this [side] 

has to give me a negative number. I can get a negative number 

from here (2x – 6), oh, but there is also a negative times 

negative is positive. So I have to make one of these negative 

and one of these positive. In order to get this, so this will be 

negative if it is less than 6, but then if I want to make this one 

positive, it has to be greater than 3. So, or I could go the other 

way around. … This side could be, umm, greater than 6, x 

could be greater than 6, makes this positive, 2x, I‘m sorry, 2x 

[could be greater than 6]. And x could be less than 3, which 

will make this negative, and so these two conditions will make 

this statement true.  
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The contrast in Talia‘s initial responses between pre-interview and post-interview, as 

depicted in Figure 6.1, highlights the substantial improvement in terms of ways of 

thinking associated with foreseeing. She was impulsive and procedure-oriented in the 

pre-interview, but was analytic and goal-oriented
21

 in the post-interview. This 

improvement is not considered trivial because this inequality seemed unfamiliar to Talia. 

Only 2 out of the 16 inequalities/equations (see Appendix D) that were used in the 

problem-solving sessions were quadratic inequalities in factored form. Moreover, both of 

them, x(6x + 8) < 0 and 3x(500 – 2x) < 30(500 – 2x), do not involve repeated roots.  

     

Figure 6.1: Pre- and post-interview comparison of Talia‘s initial work for Item S2 

Analytic anticipation in the post-interview 

Talia had a greater disposition to engage in analytic anticipation in the post-

interview than in the pre-interview. For example, she did not engage in analytic 

anticipation in her first three approaches when she worked on Item Pre-T3: ―Given that m 

                                                 

21
 Procedure-oriented and goal-oriented can be viewed as features of the forward strategy and the backward 

strategy (Sweller, 1989) respectively. Both strategies are problem solving approaches, which are ways of 

thinking associated with the act of problem solving. The backward strategy is more desirable because it 

involves means-ends analysis, whereas the forward strategy does not.  
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is greater than n, can m – 14 ever be equal to 7 – n?‖ She first approached the problem by 

plugging in 3 and 1 for m and n respectively prior to studying the characteristics of the 

two functions. She then considered manipulating symbols ―I wanted to solve for one of 

the variables and I plug it back into the equation, but I remember this one problem (Item 

T1) that I did, when I did that I got 0 equals 0.‖ She foresaw the use of a graphical 

method in her third approach: ―I just thought about graphing both of them and finding 

where they intercept. And um, see what m and n is. But I think this is a different 

situation.‖ Her foresights of plugging in numbers, of solving for one of the variables, and 

of graphing the two functions are considered explorative anticipation. However, in these 

cases, Talia was merely considering ideas and did not investigate further. In her fourth 

approach, Talia attended to the constraints of the problem: ―Can m minus 14 equal 7 

minus n. So this is a big number minus 14. Can that be equal to 7 minus a small number? 

… (she wrote ―big # – 14 = 7 – small #‖) … Um, let me try making these two problems 

(functions) equal 28.‖ Her analytic anticipation of equating both functions to 28 did not 

occur until after she had explored three different ways.  

When attempting Item Post-T3, Talia engaged in analytic anticipation sooner. She 

began by comparing the two functions and predicted 7 – n was less than m – 14. 

Talia:  Let‘s see, here you‘re subtracting 14, but this number (14) is 

always bigger than that number (7). So, this one, 7 minus n, is 

always less than that one (m – 14) … What if I look at what m 

is, hold on, m is equal to 14 plus 7 … (she wrote m = 21 – n) 

… I don‘t think that really helps me… OK, let me try plugging 

in numbers.  

 

Having explored by plugging in 5 and 2 into m and n respectively and obtained -9 = 5, 

Talia continued to compare the two sides: ―Here we are subtracting by 14. But here we 
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are we are adding by 7. But it‘s a negative number there (-n).‖ She wrote, ―m > n,  

m – 14 = -n + 7‖ and reiterated her goal: ―I need to find 2 numbers that‘ll make this true, 

these two equal.‖ She then equated each function to 20 and found that m = 34 and 

n = -13. Talia arrived at the same strategy in both interviews. The difference is that she 

engaged in analytic anticipation sooner in the post-interview than in the pre-interview.  

In the post-interview, Talia‘s tendency to analyze the problem situation led her to 

a successful solution for the follow-up task: Given that m = n, can m – 14 equal 7 – n?  

Talia: Right now, nothing comes to mind. … What if I put in 0? … 

(obtained -14 = 7) I don‘t know, but I am always subtracting 14 

here, and I‘m always adding 7 here. But this is a negative n. If 

these two numbers are the same, and I‘m subtracting 14, but 

I‘m adding 7 to a negative number. Hey, why don‘t I just solve 

for a? … (She solved a – 14 = -a + 7 and obtained 2a/2 = 21/2) 

Why did I solve for a? Because, oh I, I set them to each other, 

and then, I look for a value for a that would make these two 

equal, is that what I did? Yeah, that‘s what I‘m trying to do. 

 

Her foresight of using the common symbol a is considered analytic anticipation because 

it emerged in the midst of her reasoning with the two constraints. Her pausing to check 

her goal, ―why do I solve for a?‖, is an indication that she was analyzing her work.  

In contrast, in the pre-interview, her analytic anticipation and explorative 

anticipation were in the sub-context of manipulating symbols or plugging in numbers. 

For example, she considered and rejected an idea that she had tried in Item Pre-T1: ―solve 

for m, solve for n, set them equal to each other. Then you end up with the same thing, I 

think.‖ She then explored by plugging in numbers: ―Well, I know it can‘t be 0. Can‘t be 

1, but what number could it be? Let me just make them (m and n) equal [to 50]… 36, -43, 

those aren‘t equal.‖ She guessed, ―I don‘t think there is something that will make these 

two equal … cause look how different these two (m – 14 and 7 – n) are. This (36) is like 
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bigger and this one (-43) is way smaller.‖ Her reasoning was based on empirical evidence 

and perceptual differences. The proof scheme underlying her justification was the 

empirical proof scheme (Harel & Sowder, 1998). 

To recapitulate, Talia demonstrated a substantial improvement from impulsive 

anticipation to analytic anticipation for a single-variable task. For a two-variable task, she 

demonstrated a greater tendency to engage in analytic anticipation in the post-interview 

than in the pre-interview. In addition, her analytic anticipation and explorative 

anticipation in the post-interview were generally more sophisticated because she was 

reasoning with symbols in a deductive manner, as compared to her earlier reasoning with 

numbers in an inductive or empirical manner. 

Improvement in Ways of Thinking Associated with Predicting 

Talia made more predictions in the post-interview than in the pre-interview, as 

depicted in Table 6.1. In terms of quality of prediction, she exhibited coordination-based 

prediction in the post-interview but not in the pre-interview. Moreover, she exhibited 

association-based prediction in the pre-interview but not in the post-interview. Her 

responses for items T2, T1, and S2 substantiate these observations.  

Making more predictions in the post-interview 

Talia made predictions in the post-interview, but not in the pre-interview, for Item 

T2: ―p and q are odd integers between 20 and 50. For these values, is 5p – q > 2p + 15 

always true, sometimes true or never true?‖ Talia arrived at the same solution in both 

interviews. Her success in the pre-interview was a consequence of her engagement in 

explorative anticipation and analytic anticipation. She explored by plugging in (21, 23) 

and (23, 21) into 5p – q > 2p + 15 and observing the results 82 > 57 and 94 > 61 
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respectively. She then compared the two sides: ―5p has to be smaller than this q so that 

this number (94) can be less and that this number (61) can be bigger. … I‘m trying to 

make this (5p – q) smaller. So, let me go [to] the extremes.‖ She plugged in (21, 49) and 

found that it made the inequality false.  

In the post-interview, Talia also engaged in analytic anticipation and explorative 

anticipation, but she made predictions and ―checked‖ them from the start. 

Talia: [It] should sometimes be true. Um, this, because this number 

(5p) is bigger than this one (2p), wait, you are subtracting q, 

and I don‘t know this value, and this value (q) is probably 

between these two numbers (20 and 50). But still, this (5p) 

should be really big. This (2p) should be somewhat big but you 

are adding (15) to it. Um… I think this (5p – q) outweighs this 

one (2p + 15) though.  

 

Based on this response, it was not clear whether Talia‘s initial prediction involved 

coordination. If it did, then it would be coded as coordination-based prediction; 

otherwise, comparison-based prediction. Her inference/prediction that 5p – q outweighs 

2p + 15 is definitely coordination-based because she coordinated 5p, 2p, q, and 15. 

Having plugged in (21, 23) and (23, 29) to verify her prediction, she concluded that it 

was always true. When she was asked if she would believe a student who said that he had 

a pair of numbers that would make the equation false
22

, she responded ―maybe, because I 

didn‘t try 49 over here, like 49 for q.‖ She explored by plugging in (23, 49) and obtained 

66 > 61. She considered plugging in (21, 49) and predicted that it would still make it true: 

―It (5p – q) will still be bigger than this (2p + 15) because this (2p) is pretty small here, 

and you adding a really small quantity. You‘re adding something but it‘s not, I don‘t 

                                                 

22
 This strategy was employed whenever the interviewee had arrived at a conclusion and had the potential 

to lose momentum in thinking. The use of this strategy is an indication that the interviewee did not attempt 

to consider alternatives or to falsify her or his way of understanding of the problem situation. 
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think it‘s big enough to make a difference over here.‖ Although she maintained
23

 her way 

of understanding that 5p – q was larger, she reasoned with the symbols and demonstrated 

coordination-based prediction. Although she had not cultivated considering falsity as a 

way of thinking associated with problem-solving, she showed improvement in her ways 

of thinking associated with predicting. She predicted more often in the post-interview, 

and her predictions were coordination-based.  

Coordination-based prediction in the post-interview 

Talia exhibited coordination-based prediction in the post-interview, but 

comparison-based prediction in the pre-interview, for Item T1: ―Given that 5a = b + 5, 

which is larger: a or b?‖ Talia exhibited only one instance of prediction in the pre-

interview. She predicted that, ―if a and b were equal, then a would be larger because, I 

mean this (5a) value would be larger.‖ This prediction is comparison-based prediction 

because she was comparing the two sides in terms of their arithmetic operations.  

In the post-interview, Talia demonstrated one instance of comparison-based 

prediction and two instances of coordination-based prediction. She exhibited comparison-

based prediction when she was asked if a and b could equal each other: ―I don‘t think 

they can because, you‘re multiplying here and you are adding here.‖ An instance of 

coordination-based prediction was observed when she predicted that ―b will have to be 

larger, just because you need more adding than you do multiplying in order to get [b + 5] 

large.‖ Her prediction incorporates change and compensation. A second instance 

occurred when she predicted that ―they (a and b) probably could be equal to each other if 

                                                 

23
 Her anticipating of plugging (21, 49) would make the inequality true is not coded as tenacious 

anticipation because she did re-evaluate her way of understanding of the problem situation.  
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they were big[ger] fractions.‖ Her prediction was based on her plugging in 1/5 for both a 

and b and obtaining 1 = 26/5 for 5a = b + 5, and her plugging in 4/5 for both a and b and 

obtaining 20/5 = 29/5 for 5a = b + 5. The reasoning underlying her prediction involves an 

element of change and coordination. 

Talia: Because here (5a) you are multiplying and, so it‘s growing. 

Lim: M-hm. 

Talia: But it‘s [also] reducing (because of the denominator) at the 

same time, and this (b + 5) will always [be] growing. So may 

be this one (5a) could catch up to this one (b + 5). 

  

Talia‘s prediction that a bigger fraction would probably work is characterized as 

coordination-based because she coordinated the multiplication of 5 by a fraction (the 

numerator increases the product, but the denominator decreases the product) with the 

adding of 5 to the fraction. However, she did not know how to find that fraction: ―I‘m 

thinking there could be, but I just don‘t know how to get it.‖ These two instances of 

coordination-based prediction suggest Talia‘s reasoning in the post-interview was 

generally more ―dynamic‖ than in the pre-interview. By dynamic, I mean it involves an 

element of change.  

Association-based prediction in the pre-interview 

Talia demonstrated association-based prediction in the pre-interview, but not in 

the post-interview, for Item S2: ―Is there a value for x that will make the following 

statement true? (2x – 6)(x – 3) < 0‖. While working on this item, Talia demonstrated three 

instances of association-based prediction in the pre-interview. She predicted that there 

was a value for x that would make (2x – 6)(x – 3) < 0 true. Her prediction was based on 

her associating the inequality having a solution with her having a procedure for solving 

the inequality for x. Recall that in the pre-interview, she applied the quadratic formula 
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and obtained 3 from 
26 6 4(1)(9)

2

± -
. She predicted that 3 was not a solution because she 

saw that 3 < 0 was false. Her prediction was based on her associating the result of 

26 6 4(1)(9)

2

± -
 with the output of x

2
 – 6x + 9. When she plugged in 3 for x into the 

inequality and obtained 0 < 0, she predicted that 6 might a solution: ―Maybe I‘m 

supposed to multiply by 2.‖ She doubled the resultant value of 3 because she thought she 

should compensate for the halving of 2(x
2
 – 6x + 9) < 0 to get x

2
 – 6x + 9 < 0. Her 

prediction was again based on her associating the resultant value of 
26 6 4(1)(9)

2

± -
 with 

the output of value x
2
 – 6x + 9. She essentially conflated the root of a quadratic function 

with the output value of the function. In the post-interview, Talia did not exhibit 

association-based prediction because she attended to the meaning of the symbols.  

To recapitulate, Talia predicted more often in the post-interview than in the pre-

interview, and showed improvement from association-based prediction in the pre-

interview to coordination-based prediction in the post-interview. This improvement is 

related to her improvement in her ways of understanding inequalities/equations.  

Improvement in Ways of Understanding Inequalities/Equations 

Table 6.1 highlights Talia‘s improvement from I/E-as-a-signal-for-a-procedure 

and I/E-as-a-static-comparison to I/E-as-a-comparison-of-functions. Her responses to 

items S2, T1 and T3 are used to explicate her improvement.  

While attempting Item Pre-S2, Talia interpreted the inequality (2x – 6)(x – 3) < 0 

as a signal for applying taught procedures. In Item Post-S2, she interpreted the inequality 
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as a comparison of functions because her comparison was not based on specific input 

values for x, but rather, it was based on her coordinating the two linear factors. 

While attempting Item Pre-T1, Talia interpreted the equation 5a = b + 5 as a 

comparison between the two sides in terms of their arithmetic operations. Talia‘s 

interpretation was coded as I/E-as-a-static-comparison. While attempting Item Post-T1, 

her coordination-based predictions, as discussed previously, presupposed an I/E-as-a-

comparison-of-functions interpretation because she allowed the values of 5a and b + 5 to 

vary. 

While attempting Item Pre-T3, Talia exhibited the I/E-as-a-signal-for-a-procedure 

interpretation. For example, she equated the two functions as m – 14 = 7 – n and 

commented, ―That‘s what I‘m going to be using to solve whatever it does allow me to 

solve for.‖ She considered and rejected solving for one of the variables and plugging it 

back into the equation. She also considered ―graphing both of them and finding where 

they intercept.‖ Her tendency to be procedure-oriented is reflected in her comment: ―I 

could probably do the same method (equating both functions to a particular number). But 

I‘m wondering if there‘s some algebraic form to do this. There is, probably, but I don‘t 

know, or I forget it.‖  

For Item Post-T3, Talia knew she could use the same method of equating both 

functions to a particular number to obtain another pair of values for m and n: ―I just set it 

(both sides of m – 14 = 7 – n) to the same number and I solved for m and n, and see if 

they would meet the condition (m > n). But I‘m sure there is a stopping point.‖ Talia‘s 

prediction of a stopping point (i.e., critical point) presupposes her interpreting the 

equation as a dynamic comparison of the two functions. When the condition was changed 
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to m < n, this way of understanding was probably what led her to immediately think of 

equating both sides to a negative number, -20. In the pre-interview, on the other hand, she 

equated both sides to 50 and then re-analyzed the results she had obtained from equating 

both sides to 28 before she could think of equating both sides to -20. Thus, she seemed to 

be interpreting the equation as a comparison of values in the pre-interview but as a 

comparison of functions in the post-interview. 

To recapitulate, Talia showed improvement by advancing her way of 

understanding from I/E-as-a-signal-for-a-procedure and I/E-as-a-static-comparison to I/E-

as-a-comparison-of-functions. This improvement is related to her improvement in her 

ways of thinking associated with foreseeing and her ways of thinking associated with 

predicting. Up to this point, I have presented her improvements in each area separately. 

In the next sub-section, I consolidate these improvements and discuss them using Cobb‘s 

(1985) notion of sub-context.  

Improvement in the Sub-context in which Talia Operated 

As previously stated in Chapter 2, according to Cobb (1985), one‘s anticipation is 

influenced by, (a) one‘s beliefs about mathematics and doing mathematics, (b) the sub-

context in which one operates or the strategy one uses, and (c) one‘s conceptual 

structures or schemes that are currently elaborated. The second point, (b), means that the 

sub-context in which one is operating confines one‘s ways of thinking associated with 

anticipating. I extended this premise to include ways of thinking associated with the 

mental act of inferring, as well as ways of understanding inequalities/equations. 

In the pre-interview, Talia‘s impulsive anticipation, association-based prediction, 

and the I/E-as-a-signal-for-a-procedure interpretation were related to her operating in the 
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sub-context of manipulating symbols, especially when she was working with Item Pre-S1 

and Pre-S2. When she was operating in this sub-context, she tended to be procedure-

oriented and thus exhibited impulsive anticipation. Her failure to attend to the meaning of 

the symbols contributed to her association-based prediction.  

In the post-interview, Talia‘s analytic anticipation, coordination-based prediction, 

and the I/E-as-a-comparison-of-functions interpretation were related to her operating in 

the sub-context of reasoning with symbols. When she was operating in this sub-context, 

she tended to be goal-oriented and thus exhibited analytic anticipation. Her reasoning 

with symbols allowed her to attend to the meaning of the symbols and coordinate change, 

thus allowing coordination-based predictions.  

To highlight Talia‘s operating in the sub-context of reasoning with symbols, 

consider her response to Item Post-S2: ―I don‘t know what this (x > 3, x < 3 and 

x < 3, x > 3) means. Let‘s see, here, I‘m just going to plug in points, and see on which 

side of the 3 it is.‖ When operating in the sub-context of reasoning with symbols, Talia 

attended to meaning and engaged in explorative anticipation. When she plugged x = 5 

and x = 2 into (2x – 6)(x – 3) < 0, she was surprised to find that the output was positive in 

both cases: ―So I think something‘s wrong with my critical point. Errr, maybe I can factor 

2 right here.‖ She simplified (2x – 6)(x – 3) to 2(x – 3)(x – 3) and then rewrote it as  

2(x – 3)
2
. She had difficulty interpreting it: ―I don‘t know, not sure what this  

[(x – 3)(x – 3)] means? Like when they are both the same.‖ She then thought of setting 

each factor to zero: ―And they both give, x is equal to 3. … The solution for both of these 

is the same, which means, I don‘t know, which means, 3 and 3, which means that there is 

no solution?‖ Her prediction of ―no solution‖ is considered coordination-based prediction 
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because she could explain ―whatever number will make this (x – 3) negative, will make 

this one (x – 3) negative. And whatever number that will make this positive, will make 

this positive.‖ Her reasoning with symbols and attending to their meanings facilitated her 

explorative and analytic anticipation. 

In essence, Talia‘s pre-to-post improvement can be summed up as a change in the 

sub-context in which she operates: from that of manipulating symbols to that of reasoning 

with symbols. Talia also operated in the sub-context of plugging in numbers during both 

interviews. Table 6.2 compares the sub-contexts in which Talia operated for each task.  

Table 6.2: Pre-to-post Comparison in Terms of the Sub-contexts in which Talia Operated 

 

 Pre-Interview Post-Interview 

Interview item S2 T1 T2 T3 S2 T1 T2 T3 

Reasoning with symbols  1   1 1 1 1 

Plugging in numbers   1 1  1 1 1 

Manipulating symbols 1 1    1   

 

Table 6.3 summarizes the essential differences in Talia‘s mathematical thinking 

and problem-solving between pre-interview and post-interview. To account for her 

improvements, data from the teaching intervention were analyzed. Recall that each 

teaching intervention consisted of five problem-solving sessions. The objective of these 

problem-solving sessions was to advance Talia‘s ways of thinking associated with 

foreseeing/predicting and her ways of understanding inequalities/equations.  
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Table 6.3: A Summary of Pre-and-post Improvement for Talia 

 

 Pre-interview Post-interview 

Ways of thinking associated 

with foreseeing 

Impulsive anticipation Analytic anticipation 

Ways of thinking associated 

with predicting 

Association-based 

prediction 

Coordination-based 

prediction 

Ways of understanding 

inequality/equation 
I/E-as-a-signal-for-a-

procedure 

I/E-as-a-comparison-of-

functions 

Sub-contexts in which one 

operates 

Manipulating symbols & 

Plugging in numbers 
Reasoning with symbols 
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6.2 Talia’s Trajectory from Manipulating-symbols to Reasoning-with-Symbols 

Talia transition from the sub-context of manipulating symbols to the sub-context 

of reasoning with numbers and symbols began in the first problem-solving session. Her 

learning trajectory, depicted in Figure 6.2, consists of three transitions: (a) from 

manipulating symbols to working with specific numbers; (b) from working with specific 

numbers to reasoning with general numbers (e.g., large positive numbers, small positive 

numbers, and negative numbers); and (c) from reasoning with general numbers to 

reasoning with symbols. For each transition, the episode in which the transition occurred 

and probable factor(s) that could have contributed to the transition are discussed.  

 

Figure 6.2: Talia‘s learning trajectory 

Transition from Manipulating-symbols to Working-with-specific-numbers 

The transition from the sub-context of manipulating symbols to the sub-context of 

working with specific numbers occurred when Talia worked on the first item, TE1-TN1
24

, 

                                                 

24
 The code TE1-TN1 stands for Teaching Episode 1 for Talia, New item, 1

st
 item in the session. Likewise, 

TE5-CR4 will stand for Teaching Episode 5 for Chela, Reuse-of-a-homework-task, 4
th

 item in the session. 

 

Manipulating symbols 

Reasoning with general numbers 

Reasoning with symbols 

Working with specific numbers 
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in the first problem-solving session. She was presented with the inequality 
5

0
10

x

x

-
<

-
 

with no accompanying instruction. She interpreted the inequality as a signal to solve for 

x. Her written work is shown in Figure 6.3.  

Lim: Alright, this is the first problem. 

Talia: OK. So I just solve it? Alright, arrr, so I‘m trying to solve for x. 

So I‘m just going to multiply both sides by x minus 10, x minus 

10, and it‘s x minus 5 is less than 0. And then you just add 5 to 

both sides. x is less than 5. Um, I think that‘s my answer.  

Lim: What does this answer (x < 5) mean? 

Talia: Um, that, this equation is true for any value of x that are less 

than 5, so, let me just try that out. So, 4 minus 5 over 4 minus 

10. 

 

 

Figure 6.3: Talia‘s written work for Item TE1-TN1 

 

Having found that x = 4 did not make the inequality true, Talia continued to think 

of alternative means for manipulating the inequality: ―How am I supposed to solve this? 

Um, maybe I can factor something out.‖ It is likely that she was interpreting solving for x 

to mean isolating x. When asked, ―What does solve for x mean?‖ she responded ―To find 

the values for this problem where the statement is true.‖ She then foresaw plugging in 

numbers.  
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Talia: So, umm, I‘m just going to try some random values for this, 2. 

2 minus 5 is -3. 2 minus 10 [is] -8. Umm, it has to be a number 

that is positive on the top and negative on the bottom, so I can 

get a negative number, and then the statement will be true. So, 

something that will give me positive is 6 minus 5, and 6 minus 

10. This is negative, this is positive 1, over negative, um, 10, 3 

4 5 6 (finger counting), 4 and that‘s less than 0. So one-fourth 

is a value that makes this statement true. … I‘m sorry, 6. 

 

Within the context of working with specific numbers, Talia could reason in a 

goal-oriented manner and foresaw plugging in 6 to make the numerator positive and the 

denominator negative. She even extended her reasoning to obtain all the values that 

would make the inequality true: ―So x can be anything that is, um, bigger than 5, but less 

than 10. So 6 7, 6 7 8, 9.‖  

Discussion. The change in sub-context from manipulating symbols to plugging in 

numbers was probably initiated by questions such as ―What does this answer mean?‖ and 

―What does solve for x mean?‖ In items Pre-S1 and Pre-S2, Talia‘s lack of attendance to 

the meaning of the symbols had caused her to remain in the sub-context of manipulating 

symbols. Therefore, I infer that the transition from the sub-context of manipulating 

symbols to the sub-context of working with specific numbers is a consequence of her 

attending to meanings. This observation highlights the importance of getting students to 

recognize that the referents of literal symbols in algebra are numbers in context-free 

situations, or quantities in situations where the function or inequality/equation models 

certain physical phenomenon.  



   

 

 

158 

 

Transition from Working-with-specific-numbers to Reasoning-with-general-

numbers 

The transition from working with specific numbers to reasoning with general 

numbers occurred in Talia‘s initial response to the second item (TE1-TN2): ―Is 

x(6x + 8) < 0 always true, sometimes true, or never true?‖ 

Talia: Is x [times] quantity of 6x plus 8 less than 0 always true, 

sometimes true, or never true? Mmm, I‘m thinking if I make x 

into a negative number so that, um, so that the whole function 

will be negative. So if there is an answer, it will probably have 

to be negative because if I make x positive, it‘s going to be 

greater than 0 all the time. Right? … OK. Um, so let me just 

try a negative number, -1. 

 

Talia‘s initial way of thinking in this task was substantially different from that in the first 

task. While she impulsively tried to isolate x in the first task, she approached this task in a 

goal-oriented manner. Her prediction that only a negative number would have a chance of 

making the inequality true is considered coordination-based prediction because she knew 

that a positive value of x would make 6x + 8 positive and the product x(6x + 8) positive. 

Her foresight of plugging in -1 is considered analytic anticipation because it was aimed at 

making the whole function negative. 

Discussion. Task TE1-TN2 allowed Talia to repeat the goal-oriented way of 

thinking that had emerged when she was operating in the sub-context of working with 

specific numbers in task TE1-TN1. While working on task TE1-TN2, Talia began to 

reason with general numbers: x being positive would make the inequality ―greater than 0 

all the time.‖ The transition from working with specific numbers to working with general 

numbers might be due to the inequality having x as a factor. An implication for teaching 

is that instructional tasks should be designed to allow students to apply, and then extend, 
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their ways of understanding. The quadratic inequality x(6x + 8) < 0 is considered a good 

follow-up to the rational inequality 
5

0
10

x

x

-
<

-
 because the two functions are structurally 

different, yet they both foster the same way of thinking, namely the backward strategy (a 

goal-oriented way of thinking) of making one factor positive and one factor negative. 

Hence, the use of the x(6x + 8) < 0 is in keeping with the Repeated-reasoning Principle 

(Harel, 2001), which stipulates that students should be provided with opportunities to 

repeat their reasoning in a variety of situations. 

Transition from Reasoning-with-general-numbers to Reasoning-with-symbols 

The transition from reasoning with numbers to reasoning with symbols began 

with Item TE1-TN2 and continued through the entire teaching intervention. The following 

excerpt is a continuation of the previous excerpt. 

Lim: Are you able to find another value that‘ll make it true besides 

-1? 

Talia: Um, yeah. This number, well, let me see, this number (6x) has 

to be less than 8 so that, um, so that I can get a positive value 

here (6x + 8). 

Lim: M-hm. 

Talia: But the number (x) also has to be a negative number so that … 

when I get positive here (6x + 8), I‘ll have a negative here (x), 

and I‘ll get a negative answer, that‘ll be less than 0.  

Lim: M-hm. M-hm. 

Talia: So, well, if I put 2 (she interpreted -2 as 2 with a negative 

sign), it‘s going to be 12, and that‘s too big. That‘s bigger than 

8. So, I think it has to be less than 2 (i.e, greater than -2), it can 

be -1.5. … May be it can be between 0 and -1. 

 

This was the first instance where Talia was seen to reason with the symbols in a goal-

oriented manner. She established the sub-goal of making 6|x| less than 8 and making x 

negative so that she could obtain (-)(+) < 0. Thus, her foresight of plugging -2 is 

considered analytic anticipation. Her prediction that numbers in the interval [-1, 0] would 
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work is considered coordination-based because she foresaw that multiplying 6 by a 

proper fraction would result in a value less than 8: ―It reduces this number because I‘m 

multiplying [6] by 1 over something. So, it, multiplying by 1 over something, it‘s the 

same thing as dividing 6 by something, and that will give me a number smaller than 8.‖ 

When Talia was operating in the sub-context of reasoning with symbols, she exhibited 

both analytic anticipation and coordination-based prediction. 

Discussion. The transition from reasoning with general numbers to reasoning with 

symbols inevitably requires students to engage in analytic anticipation and explorative 

anticipation. In addition, certain ways of understanding may be necessary. I conjecture 

that Talia‘s foresight of making 6|x| to be less than 8 would not have occurred without the 

way of understanding of making one factor positive and one factor negative. This way of 

understanding would not have emerged without her plugging specific numbers into 

5
0

10

x

x

-
<

-
 and reasoning about its structure using numbers. An implication of this 

conjecture is that mathematics educators should use reasoning with numbers as a sub-

context to facilitate the emergence of critical ways of understanding that can foster 

reasoning with symbols. 

Talia was unable to represent her goal of making 6x + 8 positive as 6x + 8 > 0, 

from which she could easily obtain x > -8/6. As a result, she had to proceed in the sub-

context of plugging in specific numbers, such as -2, and reasoning with general numbers, 

such as a number in the interval [-1, 0]. This implies that mathematics educators should 

use reasoning with numbers as a platform for students to explore their ways of 

understanding related to symbolic structure. I conjecture that Talia‘s undesirable ways of 
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thinking—such as impulsive anticipation, association-based prediction, and non-

referential symbolic way of thinking—probably resulted from her working with algebraic 

symbols and structures without the support of numbers. A lack of numerical support for 

algebraic reasoning is a probable cause for students‘ perceived disconnection between the 

world of algebra and the world of arithmetic, as observed by Lee and Wheeler (1989).  

Talia‘s way of understanding negative numbers as positive numbers with a 

negative sign occurred on many occasions. This way of understanding caused some 

confusion for Talia in her attempt to symbolize the constraint of 6|x| being less than 8. 

She experienced cognitive conflict when her representation 6x < 8, which she thought 

should be correct, did not agree with the table of values she had created. I only detected 

this way of understanding during the analysis phase, so I did not have a chance to help 

her address this way of understanding in the teaching intervention. This example 

highlights how important it is for teachers to uncover students‘ ways of understanding in 

order to effectively help students advance their ways of understanding. Chela also 

demonstrated this way of understanding when she was reasoning with 6x + 15 < 0: ―What 

number will make 6x greater than 15. … I mean like if I multiply, what number will 

come out as a negative number, to be greater than 15?‖ 

In this section, Talia‘s trajectory from manipulating symbols to working with 

specific numbers, to reasoning with general numbers, and to an initial phase of reasoning 

with symbols was discussed. A few implications for instruction were suggested: (a) get 

students to attend to meaning when they solve problems; (b) design instructional tasks 

that allow students to repeat their reasoning and to apply/explore their ways of thinking 

and ways of understanding; (c) use reasoning with numbers as a sub-context to facilitate 
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the emergence of certain critical ways of understanding that could foster reasoning with 

symbols and structures; and (d) be sensitive to students‘ ways of understanding.  

 

6.3 Accounting for Talia’s Improvement 

While the previous section outlines Talia‘s improvement in terms of transitions 

from one sub-context to another, this section presents factors that could account for 

Talia‘s improvement. Three factors were identified: (a) attending to meaning and the 

referents for symbols, (b) opportunity to explore, and (c) opportunity to predict. Each of 

these factors is discussed in detail in this section. 

Attending to Meaning and the Referents for Symbols 

The importance of attending to meaning is highlighted in the discussion on Talia‘s 

transition from manipulating symbols to working with specific numbers. As mentioned in 

that discussion, once Talia had established numbers as referents for literal symbols, she 

could engage in coordination-based prediction and analytic anticipation.  

However, Talia was still procedure-oriented when she worked on a list of 

homework items after the first session. She incorrectly applied the newly learned 

strategy. For example, she solved 
7

0
11

x

x

+
>

+
 by finding the critical values using x + 7 = 0 

and x + 11 = 0, and converting x = -7 and x = -11 to x > -7 and x > -11. Having found that 

-8 did not make the inequality true, she discarded x > -11, and circled x > -7 as her 

answer.  
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In the second problem-solving session, Talia‘s response to Item TE2-TR1 (―Is 

there a value of x that makes 
7

0
11

x

x

+
>

+
 true?‖) was substantially different from her 

written response to the homework item (―Find the solution set
25

 for 
7

0
11

x

x

+
>

+
.‖). 

Talia: Is there a value of x? Um, it should be a big positive number, or 

a small negative number. 

Lim: Give me an example of each. 

Talia: Errr, it can be -2 because this top number (7) over-power the 

-2, or it could be any positive number because positive plus 

positive is positive. Positive over positive is bigger than 0. 

 

By ―a small negative number‖ and ―no bigger than -7,‖ Talia meant -7 < x < 0. As 

mentioned previously, Talia conceived a negative number as a positive number with a 

negative sign. Although she overlooked the other possibility (that is, negative over 

negative is positive), her prediction of x being a big positive number or a small negative 

number is considered coordination-based because she was reasoning with an interval of 

numbers. In addition, she made an initial prediction on her own. Her foresight of 

plugging in -2 is considered analytic anticipation because it was directed at making both 

numerator and denominator positive. 

When asked if she was ―able to find the ‗biggest‘ negative number that will make 

it true,‖ Talia first thought, ―-7 … it‘s because -7 plus positive 7 is 0. Or actually, also -

11.‖ She then reasoned with specific numbers like -6, -10, and -10.9999. Eventually, the 

negative-over-negative-is-positive way of understanding emerged. 

                                                 

25
 The notion of solution set emerged in the first problem-solving session and the meaning was discussed. 

The homework was to an attempt to have her apply certain ideas such as finding critical value and checking 

the intervals that were discussed in the session. 
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Talia:  This number (-10.9999) is still smaller than -11 by very very 

little, um, so the bottom will be positive, it (-10,9999) is more 

powerful than a positive 7, so the top will be a negative. … so 

it won‘t be true. So you have to make it the same sign on the 

both sides.  

Lim: M-hm. M-hm. 

Talia: Umm… so no, -10 isn‘t the one. May be negative… anything 

more negative than -7, it‘s going to… make the top negative 

and the outcome [will still be] negative.  

Lim: M-hm. 

Talia: Unless we have like a negative over a negative. 

Lim: So if you want to make a negative and a negative, is that 

possible? 

Talia: Yeah, you could put like -20. 

 

Discussion. The difference in Talia‘s responses in her homework and in the 

subsequent problem-solving session might be due to the differences in setting (at home 

versus in the presence of a researcher) and in the nature of the two tasks. These 

differences suggest that the instantiation of a particular way of thinking depends on the 

circumstantial conditions and task characteristics. An implication for instruction is that it 

is important to foster a learning environment that is conducive for nurturing desirable 

ways of thinking. Another implication is that it is advantageous to use of non-directive 

tasks, instead of directive tasks. A directive task, such as ―find the solution set‖ and 

―simplify this expression,‖ tends to elicit impulsive anticipation, whereas a non-directive 

task tends to encourage explorative anticipation and making predictions. 

Talia‘s response to the homework item also suggests that her ways of thinking are 

robust. In the homework example, her way of thinking is procedure-oriented, which 

usually manifests itself as impulsive anticipation. I conjecture that the experience that 

Talia gained from the teaching intervention might have little long-term impact if her 

learning environment fosters impulsive anticipation. An instructional implication is that 
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mathematics teachers should foster a learning environment that encourages students to 

explore and to analyze, instead of to remember and to apply. Desirable exploration and 

analysis would require students to reason in a symbolic referential manner, that is, to 

attend to meaning.  

When Talia did not attend to meaning she tended to be procedure-oriented; in 

contrast, when she attended to meaning she could engage in coordination-based 

prediction and analytic anticipation. Repeated experience of using numbers to uncover 

symbolic structure(s) can help students cultivate a disposition to make a prediction, and 

to engage in coordination-based prediction and analytic anticipation. After all, a way of 

thinking cannot be developed in a single experience.  

The question ―are you able to find the ‗biggest‘ negative number that will make it 

(
7

0
11

x

x

+
>

+
) true?‖ presented Talia with a need to find a critical value. This is an 

instantiation of the Necessity Principle (Harel, 1998) which stipulates that for students to 

learn a particular concept they must perceive a need for it. Talia‘s experience of needing 

to find a critical value might have contributed to her confidence in resolving cognitive 

conflicts involving critical values. Recall previous discussion regarding Talia‘s response 

to Item Post-S2 (on sub-section Improvement in terms of Sub-context in which Talia 

Operated) Talia thought, ―something‘s wrong with my critical point‖, when she found 

that both x = 2 and x = 5 made the inequality false. She resolved her conflict by exploring 

another approach: factoring out a 2 and obtaining 2(x – 3)(x – 3) > 0. When she was not 

sure what (x – 3)(x – 3) meant, she set each factor to zero and realized that there was only 

one critical value. 
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The sub-context of plugging in numbers can be a platform for students to develop 

the I/E-as-a-comparison-of-functions way of understanding. Talia‘s search for a critical 

value by plugging in numbers may have set the stage for developing this way of 

understanding. This is because she was constantly considering alternative numbers (e.g., 

-7, -6, -10 and -10.9999) when she reasoned with a specific number. Allowing a literal 

symbol to assume different values could foster her interpreting an algebraic expression as 

a function, rather than a non-varying entity. 

With numbers as referents for her symbols, Talia could explore the symbolic 

structure and encounter the negative-over-negative-is-positive way of understanding. She 

used a similar way of understanding—making both linear factors positive or both 

negative—in her work on Item Post-S2, which involved (2x – 6)(x – 3) < 0. According to 

one direction of the Duality Principle, which stipulates that ―how students come to 

understand mathematical content influences their ways of thinking‖ (Harel, 2001, p. 207), 

this way of understanding could help Talia foster analytic anticipation and the backward 

strategy, which is a goal-oriented way of thinking associated with the act of problem 

solving.  

Opportunity to Explore 

Despite being a Calculus student, Talia encountered difficulties when she 

operated in the sub-context of reasoning with symbols because of deficiencies in her 

ways of understanding certain algebraic concepts. Nevertheless, within the DNR-based 

instructional environment I implemented, these deficiencies were opportunities for 

learning. The opportunities for exploration in the problem-solving sessions enabled these 

deficiencies to surface and be addressed.  
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Talia‘s solution process for Item TE2-TN4 provides a useful example for 

discussing how an opportunity for Talia to explore her ways of understanding could 

contribute to learning. TE2-TN4 asks, ―Is the following statement always true, sometimes 

true, or never true? 5 + (8x – 20) < 10 + (8x – 20)‖. Talia simplified the inequality to  

8x – 15 < 8x – 10 and compared the two sides by reasoning with general numbers. 

Talia: Let me think in term of negatives and positives first. Um, 

sometimes true, this (x) can be a positive number, big, this (8x) 

becomes a big number, and this (8x – 15) is big outcome. This 

(8x) is a big number, this (8x – 10) becomes big number, and I 

think it‘s sometimes true. That‘s my prediction. 

  

Talia predicted ―sometimes true‖ because she thought that the inequality would be true 

for positive numbers and false for negative numbers.
26

 Nevertheless, her prediction is 

considered coordination-based because she was not thinking with specific numbers and 

was coordinating the input x with 8x, 8x – 15 and 8x – 10. The predicting-prior-to-

performing way of thinking was absent when she worked on a similar item in the pre-

interview, Item Pre-S1. 

Talia then explored the idea of finding a critical point: ―I wonder if I can move 

this thing (8x – 10) to this side and set it equal to 0 to find the critical points.‖ She 

foresaw from (8x – 15) – (8x – 10) < 0 that the 8x‘s would cancel, but added, ―that‘s 

probably not the best thing [to do].‖ When she was asked to proceed, she obtained -5 < 0 

and became perplexed.  

Talia: -5 less than 0, that‘s true. But then the x‘s are gone. So this (-5) 

isn‘t, is this really a critical point? I‘m not sure if it is. … This 

                                                 

26
 Treating a negative number as a positive number with a negative sign, she appended the negative sign to 

the result she obtained from operating on its positive counterpart; so she could be visualizing the inequality 

as something like -(8|x| – 15) < -(8|x| – 10). 
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inequality, I know this statement (-5 < 0) is true, but I‘m 

looking for the critical point of x.  

 

Talia eventually saw the connection between the equation 8x – 15 = 8x – 10 not having a 

solution, and the inequality not having a critical point. This episode allowed Talia‘s 

deficient way of understanding of critical points to surface and be addressed.  

When Talia was asked whether she was ―able to just study this (original) 

inequality without doing any work … [and answer] is there a value of x that will make 

the inequality true.‖ Talia responded, ―No, because I know that the x‘s are going to 

cancel.‖ As with Item Pre-T1, Talia did not realize the significance of the cancellation of 

the x‘s. Instead, she associated the disappearance of x with the inequality not having a 

solution. When she plugged in 2 for x, she noticed that ―these two (8x‘s) will be the same 

numbers.‖ She admitted that she did not realize this solution earlier.  

When she foresaw plugging in -10 for x, I wrote out the arithmetic expressions 

and drew two pairs of parentheses, in which she could write in the result of 8(-10) – 20 

(see Figure 4.5). Upon writing 5 + (-100) < 10 + (-100), Talia noticed the structure and 

wrote 5 + X < 10 + X.  

Talia:  OK, is this (X) always going to be the same number (X), plus 

something, since this is always plus 10 and this is always plus 

5? This number is always going to be bigger than this number 

regardless of what x is. It‘s still the same thing. Yeah. So, the 

answer is always true.  

 

 
Figure 6.4: Talia‘s observation of the structure 
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Discussion. Task TE2-TN4 is similar to Item Pre-S1, which involved a more 

elaborate inequality (6x – 8 – 15x) + 12 > (6x – 8 – 15x) + 6. While Talia manipulated 

symbols without attending to meaning in Item Pre-S1, in this new task she analyzed the 

inequality by reasoning with general numbers and made a prediction. These experiences 

allowed her to engage in analytic anticipation and coordination-based prediction.  

 Task TE2-TN4 allowed Talia to explore her understanding of critical points, to 

exhibit association-based prediction, and to learn that the absence of a critical point does 

not imply the absence of solution for an inequality. Talia‘s plugging in -10 allowed her to 

―see‖ the symbolic structure of the inequality. This experience might have promoted the 

plugging-in-numbers-to-notice-patterns-or-structure way of thinking.  

Talia‘s way of understanding the structure of the inequality, reconceived as 

5 + X < 10 + X, was facilitated by my writing out the expressions and drawing those 

parentheses. One may question the appropriateness and timing of the my involvement in 

Talia‘s work. As the instructor, I felt that Talia was ready to abstract the structure of the 

inequality from her work with numbers. This example highlights the importance of 

strategic intervention on the part of a teacher, an idea that is based on Vygotsky‘s notion 

of zone of proximal development.  

Opportunity to Predict  

Talia‘s improvement in making more predictions, especially coordination-based 

ones, during the post-interview was related to her opportunities to predict in the problem-

solving sessions. To examine how these opportunities might have contributed to her 

improvement, I discuss Talia‘s work on a sequence of three tasks. 
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Item TE4-TN3a: ―Plugging x = 127 into 4x – 20 > 3x – 20, we get 361 for the right hand 

side. What is the value on the left hand side?‖  

Talia foresaw plugging in 127 into 4x – 20. When asked to predict, she responded, 

―I‘m trying to think how much more is this (4x – 20) than this (3x – 20) but I‘m not sure 

how.‖ She noticed that 4x ―is 1 times more‖ but had to struggle with its meaning, because 

the difference between 4x and 3x involves both multiplicative and additive comparisons.  

Lim: 1 times more. So, what does that mean? 

Talia: So, um, I don‘t know, multiply it by 1? Because 4x is 2 times 

more than 2, so you multiply it by 2, and 4x is 1 times more 

than 3, so you multiply it by 1? 

Lim: 4x is 1 times, what do you mean by 1 times more? 

Talia: Well, 1 more, also 1 times more? 1 times 3 (wrote and then 

cancelled ―1  3‖). No, never mind. It‘s 1 more. 
Lim: 1 more? 

Talia: M-hm. 

Lim: What do you mean by 1 more? 

Talia: 1 more x. So I guess you add this (127) to this (361)? Is that it? 

Because this (-20) is the same on this both sides. So you just 

add 127. Um, yeah. 

 

Discussion. Talia did not make a prediction on her own. The explicit request to 

get Talia to predict was necessary since, according to Vygotsky‘s (1978) notion of zone 

of proximal development, students are unlikely to engage in certain ways of thinking 

without the influence of a teacher or a more advanced peer.  

Talia‘s lack of predicting could have been due to her deficient way of 

understanding 4x. Failing to interpret 4x as x + x + x + x, she could not spontaneously 

notice that 4x – 20 is one x more than 3x – 20. Instead, she was probably interpreting 4x 

as 4 times x. The opportunity to predict and to explore enabled Talia to struggle with her 

way of understanding 4x, and to appreciate the advantage of having alternative ways of 

interpreting 4x. According to Harel and Sowder (2005), beliefs such as ―a concept can 
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have multiple interpretations‖ and ―it is advantageous to possess multiple interpretations 

of a concept‖ (p. 32) are desirable ways of thinking that should be developed in 

elementary and secondary school mathematics. 

Item TE4-TN3b: ―Plugging x = 8.01 into 4x – 20 > 3x – 20, we get 12.04 > 4.03. What 

will we get if plug in x = 16.02.‖  

For this item, Talia made a prediction: ―So why don‘t we multiply these by 2.‖ 

Her prediction, however, is association-based because she associated doubling the input 

value of x with doubling the output value of each function. She then doubted (i.e., 

analytic-anticipated) her prediction and considered whether the doubling should be 

applied to the x-terms or to the entire function. She chose the latter because, ―this (12.04) 

should be 2 times more, and this (4.03) should be two times more as well, because I‘m 

doing the same thing to both sides.‖ Talia‘s confidence increased after she associated the 

justification for doing the same to both sides with the justification for doing the same to 

the input and to the outputs. She had to work with specific numbers to see that the 

constant term, -20, was not doubled. 

Discussion. This task gave Talia an opportunity to predict, to make association-

based predictions, and to plug in numbers to uncover the mathematics underlying the 

result. She had the opportunity to engage in analytic anticipation and to apply the 

plugging-numbers-to-see-the-underlying-structure way of thinking.  

Item TE4-TN3c: ―Plugging x = 9.11 into 4x – 20 > 3x – 20, we get 16.44 > 7.33. What 

will we get if we plug in x = 10.11?‖  

Noticing that 10.11 was 1 greater than 9.11, Talia predicted, ―you could add 1 

more, but you have to add only to the x‘s. … But how do you disregard the 20. … I think 

I just add 1 (wrote 17.44 > 8.33).‖ Talia‘s focus on the constant term of -20 was 



   

 

 

172 

 

influenced by her learning from the preceeding task. The phenomenon of using recently 

learned ideas, which I call Recency Effect, is discussed in the last section of this chapter. 

Talia did not notice that 4x + 1 was different from 4(x + 1) until after she had written 

4x + 1 – 20 and 4(9.11 + 1) – 20, and compared them. In addition, her trying to disregard 

the -20 conflated the issue because she was not aware that (4x + 1) – 20 and (4x – 20) + 1 

were equal. To resolve her confusion, she plugged in 9.11 for x, and then 10.11 for x. 

Comparing the results (see Figure 4.6), she noticed the difference of 3 and 4: ―So I 

could‘ve just added 3 and 4.‖ She associated them to 3x and 4x but was not able to 

explain the association in terms of the distributive property.  

 

Figure 6.5: Talia‘s observing ―4 more‖ and ―3 more‖ from her numerical work 

To test whether Talia had internalized the symbolic structure, I asked her, ―what if 

x is 19.11?‖ She appeared to have internalized the distributive property: ―19.11 is 10 

more. So, 4 times 10, you‘ll have to add 40. So it‘s, um, 4 times 9.11 plus 40, minus 20? 

… So, essentially it‘s just adding adding 40 to whatever your output of 9.11 is.‖  

Discussion. This task allowed Talia to analyze the inequality, to predict, and to 

practice plugging-numbers-to-see-the-underlying-structure way of thinking. Using those 

numbers, Talia understood why her initial prediction of adding 1 was incorrect and she 

was able to see the relevance of the distributive property in this problem.  
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This task also allowed Talia‘s deficient ways of understanding, which were 

related to the associative property and the distributive property, to surface. A single 

episode such as this might not have helped Talia to address those issues effectively. 

However, repeated reasoning in similar situations would help her to interiorize 

associative and distributive properties, as well as to develop checking-to-ensure-

preservation-of-values (arithmetic invariance) way of thinking, which is foundational to 

developing changing-the-form-without-changing-the-value (algebraic invariance) way of 

thinking.  

Evidence of Talia‘s using numbers as a means to reason with structure  

Talia‘s improvement in terms of using numbers to get a feel of an algebraic 

expression is evident in her response to Item Post-S5: ―Is the following statement always 

true, sometimes true, or never true? (x + 1) + (x + 2) + (x + 3) + … + (x + 99) 

+ (x + 100) < 100x‖. Talia predicted sometimes true, and plugged in 2 to show that that 

the inequality could not be always true. Exploring with x = 100, she noticed the pattern in 

101 + 102 + … + 199 + 200 and thought of the pairing strategy, although incorrectly: 

―You add the first number and you add this [last] one, and then you would divide it by 

the number of total terms.‖ She applied the idea that emerged from the arithmetic to the 

algebraic inequality and obtained 
( ) ( )1 100

100

x x+ + +
. She then suspected that it should be 

divided by 2 because, ―you want to get the value of one term.‖ Next, she tried to recall 

the formula for arithmetic series: ―It‘s like N over 2 times first term and then last term. I 

don‘t remember.‖ So Talia went back to reasoning with x = 100, but was unable to decide 

which side would be bigger. She then thought of factoring, but realized, ―I can‘t factor an 
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x out of all them.‖ She then returned to applying her summation idea 

( )1st term + last term 100
2

n
x< , but added, ―I don‘t think this is the right way to do it.‖  

After exploring by plugging in -100 for x, Talia then thought of ignoring the x‘s 

and focused on the numbers: ―It‘s like adding 1 to 100. Let me find the sum from 1 to a 

100. This is 101, and then times how many terms you have, divided by 2. That‘s 50, 

times 101.‖ Seeing the product as 5050, Talia questioned, ―How‘s that going to help me? 

I‘m going to see if it‘s less than 100x.‖ She then noticed that there were 100 x‘s. When 

she obtained 100 5050 100x x+ < , she guessed that the left function was greater than 

100x. She spontaneously thought of negatives: ―But then, if it‘s really negative, it‘s also 

smaller. So I think it‘s sometimes true.‖ In this case, Talia seemed to be interpreting the 

inequality as ( ) ( )100 5050 100p p- + < -  where –p represents a negative number. This 

inference was drawn because Talia treated negative numbers as positive numbers, worked 

with these positive numbers, and then negated the result. When she tested her prediction 

with x = -500, she changed her answer: ―but you are adding, never mind. Since you are 

adding over, this number is always going to be bigger than this one. So this is never true.‖  

Discussion. This item was not discussed earlier in the pre-post comparison 

because Talia did not work on this item in the pre-interview. This episode highlights how 

Talia capitalized on numbers to help her to reason with symbols and structure. In other 

words, she demonstrated the using-numbers-as-a-means-to-reason-with-structure 

strategy, which is a way of thinking associated with problem-solving. With numbers as 

referents for her symbols, she could rectify her mistake of dividing the sum of the first 

and the last terms by the number of terms. Her attempt to recall the formula for arithmetic 
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sequences emerged out of a need to sum those numbers instead of being a conditioned 

response. Her abandoning ( )1st term + last term 100
2

n
x<  was probably due to her difficulty in 

foreseeing its usefulness when the terms have x‘s in them. When she ignored the x‘s, she 

could use it successfully for summing 1 to 100. This example highlights Talia‘s ability to 

reason with structure using numbers and her continued difficulty in reasoning with 

structure at a symbolic level.  

Talia‘s improvement in her tendency to predict was demonstrated in this episode. 

For example, she immediately predicted ―sometimes true‖ at the beginning and predicted 

―sometimes true‖ at the end, after she considered the possibility of negative numbers 

making the inequality true. 

Talia‘s failure to spontaneously detect that there were 100 x‘s on the left side was 

an indication that she had only internalized and not interiorized the way of understanding 

4x as x + x + x + x. If she had interiorized this way of understanding, she would have 

arrived at her conclusion much sooner. This incident highlights the importance of Harel‘s 

(2001) Repeated-reasoning Principle; that is, students need to reason repeatedly in order 

to interiorize a way of understanding. 

 

6.4 Difficulties Talia Faced 

The previous sections of this chapter have discussed Talia‘s progress and 

improvement. However, there were many times during the teaching intervention in which 

Talia encountered difficulties. This next section examines some of those difficulties so as 

to provide a more complete picture of Talia‘s learning. 
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Talia’s Difficulties with Solution Set and Invariance of an Inequality  

Talia demonstrated some improvement in her ways of understanding 

inequalities/equations. Because she was in the sub-context of manipulating symbols, 

Talia initially interpreted an inequality as a task to isolate x (items Pre-A1 and TE1-TN1), 

a task to apply a certain procedure (Item Pre-A2), or an equation with an unequal sign. 

By the end of the teaching intervention, she began to view an inequality as a comparison 

between two sides and as a proposition that could be true or false depending on the input 

values. In her reflection on what she had learned over the five problem-solving sessions, 

she wrote, ―I looked at inequalities as if they were a comparison of two functions. … I 

also looked at them as different propositions, and I tried to find ways to make them true 

or false by thinking in terms of positive numbers and negative numbers.‖  

Talia demonstrated difficulties with the notions of solution set and invariance. 

Talia began with a weak understanding of solution of an inequality. For example, when 

she solved 1.2x + 3456 < 7 + 8.9x (Item Pre-A3) and obtained 447.9 < x, she predicted 

that 447.9 would make the inequality true. Similarly, when she obtained x > -4/3 from 

6x + 8 > 0 (Item TE1-TN2), she did not expect the value of 6(-4/3) + 8 to be zero.  

In her second session, Talia conflated the invariance aspects of an inequality with 

variable aspects (e.g. the truth value depends on input value). For Item TE2-TN3, she did 

not see the invariance that allows simplifying 5 + (8x – 20) < 10 + (8x – 20) to 5 < 10. As 

such, she predicted that 5 + (8x – 20) < 10 + (8x – 20) was sometimes true. She predicted 

true because she saw 5 < 10 as ―one situation that is true,‖ and she predicted false 

because she associated the falsity of the inequality with the disappearance of x and the 

inequality not having any critical point. She did not know that critical points of an 
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inequality are invariant. She also did not seem to know that 5 < 10 was equivalent to the 

original inequality. Instead of seeing them as invariant properties, she saw them as 

circumstantial results that could vary, similar to how she saw the truth-value of an 

inequality as varying according to the input value of x.  

By her third session, Talia seemed to have some understanding of solution set, but 

she still had not understood algebraic invariance. This was revealed in her work for Item 

TE3- TN1: ―Consider these two inequalities: x < 1 and 8x + 3 > 8 + 3x. Is there a value for 

x that will make one of them true but will make the other false?‖ When Talia solved 

8x + 3 > 8 + 3x and obtained x < 1, she knew that the two inequalities ―are the same, 

[have] the same, um, solution set.‖ She added, ―whatever value I put in here 

(8x + 3 > 8 + 3x) will make this true as well. Right? So, to test that out let me just try …‖ 

After plugging in 0, -10 and 10, she commented, ―I don‘t think there is a value.‖ Later on, 

she was asked to considered x < 1 and 5x < 5. Talia entertained the possibility of having a 

value for x that would make one of them true and the other false: ―0? No. 1? 5 is less than 

5? 1 is less than 1. Maybe 1, cause 5 isn‘t less than 5. No. One isn‘t less than 1. False 

again.‖ While Talia knew that 5x < 5 could be simplified to x < 1, she could not explain 

their equivalence in terms of preservation of a solution set. 

Despite efforts to help Talia understand the notion of preserving solution sets 

while simplifying an inequality, she did not internalize the ways of understanding 

associated with equivalent inequalities. Talia repeatedly divided both sides of an 

inequality by a function without ensuring that the function be positive. For example,  

she simplified 5(8x – 20) < 10(8x – 20) to 5 < 10 (Item TE3-TN4), and  

(x + 1)(2k – 7) = 3(2k – 7) to x + 1 = 3 (Item Post-T4). These results prompt the question: 
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What made it difficult for Talia to develop the way of understanding related to 

preservation of solution sets? Is it because she lacked the algebraic invariance way of 

thinking? To answer these questions, further research is needed to study students‘ 

development of the preserving-solution-set way of understanding, their development of 

algebraic-invariance way of thinking, and the interplay between the two.  

Talia’s Difficulties with the Considering-Falsity Way of Thinking  

Talia exhibited the considering-negative-numbers way of understanding in the 

third session when she worked with 5(8x – 20) < 10(8x – 20). However, she was not  

able to invoke it in the next session to solve Item TE4-TN1: ―Given that x > 10, is  

3x(500 – 2x) < 10(500 – 2x) always true, sometimes true, or never true.‖ Even when she 

was asked, ―If your classmate says that he found a value of x that makes the inequality 

true, will you believe him?‖ she still maintained her way of understanding and reasoned, 

―I don‘t see how I could because 3 times 10 is already 30. And 30 is not less than 30, 

right? And then 3 times 11 is 33… plus you are multiplying this. So I don‘t think there is, 

unless it was less than 10.‖ Talia‘s lack of consideration for the other case (i.e., not 

considering-falsity) might be a consequence of her way of understanding that x > 0 

implies f(x) > 0, which probably caused her to ignore 500 – 2x and instead focus on 3x 

and 30. Once she was reminded that she had said in the previous session ―remember, 

think of negatives‖, she thought of the other case. 

Talia:  Oh, yeah. I can get a negative out of this. If 2x is bigger than 

500, I could get a negative number, and then this will be really 

negative, so this number will be more than this one. And it will 

be sometimes true. So 2 times what is going to give him bigger 

than 500? Um, let‘s try 2 times 400. 

 



   

 

 

179 

 

Talia‘s way of understanding of making 2x larger than 500 could not emerge 

without the considering-falsity way of thinking. This example provides an instantiation of 

the second direction of the Duality Principle: ―ways of understanding [students] produce 

are determined by the ways of thinking they possess‖ (Harel, in press c). In Tzur‘s (2003) 

terms, Talia is said to be in the participatory stage of her development of the considering-

negatives way of understanding, and not yet in the anticipatory stage, because she was 

not able to anticipate the usefulness of considering negatives beyond the context in which 

she learned, and cuing was needed to evoke this way of understanding. Further research 

is needed to study student‘s transition from the participatory stage to the anticipatory 

stage in the development of considering-falsity as a way of thinking associated with 

problem-solving. 

Talia’s Weakness in Dealing with Numbers 

Talia used finger-counting to compute additions and subtractions such as 6 – 10, 

-8 + 12, -8 + 6, and -50 + 6. She had to use the procedure for multiplying fractions to 

compute 1.5 × 6 and to find the value for one-fourth of 6. In Item Post-S2, she 

misinterpreted 6/2 as 6½. Furthermore, Talia had difficulty noticing the multiplicative 

relationship between 8x + 20 to 6x + 15, even after she had generated a table of values 

with number-pairs such as (15, 20), (33, 44), (9, 12), (3, 4), and (-3, -4). Chela, an 

Algebra 2 student, on the other hand, was able to detect the multiplicative relationship 

and ratio much sooner: ―There might be a number when you multiply [by 30], you‘ll get 

40. … so this (30x = 40) will be the equation to find it.‖  

As mentioned earlier in a few places, Talia‘s ways of understanding a negative 

number as a positive number with a negative sign was an obstacle to her progress in 
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reasoning with symbols. For example, while attempting Item TE1-TN2, Talia had 

difficulty constructing 6x > -8 because she was reasoning with 6|x| being less than 8 but 

was representing the constraint as 6x < 8. Her insensitivity to the order of operations 

confounded this problem. For Item TE2-TN4, she seemed to append the negative sign 

after the operations were performed with their corresponding positive number. For 

example, when x was negative, she would treat the inequality 8x – 15 < 8x – 10 as  

-(8p – 15) < -(8p – 10), where x = -p. 

Talia was also insensitive to properties such as the associative property and the 

distributive property. As discussed previously, while working on Item TE4-TN3c, she 

conflated 4(x + 1) with 4x + 1 and she was not aware that (4x + 1) – 20 was equivalent to 

(4x – 20) + 1.  

In conclusion, Talia‘s foundation in arithmetic and algebra was rather weak, even 

though she was a Calculus student. The problem-solving sessions offered her an 

opportunity to explore and improve her ways of understanding. Once she began to attend 

to meanings, she could reason in a symbolic referential manner and thereby exhibit more 

desirable ways of thinking associated with foreseeing and predicting, as well as 

sophisticated ways of understanding inequalities/equations. 

 

6.5 Three Other Learners 

Among the four learners that participated in the intervention portion of this study, 

Talia showed the greatest improvement, which is why I provided a detailed explanation 

of Talia‘s learning process in the preceding sections. In this section, the three other 

learners‘ (Chela, Ali, and Vito) improvements as a result of the intervention are 
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compared. Chela is compared with Talia, and Ali with Vito. These comparisons were 

chosen because the teaching interventions for Vito and Ali were conducted in the same 

period of time, while those for Chela and Talia were conducted at a later period. Because 

of the experience gained from working with Vito and Ali, the teaching interventions for 

Talia and Chela were more effective. As a result, I chose to analyze the problem-solving 

sessions for Talia and Chela only, but not for Vito and Ali. The discussions that follow 

are mainly based on the data analysis of the four learners‘ pre- and post-interviews. 

The Case of Chela  

Chela was enrolled in Algebra II and averaged a B. Algebra II is two mathematics 

class levels behind Calculus, the course in which Talia was enrolled. Compared to Talia, 

Chela exhibited less non-referential symbolic reasoning and more coordination-based 

prediction during the pre-interview. This is because Chela operated mainly in the sub-

context of plugging in numbers and appeared to be in control of the situation. 

Chela improved from operating in the sub-context of plugging in numbers (in all 

items except Pre-T4) and manipulating symbols (Pre-S5) in the pre-interview to 

operating in the sub-context of reasoning with symbols (Post-S2, S5, T2, T4) and 

plugging in numbers (Post-T1 and T3) in the post-interview. For example, consider her 

response to Item S5: ―Is the following statement always true, sometimes true, or never 

true? (x + 1) + (x + 2) + (x + 3) + … + (x + 99) + (x + 100) < 100x‖. In the pre-interview, 

Chela was tenacious in using the formula an = d(n – 1) + a1 (this episode is discussed in 

the section titled Two Interesting Phenomenon at the end of this chapter). In the post-

interview, Chela temporarily ignored the x‘s, found the sum of 1 to 100 to be 5050 using 
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the pairing strategy, noticed ―you are adding it (x) 100 times‖, and concluded ―never 

true‖ because ―basically, you are adding what you get here (100x) to this (5050).‖ 

In terms of ways of thinking associated with foreseeing, Chela exhibited analytic 

anticipations in both interviews, but those in the post-interview were more sophisticated 

because they were in the sub-context of reasoning with symbols. While attempting Item 

Post-S2, Chela spontaneously recognized the factored-form structure and foresaw that, 

―this [factor] has to come out negative and this [factor] has to come out positive, or the 

other way round‖ (interiorized anticipation). She also reasoned with the function (―maybe 

I can try to look at the equation and try to make some reasoning out of it‖) and noticed 

that 2x – 6 is twice of x – 3 (―it‘s a double of it, because if you multiply this by 2, it‘ll be 

2x minus 6.‖). Her conclusion, ―if this (x – 3) is a negative number, then this (2x – 6) will 

be a negative number‖ is considered deduction-based. In the pre-interview, Chela‘s way 

of understanding (―I think one side (factor) has to be negative, one side has to be positive, 

so it will be, stay negative‖) arose from plugging in numbers, and her inference that both 

factors had the same sign was based on empirical evidence. 

In terms of ways of thinking associated with predicting and ways of 

understanding inequalities/equations, Chela‘s improvements were also related to her 

operating in the sub-context of reasoning with symbols. By reasoning with symbols, she 

could coordinate the quantities 2q, 5p – q, and 2p + 5 in Item Post-T2: ―p and q are odd 

integers between 20 and 50. For these values, is 5p – q > 2p + 15 always true, sometimes 

true or never true?‖ 

Chela: It (5p – q) will still be bigger than this (2p + 15) because this 

(2p) is pretty small here, and you adding a really small 
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quantity. You‘re adding something but it‘s not, I don‘t think 

it‘s big enough to make a difference over here. 

 

In the pre-interview, she reasoned by plugging in numbers such as (23, 21), (49, 41), 

(33, 27), and (27, 33). Having found that none of those cases made the inequality false, 

she responded ―I‘m leaning more on always true but only between the numbers 20 and 

50.‖ Her guess of ―always true‖ lacked the coordination that she had in the post-

interview. 

Chela‘s improvement in her reasoning with symbols in the post-interview was a 

consequence of her opportunities during the teaching intervention to practice reasoning 

with symbols by attending to structure and exploring functions. In the learning process, 

Chela encountered certain difficulties while working on inequalities that involved a 

product or a quotient of two linear functions. The difficulties included: (a) not 

considering falsity (e.g., she thought that ―if this outcome (4x – 20) is a positive, this 

outcome (3x – 20) will be a positive … it‘ll be greater than 0. And if this outcome is a 

negative, and this is a negative, it‘ll be a positive, which will make it greater than 0.‖); 

(b) not autonomously applying the standard procedure for solving linear inequalities (e.g., 

she tried solving 3x – 20 < 0 by plugging in numbers to find the ―breaking point‖); and 

(c) not attending to the meaning of symbols (e.g., she solved 
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The teaching interventions for Chela and Talia were quite similar, but Talia 

demonstrated greater improvement. This is likely because Talia began with a non-

referential symbolic way of thinking and exhibited more instances of non-referential 
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symbolic reasoning in the pre-interview than Chela. Talia made more progress through 

the teaching intervention because once she attended to meanings, she could engage in 

analytic anticipation and explorative anticipation in the sub-context of reasoning with 

symbols. Being a Calculus student, Talia had more experiences dealing with algebra, and 

that presumably contributed to her progress. Chela, on the other hand, having only 

Algebra 2 experiences, needed more time to move from her familiar territory of working 

with numbers to the the higher level of reasoning with symbols.  

The Case of Vito 

Vito, a Pre-calculus student with an A average at the time of this study, was one 

mathematics course behind Talia. Compared to the other interviewees, Vito had a greater 

tendency to engage in tenacious anticipation. He demonstrated tenacious anticipation 

while solving items Pre-T1, Pre-S5, and Post-S5.  

Vito seemed to be rather systematic in his approach to solving problems. For 

example, he tended to use 2 and -1 as the first two numbers for trial-and-error 

substitutions (e.g., items Pre-S2 and Pre-S5).  

Lim: M-hmm, m-hmm. So did you choose 2, arrr, why did you 

choose 2? 

Vito: Oh, because this is the first one. If I plug in 1, well, then, it‘s 

easier but then 1, 1 will not always work. So I always pick 2. 

 

Based on my working with Vito, I inferred that he viewed mathematics as a 

collection of rules and procedures. Vito liked to use rules and ―short-cuts‖. He enjoyed 

working on the set of problems that involved linear inequalities of the form 

Ax + B < Cx + D after having abstracted certain rules for determining whether such an 

equality is always true, sometimes true, or never true. Throughout the teaching 
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intervention, Vito was dedicated to learning and appeared to make progress. The 

intervention was tailored to respond to his way of learning and, as a result, 

unintentionally focused more on developing ways of understanding (e.g. solution set, 

equivalent inequalities, preservation of solution set) than on ways of thinking.  

Vito‘s improvement from the pre-interview to the post-interview was marginal. 

One improvement was that he exhibited coordination-based prediction while working on 

Item Post-T1, but not on Pre-T1. For Post-T1, he initially predicted b was larger because 

he foresaw that it had to compensate for the greater effect of multiplication to satisfy the 

constraint 5a = b + 5. He illustrated by plugging in 2 for a, and found b to be 5. While 

attempting Pre-T1, he initially predicted, as discussed in Chapter 4, that a was larger 

because he conflated a with 5a, and b with b + 5.  

Another of Vito‘s improvements concerns his problem-solving approach for Item 

T2: ―p and q are odd integers between 20 and 50. For these values, is 5p – q > 2p + 15 

always true, sometimes true or never true?‖ He considered exhaustive, mutually 

exclusive cases (p > q, q > p, and p = q) in the pre-interview, but considered extremes 

cases (p = q = 49; p = 49, q = 21; p = 21, q = 49) in the post-interview. 

Surprisingly, Vito performed worse on Item Post-S2 than on Item Pre-S2. In the 

pre-interview, he approached the problem by plugging in 2, and then -1, for x into  

(2x – 6)(x – 3) < 0. With the aid of the numerical results, he could attend to the structure 

of the inequality, although he did not seem to treat 2x – 6 as a function. 

Vito:  So you‘ll never have like, a negative and a positive … you 

have 2 (the coefficient in 2x – 6), and it was multiplying this. 

So it‘s double, it will double it, -6 (the constant term in 2x – 6), 

is the same thing. So it‘s just double it, times 2.  
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In the post-interview, he approached Item Post-S2 by expanding the factors in  

(2x – 6)(x – 3) < 0. He obtained 2x
2
 – 6x – 6x + 18 < 0, incorrectly simplified it to x

2
 < -9, 

and concluded, ―there is no x values‖ because ―you can‘t square a number and get a 

negative.‖ But when asked if he could tell by looking at (2x – 6)(x – 3) < 0 without doing 

any work, he replied ―no‖ without any intention to study the inequality. 

The Case of Ali 

Ali, a Pre-calculus student averaging a B at the time of his participation in the 

project, had the same mathematics teacher as Vito. Prior to the teaching interventions, 

their teacher commented that, ―if any student should get an A, it should be Vito‖, and 

―Ali turns in his work but he doesn‘t seem to understand the math‖ (these paraphrased 

comments were recorded later). The teacher stated that Ali did not deserve a B in the 

course, and pointed out that he received help from tutors on his homework.
27

  

Interestingly, Ali demonstrated greater improvement from his pre- to post-

interview than Vito
28

, especially in terms of reasoning with symbols. In both interviews, 

Ali approached Item T2 by plugging (21, 21) into 5p – q > 2p + 15. In the pre-interview, 

he proceeded by considering cases such as (-21, -21), (49, 49) and (21, 49). In the post-

interview, he reasoned with the structure of the inequality 5p – q > 2p + 15, and his 

                                                 

27
 Based on my work with Vito and Ali, I would consider Vito to be more studious and Ali to be more 

pragmatic. Because of his part-time job, Ali came in mentally exhausted for the first two problem-solving 

sessions. At the beginning of the third session, he was explained the importance of being alert in order for 

his participation to count and he was given the option to discontinue his participation. From then on, his 

participation improved.  
28

 It was Vito who failed his Pre-calculus course by the end of his school year. He later told me that he 

failed because he did extremely badly in the final examination, which was weighted heavily by his teacher. 

I speculate that Vito had not interiorized, but only internalized the procedural aspects of, the mathematical 

concepts that were taught to him.  
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consideration of (21, 49) was aimed at making ―the right side a big number [so that] I can 

make this false.‖ 

While working on Item S5, which involves (x + 1) + (x + 2) + (x + 3) + … 

+ (x + 99) + (x + 100) < 100x, Ali, during the post-interview, noticed the structure from 

his trial-and-error substitution: ―See all these numbers, we are going to get [100]x plus 

these, you know, the 1 through 100. … OK, then, you know, it‘s never true.‖ In the pre-

interview, he could not relate his numerical results to the structure, and commented, 

―There is an equation (formula) to this that I learned last year in algebra, sequences. But 

right now, I can‘t remember what the equation is. If I knew, I think I could have found 

out real quick.‖  

As for Vito, his responses to Pre-S5 and Post-S5 were rather similar. Vito 

explored by plugging in numbers. He was careless with his interpretation of symbols; he 

conflated the input value of 2 with the common difference of 2 in the pre-interview, and 

he interpreted x + 99 as 99x in the post-interview. In both interviews, Vito did not attend 

to the significance of the coefficient of 100x, and was tenacious in his way of 

understanding that the sum of the last three terms on the left side was greater than the 

value on the right side.  

Vito was more likely to be tenacious while Ali was more likely to consider 

alternatives (e.g. negative values, large numbers, and cases to falsify). For example, 

consider their responses to Item Pre-S3: ―Is there a value for x that will make the 

following statement true? 1.2x + 3456 < 7 + 8.9x‖. Both Vito and Ali initially plugged in 

10 for x and obtained 3468 < 96. Vito was extremely confident that the left side would 

never be smaller than the right side because he focused on the constant terms: ―You are 
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always going to add 3456, and this is higher than this one, than 7‖. He considered 

plugging in 100 for x after being asked whether the coefficients of 1.2 and 8.9 would 

make a difference. Upon obtaining 3576 > 897, Vito maintained that ―there is no value 

for x because you are always going to add 3000 more than, compared to 7.‖ 

Ali, on the other hand, pondered the results he obtained: ―That‘s weird because 

when I was doing this right now, I was thinking that, I don‘t know, wait, I was thinking 

that, you know, maybe… OK, now I‘m thinking that if I, just try negative, -10.‖ Upon 

noticing the results for x = -10, Ali then considered plugging in a large number: ―3444 

isn‘t less than -82. So, what if I try a bigger number like 3000.‖  

On two occasions, Ali foresaw changing the problem situation to elaborate his 

way of understanding. For Item Post-S2, Ali had difficulty applying his observation that 

2x and 6 were twice x and 3, respectively, to explain why there would be no values of x 

that would make his (2x – 6)(x – 3) < 0 true. Instead, he considered changing the 

inequality to (2x – 6)(x – 1) < 0: ―If I were to have x minus 1, I could probably get, I can 

make this, err, statement true.‖ For Item Pre-T1, as discussed in Chapter 4, Ali 

considered changing 5a = b + 5 to 5a = b + 20 to illustrate how a could be bigger than b.  

Revisiting The Case of Talia 

Talia‘s case reflects the reality of students who perform relatively well in their 

mathematics courses yet still reason in a non-referential symbolic way. This phenomenon 

raises the issue of whether current high school algebra curricula are effective. This issue 

is discussed in the conclusion chapter on the section on Implications for Instruction on 

Middle/High-School Algebra. 
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On the other hand, Talia‘s case constitutes an existence ―proof‖ that students 

ways of thinking associated with foreseeing/predicting can be advanced when appropriate 

learning conditions are in place. Talia showed substantial improvement in just five one-

on-one problem-solving sessions. Her success was due to a combination of factors 

including the effectiveness of the teaching intervention, her motivation to improve her 

algebra, and her effort in reviewing her work and doing the homework after each of the 

first four problem-solving sessions. 

The caveat to this proposition is that Talia‘s improvement is likely to dissipate if 

she does not continue to reason with the desirable ways of thinking that she began to 

develop during the problem-solving sessions. Nevertheless, the important point here is 

that students‘ ways of thinking associated with foreseeing/predicting can be advanced 

under appropriate conditions, such as a learning environment that promotes attending to 

meaning, builds on their existing ways of understanding and ways of thinking, and 

provides opportunities for students to explore and to predict. 

The learners in this study were asked to write about their participation during the 

teaching intervention; one writing task was given at the end of the teaching intervention 

and a second writing task was given approximately a year later. Below are excerpts of 

Talia‘s comments a year after the intervention (see Appendix F). 

I started thinking in terms of signs (positive or negative) whenever I 

was asked to solve for an inequality. Though in pre calculus and 

calculus I hardly dealt with inequalities, I was able to utilize the skills I 

learned in the SAT‘s. I was able to do the inequalities in the SAT‘s 

very easily because instead of thinking in terms of numbers I thought 

in terms of signs and greater vs. smaller quantities.  

Through the ―Students‘ Reasoning in Algebra‖ project, I learned that 

math is reasoning and using logic. One of the most important lessons I 
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learned though was to try different approaches to solve problems. I 

also learned that it is important to review the material that you learn so 

that it sticks to you. The project did help me and by the end of the 

whole project I think I was able to reason better. I found out that my 

thought process was slow and that this could be a problem for me in 

the future but I also found that I was able to get through the training 

alright. In conclusion, I learned how to ask questions when solving a 

problem and how to guide myself through a problem by using 

reasoning skills. 

In this section, the improvements of the four learners were compared. Talia and 

Chela showed greater progress than Vito and Ali. This is partly due to the effectiveness 

of the teaching interventions for Talia and Chela, which were held after I gained 

experience from working with Vito and Ali. In addition, the characteristics of each 

individual learner greatly influenced the amount of progress. For example, once Talia 

addressed her non-referential symbolic way of thinking by attending to the meanings of 

symbols, she could reason with symbols meaningfully.  

 

6.6 Two Interesting Phenomena 

By studying students‘ problem-solving behaviors in terms of the mental acts of 

foreseeing and predicting, I encountered two phenomena that emerged from the data 

analysis. They are discussed here because they are important for the field of mathematics 

education to recognize. The two phenomena are discussed at the end of this chapter 

because they were not part of my research questions.  

The Recency Effect 

Students‘ disposition of using recently learned ideas to solve a problem was 

observed during the teaching experiment. For example, Talia was compelled to use the 

critical value idea she had learned in solving x(6x + 8) < 0 (Item TE1-TN2) to solve 
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2y + (4y – 9) ≤ 0 (Item TE2-TR2). In her homework she equated 2y = 0 and 4y – 9 = 0 to 

obtain the critical values y = 0 and y = 9/4. She concluded y ≤ 9/4 and wrote, ―Since you 

are adding, you include negative #‘s in your solution set.‖ I use the term Recency Effect 

to refer to the phenomenon in which a person applies a recently learned idea to a problem 

situation without checking its validity. 

 A similar phenomenon was observed in Chela‘s solution to one of the homework 

items: ―What is the solution set for (2x – 4) + (x – 12)  0?‖ Chela solved 2x – 4  0 and  

x – 12  0, obtained and represented x  2 and x  0 on a number line, and boxed x  2 as 

the solution. However, when the same task was re-posed in a problem-solving session (as 

Item TE5- CR3a) after she had worked on Item TE5- CN2, Chela spontaneously thought of 

combining like terms. This is likely because the idea of combining like terms emerged 

from her work on the previous item (Item TE5- CN2): ―Is the following statement always 

true, sometimes true, or never true? (x + 2 + 3x) + 4 + (5x + 6 + 7x) < 2(8x + 9)‖ This 

example illustrates how students‘ reasoning tends to depend on the recently encountered 

ways of understanding. 

Another example of the Recency Effect was Vito‘s spontaneous use of a rule, 

which he had abstracted from working on a set of problems, for determining whether a 

linear inequality of the form Ax + B < Cx + D is always true, sometimes true, or never 

true. Vito applied the rule to both the inequalities in Item TE2-VN2: ―Consider these two 

inequalities: 5x + 10 > x + 5000 and 4x > 4990. Is there a value for x that will make one 

of them true but will make the other false?‖ 

Vito: Mm, I think so. If x, A (i.e., the coefficient 5), this [first 

inequality] is, um, this is sometimes true, and this one 

(4x > 4990) is, um, sometim-, no, I don‘t know what it is, 
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because it doesn‘t have a C … Because it doesn‘t have a C, so 

A doesn‘t equal C, but not only that, because this (4990) never 

changes, this will always stay the same. 

 

The recency in learning the rule caused Vito to spontaneously apply it to each inequality 

without attending to what the question was asking. Vito was not tenacious in this case 

because he proceeded by plugging in numbers to find a value that would make one 

inequality true while the other false. Nevertheless, Vito‘s response is an instantiation of 

the Recency Effect. 

The Recency Effect is not necessarily undesirable. Chela‘s ingeniously adapted 

her newly learned idea of making one part positive and one part negative to find a value 

of x that would make the inequality (7x – 31 + 5x) – 43 < (7x – 31 + 5x) – 18 false (Item 

TE4-CN2). She first observed that both sides of the inequality have the common function, 

and predicted that, ―it‘s going to be true … ‗cause it‘s going to be minusing, -43, and this 

one is minusing -18.‖ Chela then proceeded to ―use the goal-oriented thing where … I 

want this one (left-side) to be positive and this one (right-side) negative … to make it 

false.‖ She then found that x has to be ―greater than 6.11 but less than 4.0833. … So that 

means it‘s always true.‖ Unfortunately Chela‘s reasoning was flawed here because she 

had changed the constraint from (7x – 31 + 5x) – 43 > (7x – 31 + 5x) – 18 to  

(7x – 31 + 5x) – 43 > 0 > (7x – 31 + 5x) – 18. Nevertheless, the point is that applying a 

newly learned idea in novel situations involves repeated-reasoning and is a chance to 

learn from one‘s mistakes. 

The Recency Effect may be a viable construct to account for certain unexpected 

results. For example, in Vaiyavutjamai and Clements‘s (2006) study on effects of 

traditional instruction on student performance of linear equations and inequalities, 9
th
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grade students in Thailand scored worse in the post-teaching stage (after 13 lessons on 

linear equations and inequalities) than both pre-teaching stage and retention stage (6 

months later) on solving the linear equations, but the reverse pattern was found for 

inequalities. Their results are summarized in Table 6.4. The authors did not offer any 

explanations to account for this interesting result: 23% for the equations portion of the 

assessment at the post-teaching stage was lower than (a) 29% at pre-teaching stage, 

(b) 29% at the retention stage, and (c) 35% of the inequalities portion at the post-teaching 

state. The Recency Effect of students‘ learning about linear inequalities just before they 

took the post-teaching assessment is a plausible explanation for the unexpectedly low 

percentage of 23%, as well as for 35% (for linear inequalities at post-teaching stage) 

being the highest among the six percentages.  

Table 6.4: Average Percentage of 231 Students Giving a Correct Solution to Five 

Inequalities and Corresponding Equations 

 

 Linear Inequalities 

(3x ≤ 6 ; x/2 > 4 ; x – 3 ≥ 7 ; 

1 – x ≤ 0 ; 3 – 4x ≤ 6x – 7) 

Corresponding Equations 

(3x = 6 ; x/2 = 4 ; x – 3 = 7 ; 

1 – x = 0 ; 3 – 4x = 6x – 7) 

Pre-teaching stage 11% 29% 

Post-teaching stage 35% 23% 

Retention stage 24% 29% 

Note. Adapted from ―Effects of Classroom Instruction on Student Performance on, and 

Understanding of, Linear Equations and Linear Inequalities,‖ by P. Vaiyavutjamai and M. A. 

Clements, 2006, Mathematical Thinking and Learning, 8(2), p. 132. 

 

 

The Presence Effect 

Another observation that emerged during the analysis of the teaching intervention 

was students‘ tendency to fixate on a particular way of understanding. This phenomenon 
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led to the identification of tenacious anticipation as a way of thinking associated with 

foreseeing.  

For instance, while working on Item TE2-TR2, Talia did not think of combining 

like terms when she had the critical value idea for dealing with 2y + (4y – 9) ≤ 0. I asked 

her to ―imagine a year ago, before you learned this critical value idea. … What would 

you do when you are asked to solve for y?‖ Talia responded, ―a year ago I would have 

done this [the same thing]‖ and wrote 2y = 0 and 4y – 9 = 0. I had to offer this inequality 

2n + 4n – 9 ≤ 0 in order to get Talia to think of combining like terms. The removal of the 

parentheses
29

 in this example was necessary in order for Talia to breakaway from the 

critical value approach. I use the term Presence Effect to refer to the phenomenon in 

which a particular way of understanding prevents a person from considering alternative 

ideas.  

In Item Pre-A5, the presence of the formula an = d(n – 1) + a1 prevented Chela 

from noticing that 3 + 4 + … + 102 is greater than 200. She used the same formula three 

times, for different values of x, to determine the value of n. When she used it for the first 

time for x = 2, she found n = 51, but she did not attend to the meaning then. When she 

used it for the second time for x = 5, she found n = 100 and related it to there being 100 

terms. However, when she worked with x = 100, she used it to obtain n = 100, even 

though she already knew there were 100 terms. As suggested in these examples, the 

Presence Effect seems to prevent a person from ―thinking outside the box.‖ 

                                                 

29
 The presence of the parentheses was not the only factor that resulted in Talia‘s not combining like terms 

because she combined like terms when she was working with (6x – 8 – 15x) + 12 > (6x – 8 – 15x) + 6 in 

Item Pre-A1. 
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The Relevance of the Recency Effect and the Presence Effect to Mathematics 

Education 

The Recency Effect is important to mathematics educators because an awareness 

of it may cause educators to think differently about their choice and sequencing of 

instructional activities. For example, a teacher may create a learning situation to perturb 

students by capitalizing on his knowledge of students‘ tendency to apply certain recently 

learned ideas. This strategy was used in the teaching intervention in this study. For 

example, the inequality 2y + (4y – 9) ≤ 0 was presented after Talia had learned the critical 

idea approach.  

An awareness of the Presence Effect allows teachers to be more sensitive to 

students‘ ways of understanding. Recognizing students who are tenacious in their ways of 

understanding may influence some teachers to deal with those students differently. Vito‘s 

lack of success in advancing his ways of thinking during the intervention was in part due 

to my lack of awareness of Vito‘s tenacity. As such, the teaching actions during the 

intervention were not aimed at helping Vito address this undesirable way of thinking. 

The Recency Effect and the Presence Effect also suggest that students have a 

tendency to minimize their effort in thinking. If this is the case, then the Recency Effect 

and the Presence Effect may be thought of as instantiations of a more general 

phenomenon, which I call the phenomenon of applying minimal cognitive effort.
30

 While 

working on mathematics problems, some students prefer to ―do‖ rather than to ―think‖. 

My conjecture is that students tend to feel more productive when they are ―doing‖ 

                                                 

30
 I speculate that there might be a theory that could account for the phenomenon of applying minimal 

cognitive effort because a person generally wants to get the most by doing the least. I speculate that a 

person‘s non-volitive actions are naturally governed by the principle of minimal effort. 
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something than when they are ―thinking‖ about the problem situation. A possible area for 

future research is the relation between students‘ ways of thinking associated with 

anticipating and their tendency to engage in minimal cognitive effort. 

 

6.7 Recapitulating the Main Points 

In this chapter, the case of Talia confirms that students‘ ways of thinking 

associated with foreseeing/predicting can be improved via a teaching intervention that is 

guided by DNR-based instruction. Talia‘s improvement can be summarized in terms of 

the change in the sub-context in which she operated; she moved from the sub-context of 

manipulating symbols in the pre-interview to the sub-context of reasoning with symbols 

in the post-interview. When operating in the sub-context of manipulating symbols, Talia 

tended to interpret an inequality/equation as a signal to do something and thus exhibited 

impulsive anticipation. She also tended to manipulate symbols without attending to 

meanings and thus made association-based predictions. In contrast, when operating in the 

sub-context of reasoning with symbols, Talia tended to interpret inequalities/equations in 

a meaningful manner, which allowed her to be goal-oriented and thus exhibit analytic 

anticipation. She also tended to study the inequality and thus made coordination-based 

predictions.  

Data from the teaching intervention reveals that Talia‘s transition from the sub-

context of manipulating symbols to the sub-context of reasoning with symbols involved 

her working with specific numbers and reasoning with general numbers. Three main 

factors that could account for Talia‘s improvement were identified: (a) attending to the 

meaning and referents of symbols, (b) exploring her ways of understanding, and 
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(c) making predictions. Other factors include using numbers as a platform to investigate 

symbolic structures and using non-directive tasks to promote exploration and prediction. 

The difficulties Talia encountered during the teaching intervention include difficulty 

developing: (a) ways of understanding related to solution sets and equivalent inequalities, 

(b) the considering-falsity way of thinking, and (c) ways of understanding related to 

arithmetic such as negative numbers and distributive property. 

In this study, the four learners‘ ways of thinking were rather distinct. In the pre-

interview, Talia had a tendency to engage in impulsive anticipation and association-based 

prediction while she was operating in the context of manipulating symbols. Chela had a 

tendency to engage in explorative anticipation while operating in the sub-context of 

plugging in numbers. Among the four learners, Vito had the greatest tendency to be 

tenacious in his ways of understanding, while Ali had the greatest tendency to consider 

alternatives. 

Finally, two interesting phenomena emerged during this study. The Recency 

Effect refers to the phenomenon in which a student applies a recently learned idea to a 

problem situation without checking its validity. The Presence Effect refers to the 

phenomenon in which the presence of a particular way of understanding prevents a 

student from considering alternative ideas. 



   

 

198 

CHAPTER 7: CONCLUSION  

 

This chapter is organized into four sections: (a) a summary of the major results, 

(b) contribution to the field of mathematics education, (c) implications for instruction, 

(d) limitations of this research, and (e) directions for future research.  

 

7.1 A Summary of the Major Results 

In Chapter 1, a discussion of the pilot study demonstrates that students exhibit 

different problem-solving behaviors. Some problem-solving behaviors are more desirable 

than others. This dissertation study examined students‘ problem-solving behaviors by 

focusing on the mental acts of foreseeing/predicting. In Chapter 4, a comparison between 

two students‘ responses (Talia and Pham) to Item Pre-S1 illustrates the usefulness of 

examining students‘ ways of thinking associated with foreseeing/predicting for 

differentiating between desirable and undesirable problem-solving behaviors. Identifying 

ways of thinking associated with foreseeing provides educators with the vocabulary 

necessary to communicate the way a student approaches a problem. For example, they 

can describe whether the student hastily applies a procedure (impulsive anticipation), is 

tenacious in her or his way of understanding (tenacious anticipation), explores different 

ideas (explorative anticipation), analyzes the problem situation and identifies a goal 

(analytic anticipation), or spontaneously applies well-established ways of understanding 

(interiorized anticipation). Ways of thinking associated with predicting allow educators to 

communicate about the bases for student predictions: for example, whether the prediction 

is based on an association, a comparison, or some coordination. 
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The categories of ways of thinking associated with foreseeing, ways of thinking 

associated with predicting, and ways of understanding inequalities/equations that 

emerged from the data are listed in Table 4.1 and Table 5.1. Some of these categories are 

more desirable or sophisticated than others, as presented in Table 7.1. 

Table 7.1:  A Summary of Ways of Thinking and Ways of Understanding in Terms of 

Desirability/Sophistication 

 

 More Desirable 

Categories 

Neutral  

Categories 

Less Desirable 

Categories 

 

Ways of thinking 

associated with 

foreseeing 

Analytic  

anticipation 

 

Interiorized 

anticipation 

 

 

Explorative 

anticipation 

Tenacious 

anticipation 

 

Impulsive 

anticipation 

Ways of thinking 

associated with 

predicting 

Coordination-based 

prediction 

Comparison-based 

prediction 

Association-based 

prediction 

 

Ways of 

understanding 

inequalities/ 

equations 

I/E-as-a-comparison-

of-functions 

I/E-as-a-constraint 

I/E-as-a-proposition 

 
I/E-as-a-static-

comparison 

 

I/E-as-a-signal-for-

a-procedure 

 

Relationship between Ways of Thinking Associated with Foreseeing/Predicting and 

Problem-solving 

One of the objectives of this study was to explore the feasibility and usefulness of 

using characteristics of students‘ foresight/prediction as a means to communicate the 

quality of students‘ problem solving. Major findings concerning the relationship between 

ways of thinking associated with foreseeing/predicting and problem solving were 

discussed in detail in Chapter 4, and are briefly summarized below. 
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1. Association-based prediction is related to the non-referential symbolic way of 

thinking, in which one reasons without attending to the referent or the meaning of 

symbols. 

2. Impulsive anticipation is related to forward-strategy, which is a problem solving 

approach that does not involve means-ends analysis, whereas analytic anticipation is 

related to backward-strategy, which involves means-ends analysis or goal-oriented 

reasoning. 

3. Tenacious anticipation is related to inflexible reasoning, in which one tends to engage 

in mathematics without an element of doubt or consideration for alternatives. 

4. Coordination-based prediction is related to reasoning with change, a way of thinking 

essential for developing the process conception of function.  

5. Analytic anticipation facilitates problem solving because it guides one‘s exploration. 

However, analytic anticipation does not always lead to success, especially when 

critical ways of understanding do not emerge from exploration and analysis. In that 

case, input from the teacher or classmates may be necessary. 

6. Interiorized anticipation provides efficiency because one can capitalize on one‘s 

existing ways of understanding instead of engaging in analytical or exploratory 

actions. 

Relationship between Ways of Thinking Associated with Foreseeing/Predicting and 

Ways of Understanding Inequalities/Equations 

The way a student interprets a problem situation influences the actions he (or she) 

foresees or the results he predicts. Conversely, what he foresees/predicts may 

subsequently modify his understanding of the problem situation. Four specific relations 
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between interviewees‘ ways of thinking associated with foreseeing/predicting and their 

ways of understanding inequalities/equations (I/E) were discussed in Chapter 5. These are 

summarized below. 

1. The I/E-as-a-signal-for-a-procedure interpretation tends to result in impulsive 

anticipation and association-based prediction. When a student interprets an inequality 

or equation as a signal to do something, the student is more likely to rush into actions 

than to analyze the problem situation and is also more likely to make associations 

without attending to the meanings or the referents of the symbols.  

2. The I/E-as-a-constraint interpretation is related to analytic anticipation. When a 

student interprets an inequality/equation as a constraint, the student tends to analyze 

the inequality/equation in terms of what would make it true or false. 

3. The I/E-as-a-comparison-of-functions interpretation is usually related to 

coordination-based prediction. When a student interprets an inequality/equation as a 

comparison of functions, the student tends to coordinate the input value with the 

output values of the functions. 

4. Interiorized anticipation requires one to have interiorized the relevance of the 

anticipated action to the situation at hand. For problems involving 

inequalities/equations, interiorized anticipation usually involves sophisticated ways of 

understanding inequalities/equations such as I/E-as-a-comparison-of-functions and 

I/E-as-a-constraint. 

Change in Learners’ Ways of Thinking and Ways of Understanding 

To understand change in a learner‘s ways of thinking and understanding, five 60-

minute one-on-one problem-solving sessions were conducted with four high school 
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students. Among the four learners who participated in the teaching interventions, Talia 

(Calculus) showed the greatest improvement, followed by Chela (Algebra 2), Ali (Pre-

calculus), and Vito (Pre-calculus). The teaching interventions for Talia and Chela were 

more effective because they built on the instructor‘s experiences working with Ali and 

Vito. Talia demonstrated more improvement than Chela, probably because Talia‘s 

baseline was lower as a result of her non-referential symbolic way of thinking. Chela, on 

the other hand, lacked the prior experience Talia had in reasoning with symbols because 

Chela was two mathematics courses behind Talia. 

The case of Talia demonstrates that students‘ ways of thinking associated with 

foreseeing/predicting can be advanced through an instructional intervention that is guided 

by the pedagogical principles of Harel‘s (2001) DNR-based instruction. Talia‘s 

improvements are summarized below. 

1. In terms of ways of thinking associated with foreseeing, Talia showed improvement 

by moving from impulsive anticipation to analytic anticipation. Her analytic 

anticipation and explorative anticipation were generally more sophisticated in the 

post-interview because she was reasoning with symbols in a deductive manner. 

During the pre-interview, she reasoned with numbers in an inductive manner and 

manipulated symbols in a non-referential symbolic manner. In addition, Talia 

demonstrated the using-numbers-as-a-means-to-reason-with-structure way of thinking 

in the post-interview but not in the pre-interview. 

2. In terms of ways of thinking associated with predicting, Talia showed improvement 

by moving from association-based prediction to coordination-based prediction. In 

addition, she predicted more often in the post-interview than in the pre-interview. 
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3. In terms of ways of understanding inequalities/equations, Talia showed improvement 

by moving from I/E-as-a-signal-for-a-procedure and I/E-as-a-static-comparison to 

I/E-as-a-comparison-of-functions. 

The above improvements are related to Talia‘s progress from operating in the sub-

context of manipulating symbols in the pre-interview to operating in the sub-context of 

reasoning with symbols in the post-interview. While operating in the sub-context of 

manipulating symbols, Talia tended to (a) interpret an inequality/equation as a signal to 

do something and thus exhibited impulsive anticipation, and (b) manipulate symbols 

without attending to meanings and thus made association-based predictions. In contrast, 

when operating in the sub-context of reasoning with symbols, she tended to (a) interpret 

inequality/equation in a meaningful manner that would allow her to be goal-oriented and 

thus exhibited analytic anticipation, and (b) study the inequality and coordinate among 

various quantities and thus made coordination-based predictions. 

Transition from Manipulating Symbols Non-referentially to Reasoning with 

Symbols Structurally 

Talia‘s trajectory from manipulating symbols non-referentially to reasoning with 

symbols involved three transitions: (a) from manipulating symbols to working with 

specific numbers, (b) from working with specific numbers to reasoning with general 

numbers, and (c) from reasoning with general numbers to reasoning with symbols. Each 

of these transitions is described below.  

1. A critical way of understanding underlying the transition from manipulating symbols 

to working with specific numbers is the realization that the referents of the literal 

symbols in an inequality/equation are numbers. Posing questions such as, ―What does 
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this mean?‖ could help students develop this way of understanding and foster the 

referential symbolic way of thinking. 

2. The transition from working with specific numbers to reasoning with general 

numbers (e.g. negative numbers or an interval of values) depends on task 

characteristics. For example, the factor x in the inequality x(6x + 8) < 0 led Talia to 

reason with positive numbers and with negative numbers.  

3. The transition from reasoning with general numbers to reasoning with symbols may 

involve certain ways of understanding and ways of thinking. In Talia‘s case, the 

critical way of understanding was making-one-function-positive-and-one-function-

negative-to-make-the-product/quotient-negative. Reason with symbols and structure 

in unfamiliar situations inevitably involves analytic anticipation and explorative 

anticipation. 

Factors that Could Improve One’s Ways of Thinking Associated with 

Foreseeing/Predicting 

Factors that could account for Talia‘s improvement from pre-interview to post-

interview were identified. Listed below are five factors that can generally help students 

advance their ways of thinking associated with foreseeing/predicting and their ways of 

understanding. 

1. Attending to meaning and referents for symbols. To counter the non-referential 

symbolic way of thinking and association-based predictions, students have to attend 

to meanings or the referents of the symbols. In non-contextualized problem situations, 

the referents for literal symbols are usually numbers. 
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2. Numbers as a platform for investigating algebraic expressions. Once students view 

numbers as referents for symbols, they could explore the symbolic structure(s) in an 

inequality/equation and encounter certain ways of understanding that are critical for 

reasoning with symbols. Such experiences foster analytic anticipation and explorative 

anticipation. 

3. Opportunity for students to explore. The opportunity for students to explore their 

ways of understanding can deepen their existing ways of thinking and ways of 

understanding, lead them to encounter new ways of understanding, and expose their 

deficient ways of understanding.  

4. Opportunity for students to predict. The opportunity for students to predict, and then 

to check their prediction by plugging in numbers, can help students avoid their 

rushing into a procedure, to learn from their predictions, to abstract certain structures, 

and to cultivate a disposition to predict. 

5. Use of non-directive tasks. Non-directive tasks are more likely to lead students to 

engage in exploring and predicting. In contrast, directive tasks such as ―solve for x‖ 

and ―simplify‖ tend to foster impulsive anticipation.  

The Recency Effect and the Presence Effect  

The Recency Effect and Presence Effect are indications that students prefer to 

―do‖ something rather than to ―think‖ about the problem situation. The Recency Effect 

refers to the phenomenon in which a student applies a recently learned idea to a problem 

situation without checking its validity. The Presence Effect refers to the phenomenon in 

which the presence of a particular way of understanding prevents a student from 

considering alternative ideas. 
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7.2 Contribution to the Field of Mathematics Education 

This research is novel in several ways: (a) it uses Harel‘s (2001) notion of mental 

acts to study students‘ problem solving, (b) it provides a preliminary framework for 

studying students‘ act of foreseeing/predicting in the context of problem solving, (c) it 

characterizes students‘ problem-solving behaviors in terms of their ways of thinking 

associated with foreseeing and predicting, and (d) it identifies common student 

interpretations of inequalities. Each of these points is discussed below. 

Pioneering the Use of Mental Acts as a Means for Studying Students’ Problem 

Solving  

One contribution of this research to the field of mathematics education is the 

novel use of mental acts as an analytical tool to study students‘ problem-solving 

behaviors. This research is the first of its kind to use Harel‘s (2001, in press c) 

MA-WoU-WoT (Mental act - Way of Thinking - Way of Understanding) triad for 

studying students‘ problem solving in terms of acts of anticipating. As explained in 

Chapter 2, this triad allows researchers to study students‘ thinking at a fine-grained level. 

The act of problem solving involves various interrelated mental acts. By focusing on one 

mental act at a time and identifying the product and character of the act, researchers can 

examine and express students‘ thinking with greater clarity. Combining findings from 

various acts can provide a broader picture of students‘ problem solving while retaining 

detailed information.  

The results obtained in this exploratory study of students‘ acts of foreseeing and 

predicting provide an existence ―proof‖ of the viability of studying students‘ problem-

solving by focusing on specific mental acts. These results could encourage other 
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researchers to study students‘ problem solving by focusing on other mental acts and to 

identify ways of thinking associated with those acts. 

Providing a Preliminary Framework for Studying Students’ Mental Acts of 

Foreseeing and Predicting  

This study synthesizes Piaget‘s (1967/1971) notion of anticipation, von 

Glasersfeld‘s (1998) categorization of anticipation, and Cobb‘s (1985) hierarchical levels 

of anticipation. Furthermore, as previously stated, it utilizes Harel‘s (2001) MA-WoU-

WoT triad to study students‘ anticipations in the context of problem solving.  

Based on von Glasersfeld‘s (1998) identification of three types of anticipation, I 

identified three aspects of anticipation: the regulatory aspect, the predictive aspect, and 

the volitive aspect. In this research, I found that the regulatory aspect of anticipation 

cannot be inferred from students‘ actions and statements, and I separated the act of 

anticipating a result from the act of anticipating an action. I call the former act 

―predicting‖ and the latter act ―foreseeing‖. These two acts correspond to the predictive 

aspect and the volitive aspect of anticipation. 

I found Cobb‘s (1985) notion of sub-context to be useful for conceptualizing 

students‘ anticipations at a broader level. I found that students‘ anticipations were largely 

influenced, as proposed by Cobb, by the sub-context in which they operated. In this 

research, three sub-contexts were identified: manipulating symbols, plugging in numbers, 

and reasoning with symbols. These sub-contexts provide educators with a broader 

perspective on students‘ improvement in relation to ways of thinking associated with 

foreseeing/predicting and ways of understanding inequalities/equations. For example, 

Talia‘s learning trajectory was depicted as transitions from one sub-context to another.  



   

 

 

208 

 

Using Harel‘s (2001) MA-WoU-WoT framework, I identified five categories for 

ways of thinking associated with foreseeing, three categories for ways of thinking 

associated with predicting, and five categories for ways of understanding 

inequalities/equations. These observation categories are still in the early stages of 

development and are subject to further refinement and modification. 

Figure 7.1 depicts the hierarchy between sub-context and mental acts in the sense 

that one‘s acts of foreseeing, predicting, and interpreting depend on the sub-context in 

which one operates. This preliminary framework can be further extended to include other 

mental acts.  

 

Figure 7.1: The dependence of mental acts on sub-context 

Providing Categories that Characterizes Students’ Problem-solving Behaviors 

Two related phenomena are commonly observed in mathematics classrooms: 

students rush into a procedure without analyzing the problem situation, and students 

make a quick association without considering the basis for the association. This research 

provides explicit terms to characterize such behaviors: impulsive anticipation and 

association-based prediction. With names to communicate such undesirable behaviors, 

  
Sub-context in which one operates 

Foreseeing   

MA   

WoU   WoT   

Predic ting   

MA   

WoU   WoT 

Interpre ting   

MA   

WoU   WoT 
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teachers may be more likely to recognize them and take measures to address them. 

Teachers can then specify or identify desirable ways of thinking that are more 

appropriate. For example, a teacher can establish comparison-based prediction as an 

interim instructional objective for a student who tends to engage in association-based 

prediction, while maintaining an intention for the student to develop coordination-based 

prediction. 

In this research, a preliminary list of ways of thinking associated with foreseeing 

and ways of thinking associated with predicting was developed. This list could be used 

and refined by other researchers. This list can also be used by mathematics teachers for 

describing their students‘ problem-solving behaviors. This list is especially useful for 

teachers who adopt a curriculum that emphasizes problem-solving and reasoning because 

ways of thinking that are desirable can be set as cognitive objectives for their students.  

Identifying Students’ Ways of Understanding Inequalities/Equations  

Previous research on algebraic inequalities has focused on student errors in 

solving inequalities (Tsamir et al., 1998; Tsamir & Almog, 2001; Tsamir & Bazzini, 

2002), solutions of inequalities (Vaiyavutjamai & Clements, 2006; Tsamir & Bazzini, 

2003), equivalent inequalities (Sfard & Linchevski, 1994b), algebraic-graphical 

connection (Garuti et al., 2001; Sackur, 2004), and equation-inequality connection 

(Kieran, 2004). There are virtually no published studies that have focused on students‘ 

interpretation of inequalities. Part of this research focuses on students‘ act of interpreting 

inequalities and equations. The categories for ways of understanding 

inequalities/equations that were identified in this research can be extended and refined by 

other researchers. 
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7.3 Implications for Instruction on Middle/High-School Algebra 

Based on the findings of this research and a review of the literature on the 

learning and teaching of algebra, I offer the following recommendations for instruction  

of algebra in general, and of algebraic inequalities and equations in particular: 

(a) incorporate ways of thinking as cognitive objectives, (b) build on students‘ ways of 

understanding and ways of thinking, (c) use non-directive tasks, (d) introduce algebraic 

inequalities prior to algebraic equations, and (e) strengthen students‘ connections 

between algebra and arithmetic. 

Incorporate Ways of Thinking as Cognitive Objectives for Instruction 

Students‘ problem-solving behaviors are influenced by their classroom 

experiences, which depend on teachers‘ actions. These actions are in turn influenced by 

the teachers‘ cognitive objectives for their students. Many teachers focus mainly on ways 

of understanding (e.g., facts, procedures, explanations, theorems, and proofs) and fail to 

effectively help students develop desirable ways of thinking. An exclusive focus on ways 

of understanding may even cause students to develop undesirable ways of thinking. For 

example, consider impulsive anticipation, like when Talia spontaneously multiplied out 

the factors in the inequality (2x – 6)(x – 3) < 0 without analyzing the problem situation. 

To help students abandon this impulsive way of thinking, teachers should have a clear 

image of alternative ways of thinking that they want their students to develop, such as 

explorative anticipation and analytic anticipation. Teachers should then set these 

desirable ways of thinking as instructional objectives in addition to the mathematical 

concepts (i.e., ways of understanding) specified in the standards.  
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However, according to Harel and Sowder (2005), teaching ways of thinking 

directly to students is unproductive. According to the Duality Principle (Harel, 2001, in 

press a), it is through the construction of ways of understanding that students develop 

ways of thinking; conversely, it is through the application of ways of thinking that 

students develop their ways of understanding. These ways of understanding may be 

deficient initially, but can be progressively refined towards those that are institutionalized 

(i.e., accepted as correct and useful by the mathematics community). Hence, the target 

ways of thinking and ways of understanding must complement each other, so that 

applying certain ways of thinking will lead to the development of certain ways of 

understanding, which may help to cultivate target ways of thinking. For example, recall 

Talia‘s trajectory from manipulating-symbols to reasoning-with-symbols; the plugging-

in-number strategy (an instantiation of explorative anticipation) enabled Talia to 

encounter the making-one-factor-positive-and-one-factor-negative way of understanding. 

Repeated use of this way of understanding should reinforce the goal-oriented way of 

thinking and the reasoning-with-structure way of thinking (both of which are related to 

analytic anticipation). In summary, the Duality Principle should guide the cognitive 

objectives that instructors set. 

Implementing instructional activities to achieve those objectives is just as 

important as incorporating desirable ways of thinking as cognitive objectives for 

instruction. The remaining four sub-sections describe factors that algebra teachers should 

consider when structuring their courses and when planning and implementing their 

lessons.  
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Build on Students’ Ways of Understanding and Ways of Thinking  

In order to help students address their undesirable ways of understanding and 

ways of thinking or advance their existing ones, teachers must be aware of students‘ 

current ways of understanding and thinking. In classroom situations, teachers may not be 

able to attend to the ways of understanding or ways of thinking of all students 

simultaneously, but they can be sensitive to those students with whom they are 

interacting. In a one-on-one situation, a teacher should focus on the learner‘s ways of 

understanding and ways of thinking, rather than focusing on how best to impart or 

explain her or his own ways of understanding to the learner.  

An awareness of the learner‘s ways of understanding and ways of thinking can 

empower the teacher to interact effectively with the learner; for instance, the teacher can 

pose questions to help the learner encounter certain desirable ways of understanding. For 

example, as discussed in the section on Attending to Meaning and Referents of Symbols 

in Chapter 6, the question ―Are you able to find the ‗biggest‘ negative number that will 

make it (
7

0
11

x

x

+
>

+
) true?‖ was posed after Talia had predicted that positive numbers and 

negative small numbers would make the inequality true. This question was based on my 

awareness of Talia‘s way of understanding (making both numerator and denominator 

positive would make the inequality true). The intent of this question was for Talia to 

encounter the notion of critical value in a meaningful manner. This query presented a 

need for Talia to search for the critical value. The posing of this question provides an 

example of the implementation of the Necessity Principle (Harel, 1998). To implement 
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the Necessity Principle effectively, a teacher must know, to some extent, her or his 

students‘ ways of understanding and ways of thinking.  

Use Well-designed Tasks  

As mentioned in Chapter 3, task characteristics influence the way students think 

about a problem. For example, consider the following tasks: (a) Solve for x:  

(2x – 6)(x – 3) < 0; (b) Is there a value for x that will make the (2x – 6)(x – 3) < 0 true; 

and (c) Is (2x – 6)(x – 3) < 0 always true, sometimes true, or never true? The first task is 

considered a directive task in that it directs the student to do something. The second task 

may be interpreted by some students as a directive task to plug in numbers for x into the 

inequality. It may also be interpreted more literally by students as a question, which they 

can ponder. The third task is more likely to constitute a problem for students to solve. It 

may even be a source of puzzlement for some students. These three tasks serve different 

purposes. In general, the third task should be used first because it is more likely to 

intrigue students and lead them to explore different ways to solve the problem. The 

second task is useful for fostering the plugging-in-numbers-to-notice-patterns-or-

structure way of thinking. The first task is useful for helping students to internalize and 

retain certain procedures. In summary, teachers must be sensitive to task characteristics 

and select, or create, tasks according to the needs of their students. 

Algebra has traditionally been difficult for many students. This might be due to 

the prevalence of directive tasks and the lack of non-directive tasks. While directive tasks 

may help students develop efficiency, they tend to promote the non-referential symbolic 

way of thinking. This happens because students can manipulate symbols according to 

prescribed rules and obtain the correct answer without knowing the referents of those 
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symbols or the underlying principles behind those rules. Comments such as, ―What is 

there to think about when I already know how to do it?‖ are not uncommon among 

algebra students. For these students, directive tasks foster impulsive anticipation. 

Ultimately, mathematics educators want students to engage in interiorized anticipation, 

but most students will need to work with non-directive tasks prior to encountering 

directive tasks.  

The importance of curricula being based on problems is discussed in Chapter 1.  

A problem-based curriculum tends to use non-directive tasks. A reason for preferring 

non-directive tasks is that they encourage students to explore and analyze the problem 

situation. The task should challenge students to apply and adapt their existing ways of 

understanding and ways of thinking. Through exploration and reflection, students can 

encounter new ways of understanding, expose and address their deficient ways of 

understanding and ways of thinking, cultivate desirable ways of thinking, and develop 

new ways of thinking.  

To encourage prediction, a non-directive task should be phrased as a question 

with forced choices (e.g., yes or no; true or false; always true, sometimes true or never 

true; larger than, equal to, or smaller than). The pedagogical value of having students 

predict prior to performing is discussed in Chapter 1. Generally speaking, when students 

predict they are more likely to avoid impulsive application of a certain procedure, to 

focus on the big picture, and to attend to symbolic structure. 

Sequencing of tasks is also important. Teachers should take into account the 

recent ways of understanding and ways of thinking that their students have learned or 

encountered. According to the Recency Effect, students have a tendency to apply recently 
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learned ways of understanding. Hence, teachers can capitalize on such tendencies to 

create cognitive conflict in students through proper sequencing of tasks. For example, 

sequencing 2y + (4y – 9) ≤ 0 after x(6x + 8) < 0 led Talia to experience cognitive conflict: 

―Mmm, I thought why can‘t I set this (2y) and this part (4y – 9), both equal to 0. But then 

I‘m adding, so I don‘t know, I‘m not sure if I can do that.‖ Tasks can also be sequenced 

to help students encounter new ways of understanding. For example, the use of  

5(8x – 20) < 10(8x – 20) after the use of 5 + (8x – 20) < 10 + (8x – 20) allows students to 

encounter the considering-negative-numbers way of understanding and to develop the 

considering-falsity way of thinking. 

Introduce Algebraic Inequalities prior to Algebraic Equations  

In traditional curricula, a substantial amount of time is dedicated to learning and 

practicing techniques for solving different types of equations, often beginning with one-

step linear equations, such as x + 3 = 10 and 5x = 18, and progressing to equations 

involving logarithms, such as log (2x) + log (x + 1) = 2 log (x – 3). Algebraic inequalities 

are often taught as add-ons to equations, resulting in many students treating inequalities 

as equations and making inappropriate analogies between the two (Tsamir & Almog, 

2001; Tsamir et al., 1998). In a problem-based curriculum, algebraic inequalities should 

be introduced with, if not prior to, algebraic equations. The advantage of introducing 

inequalities first is that students are more likely to attend to the variable attribute of a 

literal symbol while solving inequalities. This is because the solution to a single-variable 

inequality is a range of numerical values, whereas the solution to a single-variable 

equation is usually a specific number. As a result, inequalities tend to foster the letter-as-

a-variable way of understanding whereas equations tend to foster the letter-as-an-



   

 

 

216 

 

unknown way of understanding. Students are more likely to engage in coordination-based 

prediction with the former and comparison-based prediction with the latter.  

Strengthen Students’ Arithmetic-Algebra Connection 

According to Lee and Wheeler (1989), the difficulties students face in algebra are 

partly a result of their inability to relate algebra to arithmetic: ―Students behaved as 

though algebra were a closed system untroubled by arithmetic‖ (p. 46). This phenomenon 

is observed in Talia‘s responses to items Pre-S1 and Pre-S2. The improvement Talia 

showed from the pre-interview to the post-interview was mainly due to her change from 

operating in the sub-context of manipulating symbols non-referentially to operating in the 

sub-context of reasoning with symbols. This change involved an intermediate stage 

during which Talia operated in the sub-context of working with numbers. This suggests 

that to help algebra students who reason in a non-referential symbolic manner, teachers 

should spend time helping them strengthen their arithmetic-algebra connection instead of 

reviewing procedures and rules that were taught in a previous course. 

Ideally, a pre-algebra course should focus primarily on grounding students‘ 

algebraic experience with quantitative relationships as well as with numbers. Current 

reform efforts, such as Mathematics in Context (Romberg & Lange 1998) and Realistic 

Mathematics Education (Freudenthal, 1991), tend to emphasize the former, in which the 

referents for literal symbols are quantities such as distance, time, weight, cost, and 

number of items. Balacheff (2001) and Kirshner (2001) highlight that using contextually 

rich activities does not help students to develop deductive rigor in their algebraic 

reasoning. In fact, over-reliance on contextualized situations may even create an obstacle 

to students developing such rigor in more advanced algebra courses. 
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A complementary approach would be to use numbers as referents for literal 

symbols. By effectively using well-designed tasks, this approach can help students 

develop plugging-in-numbers-to-notice-patterns-or-structure strategy and promote 

reasoning-with-structure way of thinking. For example, tasks such as ―Is 5x + 6 < 5x + 18 

always true, sometimes true, or never true?‖ can help students abstract certain structural 

relationships in linear equations of the form Ax + B < Cx + D, such as realizing that if 

A ≠ C, then the inequality must be sometimes true. When students‘ learning of algebraic 

inequalities and equations is not grounded in numbers, they are more likely to engage in 

association-based reasoning, such as associating the disappearance of x with the 

inequality having no solutions.  

In conclusion, algebra teachers should use a problem-based curriculum in which 

both numbers and quantities are referents for literal symbols. Teachers must help students 

develop a strong arithmetic-algebra connection through effective use of non-directive 

tasks. Finally, teachers should be sensitive to students‘ ways of understanding and ways 

of thinking, and they should strive to help their students develop desirable ways of 

understanding and ways of thinking.  

 

7.4 Limitations of this Research  

The observation categories developed during this study are based on a very small 

sample size and concern a single domain in mathematics. They are therefore neither 

robust nor exhaustive. In fact, they are still in the early stages of development. More 

research is required to refine and extend these categories. 
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The categories developed for ways of thinking associated with foreseeing and 

ways of thinking associated with predicting in this research are considered local in the 

sense that they are descriptors to characterize an occurrence of an act, although other 

occurrences are taken into consideration in the analysis of any particular occurrence. 

Strictly speaking, the categories developed in this research are not considered ways of 

thinking, because terms such as analytic anticipation and coordination-based prediction 

do not suggest the image of a conceptual tool, although they do characterize a student‘s 

mental act of anticipating. Terms such as analytic anticipative scheme and coordination-

based predictive scheme suggest the general character that underlies students‘ acts of 

foreseeing/predicting. These can be conceived of as conceptual tools that students can 

apply to solve problems through the act of foreseeing or predicting. 

As explained in a footnote in Chapter 4, I chose to use terms like analytic 

anticipation and coordination-based prediction instead of analytic anticipative scheme 

and coordination-based predictive scheme. The use of the term anticipative/predictive 

scheme entails a greater inference about the way students foresee/predict in general, 

rather than in a specific instance. There are many factors that could contribute to a 

student‘s foresight/prediction. I could not determine whether a student‘s 

foresight/prediction was due to the student‘s anticipative/predictive scheme (especially 

when I did not know what they were yet) or other circumstantial factors. Nevertheless, 

creating categories that characterize students‘ foresight/prediction is necessary prior to 

creating categories for ways of thinking in terms of schemes. The next step would be to 

―convert‖ these observation categories into anticipative schemes and predictive schemes. 

The data collected and transcribed in this research could be used for such a purpose.  
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Harel and Sowder (1998) have used proof schemes to characterize students‘ 

mental act of proving, which includes two sub-processes: ascertaining and persuading. 

Similarly, foresight and prediction are actually two aspects of anticipation—volitive and 

predictive, respectively. Therefore, anticipative schemes and predictive schemes can be 

merged into one class. If conceiving ways of thinking in terms of schemes proves to be 

viable for the mental acts of foreseeing and predicting, then schemes are probably 

appropriate for characterizing other mental acts.  

 

7.5 Directions for Future Research  

Studies to refine and extend the categories developed in this research. Similar 

research could be conducted in the same domain with students in a lower grade level such 

as students who are taking Pre-algebra or Algebra 1. To increase the robustness of these 

categories, research on other domains in mathematics may be necessary.  

Research to extend the existing framework. In terms of Cobb‘s hierarchical levels 

of anticipation, this research focuses on the most specific level of anticipation, which 

includes foresight of actions and prediction of results, within a heuristically constrained 

sub-context. Subsequent research could focus on students‘ anticipation of heuristics and 

their movement between sub-contexts.  

Research on other mental acts in the context of problem solving. As mentioned 

earlier, the act of problem solving encompasses many interrelated mental acts. An 

extension to this research would be to study students‘ mental acts of exploring and 

analyzing. In this research, I found that students who have an element of doubt (i.e., 

consider the ―falsity‖ of their way of understanding) tend to demonstrate more 
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sophisticated ways of thinking. It could be worthwhile to study the mental acts of 

exploring and analyzing, examining effects of doubt  

Research on task characteristics. The non-directive tasks used in this research are 

appropriate for eliciting students‘ foresights and predictions. Further research should 

explore how task characteristics influence students‘ foresights and predictions. The effect 

of task characteristics on students‘ learning could also be investigated. In addition, the 

effectiveness of using non-directive tasks for pedagogical purposes should be studied.  

Classroom studies. This research offers several recommendations for improving 

the teaching of inequalities and equations. Based on these recommendations and the 

findings in this research, a curriculum on algebraic inequalities and equations could be 

developed for pre-algebra. Subsequently, an action research study could be conducted to 

examine the effectiveness of such a curriculum. 

 

7.6 Conclusion  

 This dissertation pioneers an investigation on the viability of characterizing 

students‘ problem-solving behaviors based on their acts‘ of anticipation. It combines 

multiple perspectives: Piaget‘s (1967/1971) notion of anticipation, von Glasersfeld‘s 

(1998) three general kinds of anticipation, Cobb‘s (1985) hierarchical levels of 

anticipation, and Harel‘s (2001, in press a, in press c) notions of mental act, way of 

understanding, and way of thinking. It differentiates between two types of anticipating 

acts: foreseeing an action and predicting a result. 

One objective of the research was to identify and categorize students‘ ways of 

thinking associated with foreseeing and predicting. Five ways of thinking associated with 
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foreseeing were identified. These ways of thinking allow educators to communicate the 

way a student approaches a problem, such as whether he or she hastily applies a hastily 

applies a procedure (impulsive anticipation), is tenacious in his or her way of 

understanding (tenacious anticipation), explores different ideas (explorative anticipation), 

analyzes the problem situation and identifies a goal (analytic anticipation), or 

spontaneously applies well-established ways of understanding (interiorized anticipation). 

Having made these categories explicit, mathematics teachers can design and implement 

instructional activities that aim to help students progress from being impulsive to being 

analytic and from being tenacious to being explorative. 

Three ways of thinking associated with predicting were identified. These ways of 

thinking allow educators to communicate the bases underlying students‘ predictions, 

whether a prediction is based on an association, based on a comparison, or based on some 

coordination. Such distinctions can help teachers to be more explicit about their goal of 

advancing students from association-based prediction to coordination-based prediction.  

The second objective concerned the relationship between students‘ ways of 

thinking associated with foreseeing/predicting and their ways of understanding algebraic 

inequalities/equations. The relationship between the desirability of students‘ ways of 

thinking associated with predicting/foreseeing and the sophistication in their ways of 

understanding inequalities/equations suggests that we, as teachers, should attend to 

students‘ ways of thinking associated with predicting/foreseeing while helping students to 

develop sophisticated ways of understanding inequalities/equations, and vice versa. This 

recommendation is in keeping with Harel‘s (in press a) call to incorporate desirable ways 

of thinking and sophisticated ways of understanding as cognitive objectives for 
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instruction: ―In designing, developing, and implementing mathematics curricula, ways of 

thinking and ways of understanding must be the ultimate cognitive objectives, and they 

must be addressed simultaneously, for each affects the other.‖ 

The third objective involved investigating the potential for advancing students‘ 

ways of thinking through an instructional intervention informed by Harel‘s (2001, in 

press a) DNR-based instruction. One learner, Talia, demonstrated substantial 

improvement after five problem-solving sessions. In the pre-interview, she demonstrated 

impulsive anticipation and association-based prediction while operating in the sub-

context of manipulating symbols. In contrast, in the post-interview, she demonstrated 

analytic anticipation and coordination-based prediction while operating in the sub-context 

of reasoning with symbols. The improvement from manipulating symbols non-

referentially to reasoning with symbols involved an intermediate stage in which Talia 

operated in the sub-context of working with numbers. This observation underscores the 

importance of providing opportunities to explore algebraic expressions and symbolic 

structures by using numbers as referents for literal symbols. 
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APPENDIX A:  WRITTEN INSTRUMENT 

 

A Short Activity prior to Administering the Written Assessment 

In order to give the students an idea of what the survey was about, I conducted a 

pre-assessment activity. This activity served two purposes (a) to let the students 

experience the fun of seeing other students‘ strategies, and (b) to communicate to them 

the research focuses on their thoughts and reasoning rather than on their answers.   

I handed out the activity sheet (considered as the first item of the survey on 

students‘ reasoning) and gave them 5-10 minutes to solve the problem. We then had a 

whole-class discussion to elicit their reasoning. ―Let me list down all the initial responses 

you have and then take a quick poll. OK, what are some of the initial responses you 

have?‖ After listing all the initial responses I asked them to share their final solutions and 

what caused them to change their mind. I listed down all the strategies that are shared. 

Finally, I took a poll on (a) who use what strategy in their initial response, and (b) who 

use what strategy in their final solution. Having taken the poll, I thanked them for their 

participation in this part of the activity and handed out the other items in the survey (i.e., 

the written assessment itself). In one particular class, from which only four students 

turned in the written assessments, the students were uninterested and the activity did not 

get carried out in the manner described above. 
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A SURVEY ON STUDENTS’ REASONING 

 

The objective of this survey is to find out the way students think as they solve problems 

in algebra, and not to determine whether they solve the problems correctly.  Please write 

down your initial response.  Then write your further thoughts and your reasoning in 

detail.  The more you describe your thought process, the more accurate the information 

on the way students think I can have.  Thank you for sharing your thinking.  

 

Note:  Please use a pen.  If you use a pencil do not erase what you have written.  You may 

draw lines to cross them out. 

 

 

Simplify the following expression: 

  n – 2n + 3n – 4n + 5n – 6n + … – 96n + 97n – 98n + 99n 

 

Your Initial Response: 

 

 

 

 

 

 

 

 

 

 

 

Your Further Thoughts: 

 

 

 

 

 

 

Name: _________________________ Current Math Class: ________________ 
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The Written Assessment 

The worksheet for the each of the five items in the written assessment is the same as that 

used in the pre-assessment activity. The five items are as follows. 

1. Is there an even integer for k that will satisfy 10k + 5 > k + 1000? 

2. d and p are positive even integers less than 25. Is d + 2p + 3p + 4d > 245 always true, 

sometimes true, or never true? 

3. Given that m and n are odd integers where m > n. Can m – 10 ever be equal to 10 – n? 

4. Is the following statement always true, sometimes true, or never true? 

2(4x – 56) = 3(4x – 56)  

5. Is there an odd integer for n that will satisfy (n – 2)(n – 8) + 10 < 0?  
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APPENDIX B:  INTERVIEW PROTOCOL 

 

Opening Statements 

 

First of all, I want thank you for doing this interview with me.  My name is Kien Lim.   

I am a graduate student at UCSD and SDSU.  In order for me to graduate, I have to 

conduct a research study.  This interview is part of my study.  Thank you for helping me. 

 

The main purpose of this interview is for me to understand how you think, and not to 

find out whether you can do this or do that.  So, instead of focusing on the correctness of 

your answer, we will focus on the reasoning in your answer.  For example, I will ask you 

―why do you think your answer is correct‖ or ―what is it that cause you to be unsure of 

your answer.‖  Is that OK?   

 

I am most interested in the way you think as you solve algebra problems.  I will give 

you some problems in algebra to solve.  I like you to say out what goes on in your head 

as you are solving each problem.   I am interested in your thought processes.  I will 

prompt you to continue thinking out loud at times.  Is that OK with you?   

 

This interview will last about 60 minutes.  If you need to use a calculator, let me know 

and I‘ll do the computation for you.  That way, it‘s easier for me to follow your thought 

process.   

 

Do you have any questions before we start? 

 

 

 

 

Closing Statements 

Thank you very much for participation.  Here are some gift certificates.  Which one do 

you like? 

 

In the consent form, you indicated that you are interested to participate in the tutoring 

sessions.  If you are selected to participate in the tutoring sessions, I will inform you 

when the tutoring sessions would be.  I foresee the first session will be in May.  I need 

some time to study your reasoning so that I can design problems for the tutoring sessions 

to advance your reasoning. 
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Guidelines for Conducting the Interview 

 

Prompts for during think out loud (especially if the student has been silent for more than 

10 seconds)   

 Please share with me what you are thinking. 

 What are you thinking? 

 

Questions to get students to talk about his level of conviction 

 On a scale of 1 to 10, how confident are you that your answer is correct? 

 Please explain why you are _____ confident.   

 (If the confident level is less than 10)  Can you make it a 10? 

 

Prompts to get students to say more 

 Can you show me what you mean? 

 Can you tell me what you mean by ____ (saying that)? 

 Can you show me how you got ____ (that answer)? 

 What does ___ (the problem statement, the expression, etc.) mean to you? 

 Please tell me more about ____ (what you have just said/written). 

 

Prompts to get students to share his thought process in retrospect 

 What were you thinking when you were ______ (doing that)? 

 Did you have an idea what you were going to get before you started _____ (doing 

that)? 

 When you saw this problem, what was the first thing that came to your mind? 

 Do you expect to obtain _____ (this result)? 

 What is the difference between the way you think now and the way you think 

earlier? 

 

Prompts that focus on students‘ rationale 

 Why do you think it is so? 

 Why do you ______ (do that)? 

 

Potential impromptu questions 

 What if I change part of the question, from ____ to ____. 

 Do you think you can find another value that makes the statement true? 

 Do you think you can find a value that makes the statement false? 

 If your classmate says _____, will you believe him?  
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APPENDIX C:  TASKS FOR CLINICAL INTERVIEWS 

 

Single-variable Tasks 

 

S1. Is there a value for x that will make the following statement true? 

   (6x – 8 – 15x) + 12 > (6x – 8 – 15x) + 6 

 

S2. Is there a value for x that will make the following statement true? 

   (2x – 6)(x – 3) < 0 

 

S3. Is there a value for x that will make the following statement true?   

   1.2x + 3456 < 7 + 8.9x  

 

S4. Is there a value for x that will make the following statement true? 

   3(2x – 9) = 6(2x – 9)  

 

S5. Is the following statement always true, sometimes true, or never true? 

   (x + 1) + (x + 2) + (x + 3) + … + (x + 99) + (x + 100) < 100x 

 

S6. Consider these two inequalities:  3(4x – 10) > 0 and 6(4x – 10) > 0. 

Is there a value for x that will make one of them true but will make the other false? 

 

 

Two-variable Tasks 

 

T1. Given that 5a = b + 5, which is larger: a or b? 

 

T2. p and q are odd integers between 20 and 50.   

For these values, is 5p – q > 2p + 15 always true, sometimes true or never true? 

 

T3. Given that m is greater than n, can m – 14 ever be equal to 7 – n? 

 

T4. Consider  (x + 1)(2k – 7) = 3(2k – 7). 

Is there a value for k that makes this equation true for all values of x?  

 

T5. Consider  2k + 9 < (x – 6)
2
 + 5. 

Is there a value for k that makes this inequality true for all values of x?  
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Extra Tasks if Time Allows 

 

E1. Consider  (k – 3)
2
 + 5 ≤ (x + 1)

2
 + 5. 

Is there a value for k that makes this inequality true for all values of x? 

 

E2. Is the following statement always true, sometimes true, or never true? 

   x + 2x + 3x + … + 100x = x
2
 

 

E3. Given that 0 < x < 50 and 50 < y < 100, can (x – 1)(y + 1) = (x + 1)(y – 1) ever be 

true? 

 

E4. Given that x > 10, is there a value for x that will make x(7 – x) > 3(x + 1) true? 

 

E5. Is there a value for x that will make the following statement true? 

   5(2x + 4) > 3(2x + 4) + 4x 
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APPENDIX D: TASKS USED IN THE TEACHING INTERVENTION  

 

Teaching Intervention for Talia 

 

 

Tasks Used in Teaching Episode 1 for Talia 

TE1-TN1 ―Here is the first problem.‖   
5

0
10

x

x

-
<

-
 

 

TE1-TN2 Is x(6x + 8) < 0 always true, sometimes true, or never true? 

 

TE1-TN2b What is the solution set for x(6x + 8) < 0? 

 

(The Code TE1-TN1 can be read as Teaching Episode 1 for Talia, New-task 1 and  

the Code TE2-TR1 can be read as Teaching Episode 2 for Talia Repeat-a-task-did-in-

homework 1) 

 

 

Tasks Used in Teaching Episode 2 for Talia 

TE2-TR1 Is there a value of x that makes 
7

0
11

x

x

+
>

+
 true? 

 

TE2-TR1b Can you walk me through your solution to this (homework) problem?  

   
 

TE2-TR2 Is there a value of y that makes 2y + (4y – 9) ≤ 0 true? 

 

TE2-TR2b Can you walk me through your solution to this (homework) problem? 

 

TE2-TN3 Is the following statement always true, sometimes true, or never true? 

     5 + (8x – 20) < 10 + (8x – 20)  

 

TE2-TN4a When I plug x = 127 into 5 + (8x – 20) < 10 + (8x – 20), the output value for 

the function on its LHS is 1001.  What is the output value for the function on 

its RHS?
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TE2-TN4b When I plug x = 99 into 5 + (8x – 20) < 10 + (8x – 20), the output value for 

the function on its RHS is 782.  What is the output value for the function on 

its LHS? 

 

 

Tasks Used in Teaching Episode 3 for Talia 

 

TE3-TN1 Consider these two inequalities:  x < 1  and  8x + 3 > 8 + 3x.  Is there a value 

for x that will make one of them true but will make the other false? 

 

TE3-TN2 Consider these two inequalities:  
3 10

0
30

x

x

-
<

+
  and  3 10 0x- < .  

Is there a value for x that will make one of them true but will make the other 

false? 

 

TE3-TN3 Consider these two inequalities:  6x + 15 < 0  and  8x + 20 < 0. 

Is there a value for x that will make one of them true but will make the other 

false? 

 

TE3-TN4  Is the following statement always true, sometimes true, or never true? 

    5(8x – 20) < 10(8x – 20)  

 

TE3-TN5a When I plug x = 61 into 5(8x – 20) < 10(8x – 20), the output value for the 

function on its LHS is 2340.  What is the output value for the function on  

its RHS? 

 

TE3-TN5b When I plug x = –53 into 5(8x – 20) < 10(8x – 20), the output value for the 

function on its LHS is –2220.  What is the output value for the function on  

its RHS? 

 

TE3-TN6 Is the following statement always true, sometimes true, or never true? 

     5 + (8x – 20) < 10 + (16x – 40)  

 

 

Tasks Used in Teaching Episode 4 for Talia 

 

TE4-TN1 Given that x > 10, is 3x(500 – 2x) < 30(500 – 2x) always true, sometimes 

true, or never true? 

 

TE4-TN2 What is the solution set for 3x(500 – 2x) < 30(500 – 2x)? 

 

TE4-TN3a Plugging x = 127 into 4x – 20 > 3x – 20, we get 361 for the right hand side.   

What is the value on the left hand side?  
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TE4-TN3b Plugging x = 8.01 into 4x – 20 > 3x – 20, we get 12.04 > 4.03.   

What will we get if plug in x = 16.02. 

  

TE4-TN3c Plugging x = 9.11 into 4x – 20 > 3x – 20, we get 16.44 > 7.33.   

What will we get if we plug in x = 10.11.  

 

TE4-TN3d What if we plug in x = 19.11. 

 

 

Tasks Used in Teaching Episode 5 for Talia 

 

TE5-TR1 Jimmy says that if x is a whole number then the output of the function 

6x + 15 is always odd.  Do you agree with him? 

 

TE5-TR2 Can you explain what you meant when you wrote this statement?  

 
 

TE5-TR3 Given y1 = 6x + 15 and y2 = 8x + 20.  Find the function 2

1

y

y
. 

What do you expect to get if you were to solve 
8 20 4

6 15 3

x

x

+
=

+
? 

 

TE5-TN4 Is the following statement always true, sometimes true, or never true? 

    (x – 3)
2
 + 1 > 0  

 

TE5-TN5 Is the following statement always true, sometimes true, or never true? 

   (x + 2 + 3x) + 4 + (5x + 6 + 7x) < 2(8x + 9)   
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Teaching Intervention for Chela 

 

 

Tasks Used in Teaching Episode 1 for Chela 

 

TE1-CN1 (This is the first item)   
5

0
10

x

x

-
<

-
 

 

TE1-CN2 (This is the next item)    ( )6 8 0x x + <  

 

TE1-CN2b What is the solution set for ( )6 8 0x x + < ? 

 

TE1-CN3 Is the following statement always true, sometimes true, or never true? 

   ( )( )5 10 0x x- - <  

 

TE1-CN4 Is ( )( )3 6 0x x+ + <  always true, sometimes true, or never true? 

 

TE1-CN5. Is there a value of x that makes ( )( )2 4 12 0x x- - <  true? 

 

TE1-CN6. Find the solution set for ( )( )2 12 4 0x x- - < . 

 

 

Tasks Used in Teaching Episode 2 for Chela 

 

TE2-CR1 Solve for x:  ( )( )2 6 1 0x x+ + <  

 

TE2-CN2 Consider these two inequalities:  6x + 15 < 0  and  8x + 20 < 0.  Is there a 

value for x that will make one of them true but will make the other false? 

 

TE2-CN2a Consider 2x + 7 > 0  and  4x + 14 > 0. 

Is there a value for x that will make 1T1F? 

 

TE2-CN2b Solve for x:  6x + 15 < 0 

 

TE2-CN2c Solve for x:  8x + 20 < 0 

 

 

Tasks Used in Teaching Episode 3 for Chela 

 

TE3-CN1 Is the following statement always true, sometimes true, or never true? 

     ( ) ( )5 8 20 10 8 20x x+ - < + -   
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(a) When I plug x = 127 into ( ) ( )5 8 20 10 8 20x x+ - < + - , the output 

value for the function on its left-hand side is 1001.  What is the output 

value for the function on its right-hand side? 

(b) When I plug x = 99 into ( ) ( )5 8 20 10 8 20x x+ - < + - , the output value 

for the function on its right-hand side is 782.  What is the output value 

for the function on its left-hand side? 

  

TE3-CN2 Is the following statement always true, sometimes true, or never true? 

     ( )( )4 20 3 20 0x x- - >   

(a) What is the solution set for ( )( )4 20 3 20 0x x- - > ? 

(b) What is the solution set for ( )( )4 20 3 20 0x x- - < ? 

(c) What is the solution set for 3 20 0x- < ? 

(d) What is the solution set for 4 20 0x- < ? 

 

TE3-CR3 Consider these two inequalities:  4x – 20 > 0  and  3x – 20 > 0. Is there a 

value for x that will make one of them true but will make the other false? 

 

TE3-CN4 (a) When I plug  x = 8.01 into 4 20 0x- >  and 3 20 0x- > , I get 12.04 for 

4 20x-  and 4.03 for 3 20x- .  What do you think the output of each 

function will be if I were to plug x = 16.02? 

  (b) When I plug  x = 9.11 into 4 20 0x- >  and 3 20 0x- > , I get 16.44 for 

4 20x-  and 7.33 for 3 20x- .  What do you think the output of each 

function will be if I were to plug x = 10.11? 

  (c) When x = 8.01, I get ( )4 8.01 20 12.04- = .  Can you predict the value 

for ( )4 9.01 20- ? 

 

 

Tasks Used in Teaching Episode 4 for Chela 

 

TE4-CR1 Find the solution set for 
2 4

0
12

x

x

-
³

-
. 

(a) Consider these two inequalities:  
2 4

0
12

x

x

-
³

-
  and  

1

6
x ³ . 

Is there a value for x that will make one of them true but will make the 

other false? 

(b) What is the solution set for 
2 4

0
12

x

x

-
<

-
? 

(c) Find the solution set for 
2 6

0
10

x

x

-
³

-
. 
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TE4-CN2 Is the following statement always true, sometimes true, or never true? 

   ( ) ( )7 31 5 43 7 31 5 18x x x x- + - < - + -  

(a)  When we plug x = 37 into ( ) ( )7 31 5 43 7 31 5 18x x x x- + - < - + - ,  

what is the output value for the function on its left-hand side?  

What about the output value for the function on its right-hand side?  

(b) Plugging x = 37, you found ( )7 31 5 43x x- + -  to be 370.    

Can you predict the value of ( )7 31 5 43x x- + -  for x = 38? 

 

 

Tasks Used in Teaching Episode 5 for Chela 

 

TE5-CN1 Is the following statement always true, sometimes true, or never true? 

   ( ) ( )5 8 20 10 8 20x x- < -   

(a) What is the solution set for it? 

(b) When I plug x = –53 into ( ) ( )5 8 20 10 8 20x x- < - , the output value for 

the function on its left-hand side is –2220.  What is the output value for 

the function on its right-hand side? 

(c) Plugging x = 88 into ( ) ( )5 8 20 10 8 20x x- < - , we get 3420 < 6840.  

What is the value of ( )5 8 20x -  when x = 89? 

 

TE5-CN2 Is the following statement always true, sometimes true, or never true? 

   (x + 2 + 3x) + 4 + (5x + 6 + 7x) < 2(8x + 9) 

 

TE5-CR3a What is the solution set for (2x – 4) + (x – 12)  0? 

 

TE5-CR3b Consider these two inequalities:  (2x – 4) + (x – 12)  0  and  x  2. Is there a 

value for x that will make one of them true but will make the other false? 

 

TE5-CR3c Can you share your reasoning when you solved this problem at home?  

 
 

TE5-CN4 Given that x > 10, is 3x(500 – 2x) < 30(500 – 2x) always true, sometimes 

true, or never true? 
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Teaching Intervention for Vito 

 

 

Tasks Used in Teaching Episode 1 for Vito 

TE1-VN1 ―Here is the first problem for you.‖   
5

0
10

x

x

-
<

-
 

 

TE1-VN2 ―What can you say about this inequality?‖  9 – 2x > 90 – 20x 

  

TE1-VN3 Is the following statement always true, sometimes true, or never true? 

    6x + 18 > 6x + 3 

 

TE1-VN4 Is the following statement always true, sometimes true, or never true? 

    5x – 10 < 5x – 20 

 

TE1-VN5a Is the following statement always true, sometimes true, or never true? 

    2x + 2222 < 8x + 88 

 

TE1-VN5b Suppose we want to make 2x + 2222 < 8x + 88 never true.  Is it possible to 

change one of the numbers (2, 2222, 8, 88) so as to make it never true? 

 

TE1-VN6 Is the following statement always true, sometimes true, or never true? 

    6x < 54321 + x 

 

 

Tasks Used in Teaching Episode 2 for Vito 

TE2-VR1 Went over homework items, and discussed the rules he had created for 

determining whether an inequality of the form Ax + B < Cx + D is always 

true, sometimes true, or never true. 

 

TE2-VN2 Consider these two inequalities:  5x + 10 > x + 5000  and  4x > 4990.  Is there 

a value for x that will make one of them true but will make the other false? 

 

TE2-VN3 Consider these two inequalities:  3x – 10 > 0  and  4x – 10 > 0.  Is there a 

value for x that will make one of them true but will make the other false? 

 

 

Tasks Used in Teaching Episode 3 for Vito 

 

TE3-VR1 Went over the activity where I solve his 10 SAN-T (sometimes, always, 

never true) problems.  

 

TE3-VR2 Consider 2(x – 123) > 3x + 111 – 3x + 222 and 2x – 246 > 333. 
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TE3-VF3 Consider these two inequalities 3x – 10 > 0 and 4x – 10 > 0.  

Find all the values of x that make one of them true but the other false? 

 

 

Tasks Used in Teaching Episode 4 for Vito 

 

TE4-VN1 What does the following mean to you?   ―Solve for x: 
4 10

0
2 10

x

x

-
>

-
‖ 

 

TE4-VN2 Do you agree with this statement? ―An inequality is a proposition whose 

truth-value (‗true‘ or ‗false‘) depends on the input-value of x.‖ 

 

TE4-VN3 Is the following statement always true, sometimes true, or never true? 

   x + 2 + 3x + 4 + 5x + 6 + 7x < 2(8x + 9) 

  

TE4-VF4 Consider these two inequalities:  5x + 10 > x + 5000  and  4x > 4990.  Is there 

a value for x that will make one of them true but will make the other false? 

  

TE4-VN5 Consider these two inequalities 7x + 45 > 2x + 5 and 5x + 45 > 5.  

Find all the values of x that make one of them true but the other false? 

 

TE4-VN6 Definition: The solution set of an inequality refers to the collection of all the 

  values of x that makes the inequality true. 

What is the solution set for 5x + 10 > x + 5000? 

  

TE4-VN6 Solve for x:  5x + 10 > x + 5000 

 

 

Tasks Used in Teaching Episode 5 for Vito 

 

TE5-VR1 Consider these two inequalities:  4x > 4990 and 4x + 10 > 5000.  

 

TE5-VR2 Consider these two inequalities:  7x + 45 > 2x + 5 and 5x + 45 > 5.  

 

TE5-VR3 Write an inequality that has the same solution set as, but looks different from  

2x – 10 > 50 – x. 

 

TE5-VR4 Consider these two inequalities:  2x + 7 > 0 and 3x – 5 < 0. 

 

TE5-VR5 Consider 5x + 10 > x + 5000  and  4x > 4990. 

(i)   Explain those results/patterns. 

  (ii)  Try to explain why the two inequalities always have same true/false 

results? 
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TE5-VN6 Given that x > 10, is 3x(500 – 2x) < 30(500 – 2x) always true, sometimes 

true, or never true? 

 

TE5-VN7 Is the following statement always true, sometimes true, or never true? 

   
4 10

0
2 10

x

x

-
<

-
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Teaching Intervention for Ali 

 

 

Tasks Used in Teaching Episode 1 for Ali 

 

TE1-AN1 (Here is the first problem for you)   
5

0
10

x

x

-
<

-
 

 

TE1-AN2 (What can you say about this inequality?)    9 – 2x > 90 – 20x 

 

TE1-AN3 Is the following statement always true, sometimes true, or never true? 

   6x + 18 > 6x + 3 

 

TE1-AN4 Is the following statement always true, sometimes true, or never true? 

   5x – 10 < 5x – 20 

 

TE1-AN5 Is the following statement always true, sometimes true, or never true? 

   2x + 2222 < 8x + 88 

 

TE1-AN5b Suppose we want to make 2x + 2222 < 8x + 88 never true.  Is it possible to 

change one of the numbers (2, 2222, 8, 88) so as to make it never true? 

 

TE1-AN6 Is the following statement always true, sometimes true, or never true? 

   6x < 54321 + x 

 

TE1-AN6b Suppose we want to make 6x < 54321 + x always true.  Is it possible to 

change one of the numbers (6, 54321, 1) so as to make it always true? 

 

 

Tasks Used in Teaching Episode 2 for Ali 

 

TE2-AN1 Redoing the 10 SAN-T items in homework 

 

TE2-AN2 Do you agree with this statement? 

 ―An inequality is a proposition whose truth-value  

 (‗true‘ or ‗false‘) depends on the input-value of x.‖ 

 

TE2-AN3 Consider these two inequalities:  5x + 10 > x + 5000  and  4x > 4990. Is there 

a value for x that will make one of them true but will make the other false? 

 

TE2-AN3b Consider these two inequalities:  5x + 10 > x + 5000  and  3x > 4990. 

 

TE2-AN3c Consider these two inequalities:  4x > 4990  and  3x > 4990. 
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Tasks Used in Teaching Episode 3 for Ali 

 

TE3-AN1. Consider these two inequalities:  6x – 20 > 0  and  8x – 20 > 0.  Is there a 

value for x that will make one of them true but will make the other false? 

 

TE3-AN2. Consider these two inequalities:  4x > 4990  and  3x > 4990.  Is there a value 

for x that will make one of them true but will make the other false? 

 

TE3-AN3. Consider these two inequalities:  5x + 10 > x + 5000  and  4x > 4990.  Is there 

a value for x that will make one of them true but will make the other false? 

 

 

Tasks Used in Teaching Episode 4 for Ali 

 

TE4-AN1 What does the following mean to you?   

  ―Solve for x:  
4 10

0
2 10

x

x

-
>

-
‖ 

 

TE4-AR2 Follow up:  5x + 10 > x + 5000 and 4x > 4990 

 

TE4-AN3 Consider:  2x + 7 > 0 and 3x + 15 > 0 

 

TE4-AN4 Definition: The solution set of an inequality refers to the collection of all the 

  values of x that makes the inequality true. 

What is the solution set for 7x – 735 > 0? 

 

TE4-AN5 What is the solution set for 5x + 10 > x + 5000? 

 

TE4-AN5b Solve for x:  5x + 10 > x + 5000 

 

 

Tasks Used in Teaching Episode 5 for Ali 

 

TE5-AR1 Solve for x:  5x + 10 > x + 5000 

 

TE5-AN2 You have worked on these two problems: 

  1. Find the solution set for 5x + 10 > x + 5000 

  2. Solve for x:  5x + 10 > x + 5000 

In what ways are these two problems the same? 

In what ways are they different? 

 

TE5-AN3. Are  5x + 10 > x + 5000  and  4x > 4990  the same, or are they different? 

 

TE5-AN4. Given that x > 10, is 3x(500 – 2x) < 30(500 – 2x) always true, sometimes 

true, or never true? 
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APPENDIX E:  RECRUITMENT SCRIPT 

 

Script for introducing myself and the research 

 

Good morning/afternoon to all of you.  I am Kien Lim, a joint doctoral student in 

Mathematics and Science Education at UCSD and SDSU.  To graduate with a PhD 

degree, I have to conduct a research related to mathematic education.  I choose to 

investigate high school students‘ algebraic thinking, because I find the way students think 

as they solve math problems very intriguing.  By understanding the way students think, 

we as mathematics educators can learn how to teach algebra in a way that is more aligned 

with the way students think.  In my research, I seek to understand how you think as you 

solve problems in algebra.  The goal is not to find out whether you can do this or do that, 

but to understand your thought process. 

 

Today, I will be asking you to fill out a survey on your algebraic reasoning in place of 

your regular K-BAC activity.  You have the option of not doing this survey.  In that case, 

your teacher would want you to work on your K-BAC worksheet.  Your participation in 

this survey is voluntary and will not affect your grades one way or the other.  I want to 

assure you that what you write in the survey is strictly confidential and will not be shared 

with your teachers.  Those of you who decide to work on the survey may also be invited 

to participate in interviews or tutoring sessions that will occur during the semester.   

 

Part 1 of this study consists of a one-hour interview conducted during your advisory 

period.  I will interview about twenty 11
th

 graders.  The purpose of the interview is for me 

to understand the way you think as you work on algebra problems involving equations 

and inequalities. You will be asked to explain your thinking.   

 

Part 2 of the study consists of five to eight tutoring sessions.  These are one-on-one 

sessions in which you will be challenged to solve problems in algebra that promote 

algebraic thinking.  Each session lasts about 60 minutes and is conducted once a week 

during your advisory period. The purpose of the tutoring sessions is to understand how 

students learn and how to help students improve their thinking as they solve problems.   

 

Your choice to participate in Part 1 or Part 2 of the study is completely voluntary.  What 

you say during the interview or tutoring sessions will not affect your math grade one way 

or the other.  Your math teacher will not be present at the interview/tutoring sessions. He 

or she will not see any videotapes of the sessions.  

 
I am handing out two copies of the student assent form.  One copy is for you to sign and 

turn in next week and the other is for you to keep.  (Hand out two copies of the student 

assent form and give them a few minutes to read.) 

 
You can choose to participate in just Part 1 of the study, both Part 1 and Part 2 of the 

study, or neither.  Please indicate on the assent form whether you are interested to 
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participate or not.  Please talk to your parents about this study before you decide.  I am 

also handing out two copies of the parent consent form.  Please have your parent sign one 

copy and keep the other copy.  (Hand out two copies of parental consent forms to each 

student.)  Please turn in the signed parent consent form together with your assent form 

next week.   

 

Taking part in this study is completely up to you.  No one will be upset if you don't want 

to participate.  If you decide to participate, you can still change your mind and stop any 

time you want.  Do you have questions for me? 

 

 

 

Script for introducing the written assessment ―A Survey on Students‘ Reasoning‖ 

 

The objective of this survey is to find out the way you think as you solve math problems, 

and not to determine whether you solve them correctly.  It is very important that you 

write down your thoughts as you have them.  First write down your initial response and 

then describe your further thoughts and reasoning in detail.  The more you describe your 

thought process, the more accurate the information on the way students think I can have.   

 

First, we will do just the first item of the survey.  We will have a whole class-discussion 

on your initial response and subsequent solutions to that item.  (I will hand out the first 

item of the written assessment.  They will have about 5 minutes to solve the problem.) 

 

Let me list down all the initial responses you have and then take a quick poll.  OK, what 

are some of the initial responses you have?  (After eliciting all the initial responses I will 

ask them to share their final solutions.  I will list down all the strategies/solutions that are 

shared.  I will then take a poll on who use what strategy in their initial response, and who 

use what strategy in their final solution.  I will collect their first item and hand out the rest 

of the items in the survey.) 

 

Now, I like you to do the same, that is, describe your initial response and subsequent 

thoughts in details, for the remaining items in this survey.  Due to time constraint, we will 

not have whole-class discussions.  So it is important that you write down your thinking in 

as much details as possible.  Please don‘t worry about not completing all the problems.  

Your detailed descriptions of your thought processes are more valuable than your 

completion of the survey.   
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APPENDIX F:  TALIA’S WRITTEN COMMENTS ON HER EXPERIENCE IN 

THE TEACHING INTERVENTION 

 

 

Summative Report on Your Participation in the Tutoring Sessions  

(At the end of the Teaching Intervention) 

 

What problem-solving strategies or ideas have you learned from your participation in 

this research?  Please be as specific as possible. 

 

Throughout this research I grasped several problem solving concepts that will 

really benefit me not only in math but also in other subjects. First of all, I learned that I 

have to reason and understand the problem before I begin my search for the solution. 

Many times I begin the problem without knowing what the question is asking me. I 

learned how to define my terms such as inequality and figure out what they mean. I also 

learned how to think in a goal oriented manner where you analyze the conditions of a 

problem and then try to think of a way to reach those conditions with different steps. It 

really ! he! lps when I think very general about a problem and then work towards specific 

methods. The goal oriented thinking, helped me find ways to make the general 

proposition/ problem true and then find more detailed answers.  

I looked at inequalities as if they were a comparison of two functions. By using 

visuals of scales I learned how to compare different functions. I also looked at them as 

different propositions and I tried to find ways to make them true or false by thinking in 

terms of positive numbers and negative numbers. Several times I learned new ways to 

solve inequalities; however I learned that just because I found a new tool to help me, does 

not mean I should use it right away without considering the whole problem. My method 

of approaching math used to be very automatic. I tended to rush through a problem 

witho! ut analyzing what the question was asking me. I made this discovery in my last 

session when I solved for x in the problem 2x + 5 = even though I did not have to.  

It is really important to comprehend the reason for certain patterns in math. In my 

last session I discovered that I had a lot of trouble understanding why even plus odd 

equals odd. By using reasoning though I found a different way to think about even and 

odd numbers. I saw even numbers in pairs and odd numbers as non-paired. By looking at 

the underlining reasons for certain patterns, I understood the problems better. The goal 

oriented thinking was frustrating at times because I reasoned very slowly, however, in the 

end it turned out to be very helpful.  
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Describe the mathematical concepts or ideas that you have learned from your 

participation in this research.   

 

Through this research I learned numerous mathematical concepts ranging from 

problem reading strategies to technical skills. In the beginning of session one I noticed 

that my mistakes for my first homework assignment were practically the same mistakes 

done over and over. The question asked me to determine whether an inequality was 

always true, sometimes true or never true by analyzing it. I usually got one solution set 

(this is a set of numbers that makes the inequality true) however my mistake was that I 

continued to forget about the negative numbers in the solution set. In the first session I 

really tried to break that habit of mine and focus on finding all the solution sets possible.  

By solving the inequality, I get the critical points of the function. I learned that a 

critical point is the point where the graph changes from negative to positive outputs. 

Once I made this discovery I learned how to use tables to test regions around my critical 

points. These tables reminded me of guess and check tables however, occasionally they 

were difficult to understand because I chose numbers arbitrarily. Another important idea I 

learned is to use visuals to help illustrate the problem for you. These concepts 

strengthened my knowledge and strength on math. 
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A Report on Your Mathematics Experience 

(Almost a year later) 

 

Looking back at the mathematics classes you took this year (12
th

 grade) and last year 

(11
th

 grade), do you notice any change in (a) the way you learn mathematics, and (b) the 

way you solve mathematics problems? Please be specific in your descriptions (i.e., 

provide examples to support your comment).  

 

 In eleventh grade and twelve grades, I noticed that I started asking myself more 

questions about how to go about a problem. I started thinking in terms of signs (positive 

or negative) whenever I was asked to solve for an inequality. Though in pre calculus and 

calculus I hardly dealt with inequalities, I was able to utilize the skills I learned in the 

SAT‘s. I was able to do the inequalities in the SAT‘s very easily because instead of 

thinking in terms of numbers I thought in terms of signs and greater vs. smaller 

quantities. I remember in learning about pre calculus, I took a lot of notes and made a lot 

of interactions with examples that the teacher provided so that I would learn the material 

better. I would put things in my own words. In solving problems for both calculus and pre 

calculus I worked in small groups and used reasoning skills to derive my answers. Since 

we dealt mostly with derivatives, I was able to see which derivative approach worked 

best to find the derivative. Before I used to add and subtract with my hands but now I 

think of numbers in groups and I try to add them or subtract them by comparing them to 

each other. I am still working on this last technique.  

 

 

A year has passed since you participated in the “Students’ Reasoning in Algebra” 

Project. What are some important things that you have learned from your participation? 

Has your participation change the way you learn mathematics and do mathematics? If 

yes, how? If not, why not? P/ease substantiate your points by proving examples, 

whenever possible.  

 

Through the ―Students‘ Reasoning in Algebra‖ project, I learned that math is 

reasoning and using logic. One of the most important lessons I learned though was to try 

different approaches to solve problems. I also learned that it is important to review the 

material that you learn so that it sticks to you. The project did help me and by the end of 

the whole project I think I was able to reason better. I found out that my thought process 

was slow and that this could be a problem for me in the future but I also found that I was 

able to get through the training alright. In conclusion, I learned how to ask questions 

when solving a problem and how to guide myself through a problem by using reasoning 

skills.  
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