
Carnegie Mellon University

From the SelectedWorks of Cécile Péraire

June, 2016

Practice and Perception of Team Code Ownership
Todd Sedano
Paul Ralph
Cécile Péraire

Available at: https://works.bepress.com/cecile_peraire/36/

http://www.cmu.edu/
https://works.bepress.com/cecile_peraire/
https://works.bepress.com/cecile_peraire/36/

Practice and Perception of Team Code Ownership

Todd Sedano
Pivotal

3495 Deer Creak Road
Palo Alto, CA

professor@gmail.com

Paul Ralph
University of Auckland

Auckland
New Zealand

paul@paulralph.name

Cécile Péraire
Carnegie Mellon Unveristy

Silicon Valley Campus
Moffett Field, CA 94035, USA
cecile.peraire@sv.cmu.edu

ABSTRACT
Context: Team code ownership is a software development
practice where any team member can modify any part of the
team’s code. However, many factors beyond official policy
affect a developer’s sense of ownership.

Objective: The purpose of this paper is to understand the
factors that affect a team’s sense of code ownership.

Method: Following Constructivist Grounded Theory, the
first author conducted participant-observation of several soft-
ware development projects, and interviewed 21 software en-
gineers, interaction designers, and product managers. Iter-
ating between theoretical sampling and analysis continued
until achieving theoretical saturation.

Results: Team code ownership is a feeling. Developers feel
team code ownership more when they understand the system
context, have contributed to the code in question, perceive
code quality as high, believe the product will satisfy the user
needs, and perceive high team cohesion.

Limitations: Outcomes of grounded theory research are
not statistically generalizable to defined populations, and
may not apply to organizations with different software de-
velopment cultures.

Conclusion: Team code ownership is rooted in numerous
cognitive, emotional, contextual and technical factors and
cannot be achieved simply by policy.

CCS Concepts
•Software and its engineering → Collaboration in
software development;

Keywords
Extreme Programming, Collective code ownership, Team
code ownership, Sustainable software development

1. INTRODUCTION
Team Code Ownership (which is similar to Collective Code

Ownership and Shared Code) is a software development prac-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EASE ’16, June 01 - 03, 2016, Limerick, Ireland
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3691-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915970.2916002

tice where any developer on a team has the right to change
any of the team’s code. Team code ownership is intended to
accelerate development by allowing any developer to fix any
team bug and by mitigating delays due to vacations, illness
and other absence [3].

While some research has investigated the effects of differ-
ent code ownership models, we are unaware of any studies
that specifically investigate developers’ sense of team code
ownership; that is, the complex interactions between devel-
opers’ knowledge, emotions, and approach to code owner-
ship.

When team code ownership emerged as a core category in
a grounded theory study, we therefore exploited this oppor-
tunity to investigate factors associated with perceived code
ownership and related phenomena.

We quickly discovered that having the right to change a
file does not mean that a specific developer will feel em-
powered to and justified in making a specific change. For
example, a developer may feel reluctant to change code that
he or she does not really understand. As we refined this
core finding and allowed it to drive further data collection,
we identified five factors associated with feelings of team
code ownership.

This paper consequently reviews existing research con-
nected to team code ownership (Section 2), describes our
grounded theory approach (Section 3), and presents our
emerging results: five factors associated with team code
ownership (Section 4). Section 5 discusses the study’s impli-
cations and limitations, followed by a summary of its con-
tributions (Section 6).

2. RELATED WORK

2.1 Team Code Ownership
In Extreme Programming [3], Kent Beck describes a set of

interdependent practices for managing feature development
and facilitating a collaborative team environment. One of
these practices is collective ownership—“Anyone can change
any piece of code in the system at any time.” [2]. The
book contrasts collective ownership against “no ownership”
and “individual ownership.” In 2004, collective ownership is
renamed shared code [3].

In 2006, Martin Fowler defined collective code ownership,
similarly to Beck [8], as a contrasting team position to“strong
code ownership” where each file has one owner and “weak
code ownership” where developers can change files, but an
owner keeps an eye on files for which they are responsible.

Later, Bird et al. [4] contrasted the effects of strong- and

weak-ownership. They demonstrated that weak ownership
leads to more defects than strong ownership for Windows
Vista and Windows 7. The study defined ownership for a
software component as a percentage of the version control
commits for a single developer. They defined a major con-
tributor as someone who has more than 5% of the git com-
mits. A sensitivity analysis revealed that defining strong
code ownership within the range from 2% to 10% produced
similar results for the study.

Meanwhile, Murphy [14] argued that the concept of code
ownership must be unpacked and expanded. He argued that
the complexities of code ownership are missed by merely
examining git commits to determine who modified which
files.

Our paper renames collective code ownership to team code
ownership. For small systems and teams, these terms are
synonymous. For a large system with multiple teams, in
practice, teams would have strong ownership of their portion
of the system. Allowing any pair to modify any part of
Microsoft Windows or Pivotal Cloud Foundry is impractical.

Team code ownership requires more than a team saying,
“everyone can modify anything.” Instead, this paper exam-
ines how a team feels that they own the code. We define
“sense of team code ownership” as the degree to which indi-
vidual members of the team feel collective ownership.

2.2 Sustainable Software Development
We describe the theory of Sustainable Software Develop-

ment through Overlapping Pair Rotation in the paper by the
same name [16] and summarize it in Table 1. The theory
describes how teams can continue to deliver value in spite
of team disruptions. The theory is a collection of synergis-
tic principles, policies, and practices encouraging a positive
attitude towards team disruption, knowledge sharing and
continuity, as well as caring about code quality. The prac-
tices actively remove knowledge silos and caretake the code
so that any pair can work on any story in the backlog.

2.3 Psychological Ownership
Psychological ownership refers to “the feeling of posses-

siveness and of being psychologically tied to an object” [15].
Targets of ownership, whether physical or immaterial, be-
come the extension of one’s self: “What is mine becomes (in
my feelings) part of ME” [11]. Ownership can be attached to
a part or the whole. Psychological ownership occurs when
the object becomes part of the psychological owner’s iden-
tity. Psychological ownership answers the question, “What
do I feel is mine?”

Changes in ownership can have strong effects on our self-
identity. An increase in the number of possessions can pro-
duce positive effects [7], while a diminish can lead to a
personality shrinkage [12]. Someone threatening a person’s
ownership can trigger strong emotions and responses.

Peirce [15] identifies three sources or “roots” of psycho-
logical ownership: efficacy and effectance, self-identity, and
having a place. A major reason for possession of physical
goods or abstract ideas is rooted in the innate human desire
to be in control; being able to alter one’s environment cre-
ates feelings of efficacy and pleasure. Ownership fulfills the
need for self-identification as people define themselves, ex-
press themselves, and ensure their own survival by what they
own. Ownership fulfills the need to have a place and a ter-
ritory to possess. “Each motive facilitates the development

of psychological ownership, rather than directly causes this
state to occur.” Psychological ownership occurs with code
because creating software can satisfy the desire for efficacy
and effectance, self-identity, and having a place.

Peirce identifies three paths or“routes” to ownership: con-
trolling the target, coming to intimately know the target,
and investing the self into the target. With controlling the
target, targets that can be controlled are perceived to be part
of the self. As individuals repeatedly exercise control of an
object, eventually this leads to “feelings of ownership toward
that object.” The higher the autonomy of the job task, the
more likely ownership develops toward the activity. When a
person has little control over an activity, psychological own-
ership is unlikely to develop. With coming to intimately
know the target, the association with the object creates feel-
ings of ownership. One example is when a gardener feels that
the garden belongs to the gardener. (This happens routinely
with software developers who feel that they own part of the
code base, when in reality, the company owns the software.)
Feelings of ownership increase as one becomes intimately
familiar with the object and associated with it. With “in-
vesting the self into the target,” we feel that we own what
we create, shape or produce. Spending time, energy, and
effort enables us to alter our view of ourselves to include
identity with the object. The more investing in the object,
the stronger the psychological ownership. Nonroutine, com-
plex jobs infuse more of our own ideas resulting in increased
ownership.

3. RESEARCH METHOD

3.1 Constructivist Grounded Theory
We followed Charmaz’ approach to Grounded Theory [6],

which provides an iterative approach to data collection, data
coding, and analysis resulting in an emergent theory. The
two primary data sources were field notes collected during
continuous participant observations of a 7.5-month project
and interviews with 21 Pivotal software engineers, inter-
action designers, and product managers. Interviews were
recorded, transcribed, coded, and analyzed using constant
comparison. Our presentation is informed by Stol et al.’s
reporting guidelines for grounded theory studies in software
engineering [17].

When starting a grounded theory research study, the core
question is “What is happening here?” (Glaser, 1978) [9].
Our initial core question was: “What is happening at Piv-
otal when it comes to software development?” This question
led to the Theory of Sustainable Software Development sum-
marized in Section 2.2. When team code ownership emerged
as one of the core categories of the theory, the researcher col-
lected additional data in order to identify the factors affect-
ing the sense of code ownership. The factors are introduced
in Section 4 and are the main contributions of the paper.

3.2 Data Collection
The primary researcher relied on “intensive interviews,”

which Charmaz summarizes as “open-ended yet directed,
shaped yet emergent, and paced yet unrestricted” [6]. The
technique relies on open-ended questions. The purpose is
for the researcher to enter into the participant’s personal
perspective within the context of the research question.

While exploring new emergent core categories, whenever
possible, the researcher initiated subsequent interviews with

Table 1: Theory of Sustainable Software Development: Principles, Policies, and Practices

Sustainable Software Development

Underlying Principles Policies Removing Knowledge Silos
Practices

Caretaking the Code Prac-
tices

Keeping a Positive Attitude
Toward Team Disruption

Team Code Ownership Continuous Pair Programming TDD / BDD

Encouraging Knowledge
Sharing and Continuity

Shared Schedule Overlapping Pair Rotation Continuous Refactoring

Caring about Code Quality Avoid Technical Debt Knowledge Pollination Supported by Live on Master

a goal of not forcing the issue. For example, “please draw
your feelings about the code” often resulted in conversa-
tions about code ownership. After the interview, the inter-
view was transcribed into a Word document with timecode
stamps for each segment.

The primary researcher collected field notes while working
as an engineer. The field notes comprise multiple paragraph
entries recorded several times a week collected over a six
month period. The notes describe individual and collective
actions, captures what participants defined as interesting or
problematic, and include anecdotes and observations.

3.3 Research Context: Pivotal
Pivotal is a large American company with 16 offices around

the world. One of its divisions is Pivotal Labs. Pivotal Labs’
mission is to both deliver highly-crafted software products
and provide a transformative experience for their client’s
engineering cultures. To change a developer’s way of work-
ing, Pivotal combines the client’s software engineers with
Pivotal’s engineers at a Pivotal office where they can expe-
rience Extreme Programming in an environment conducive
for agile development.

A common team size is six developers plus an interaction
designer and a product manager. In the history of the Palo
Alto office, the number of developers on a project ranges
from 2 to 28. Larger projects are organized into smaller
coordinating teams with one product manager per team and
one or two interaction designers per team.

Pivotal Labs has followed Extreme Programming [3] since
the late 1990s. While each team is autonomous in making
its own decisions as to what is best for a particular project,
the company culture strongly suggests following all of the
core practices of Extreme Programming.

4. TEAM CODE OWNERSHIP
In the literature, collective code ownership is often treated

as a policy statement. In this case, simply claiming that
“anyone can modify any piece the code” was not sufficient to
engender willingness to modify any file. Rather, ownership is
an emotional or qualitative attribute that ties all developers
on the team to the project and code base. It is a spectrum
where, on one side, each individual has ownership of only
their code, and on the other side, everyone on the team
owns the entire code base. Some events appear to erode the
team’s sense of ownership over the project’s duration, while
some practices appear to counteract these erosions. This
section details the five factors that appear most related to
team code ownership and examples of events or tendencies
that erode it.

4.1 System Context
Definition: System context is the knowledge and situ-

ational awareness about the code, including the discourse
that surrounds the code. System context includes under-
standing existing design decisions, underlying technologies,
the relationship between features and user needs, and the
implementation of existing features.

Purpose: Developing an in-depth knowledge of the sys-
tem exercises the “intimately knowing the target” path of
psychological ownership.

For a pair to work efficiently on any part of the system,
one of them needs to have enough context to know how that
part of the system works. Without enough context, a pair
might struggle, slow down, or be blocked in working on a
feature.

Code ownership seems to vary with the context that the
developer has about the code; the more the developer knows,
the higher the sense of ownership. Knowledge silos, the size
of the code base, or the number of developers working in
parallel can make it difficult for a programmer to develop a
deep system context level.

Threat: Increasing knowledge silos. When devel-
opers routinely work on one part of the code base, they
can develop specific system context not shared by the team.
Code specialization impedes anyone on the team from mod-
ifying any part of the team’s code. One team said “We need
Marion on that story, only she knows the Apple watch code
base,” and “Shea knows the ins-and-outs of the legacy inte-
gration, we need him to work on this story,” which means
there is a hindering imbalance between the individual and
team understanding of the code.

Threat: Increasing code base size. The primary re-
searcher participated on a team working with a large code
base that was over eight years old and the team did not have
a full understanding of the system. Initially, the team felt
little ownership of the code, even though the team was re-
sponsible for it and agreed to ‘team code ownership.’ Often
the team would need to ask a product manager why certain
features exist in the code to understand the code’s purpose
and implementation. In time, as the team worked with the
code and gained context, the team’s sense of ownership im-
proved.

Threat: Increasing team size. The primary researcher
observed the relationship between team size and code con-
text on five Pivotal projects as a participant-observer. As
team size increases, the ability to gain system context de-
creases. Every day, all pairs are adding to the system. On
a five pair team, so much work is happening each day that
it becomes increasingly difficult to keep track of everything

that changes.
One developer on a ten-person project said, “I feel that

we don’t have the context spread around fully. Having five,
sometimes six, pairs on the project makes it go really fast,
so it’s hard to keep context.”

When developers do not have context about part of a sys-
tem, or context about what remains to be done to finish a
story, reluctance to start the next story at the top of the
backlog emerges. It’s easier to start a story that touches
part of the system that they know. As one developer re-
flected, “I am not entirely comfortable to jump into stories
on certain aspects [of the system].”

As a coping strategy, one developer, before the start of
the work day, skimmed the git commits from the previous
day to learn about new classes and changes in design and to
understand the features the team added.

As team size grows, there is a potential risk of decreasing
an individual developer’s sense of team code ownership.

4.2 Code Contribution
Definition: Code contribution is the portion of the code

that a given developer has worked on.
Purpose: Personally contributing to the code base in-

creases a developer’s sense of ownership by exercising “in-
vesting in the target” path of psychological ownership.

As a developer works on the code base, the developer’s sys-
tem context level increases. While code contribution level
influences the system context level, it is not necessary re-
lated: developers might learn about the code through other
means different from direct contribution, including conversa-
tions at stand-up, impromptu team huddles, or a pair saying
“Check out what we did yesterday.”

Threat: Inability to contribute. A developer’s inabil-
ity to contribute to the code base decreases the developer’s
sense of ownership.

This could happen, for instance, during a pair program-
ming breakdown. When the pairing experience breaks down,
one person drives the code development while the partner
passively watches. (We call this dynamic “Performance Pair
Programming,” when one developer plows through a story
and stops listening to the developer’s partner.) When one
person is writing all the code, individual code ownership re-
places team code ownership.

In one situation, the partner took over and ignored the
participant’s input. The participant reflected, “I would not
be able to explain deeply what we had done. I would not be
able to maintain it. I didn’t really write it, so I feel very
little ownership of it.”

Ideally, Pair Programming is a collaborative experience
where both individuals are unable to tell who wrote which
portions of the code.

4.3 Code Quality
Definition: Code quality relates to how well the code

satisfies the project’s desirable quality attributes. Desir-
able quality attributes might include design qualities, per-
formance, reliability, scalability, security, testability, and us-
ability [13].

Purpose: A high quality product satisfies the self-identity
motivation of psychological ownership. Developers might
not want to be identified with a low quality product.

Low-quality products also tend to involve a disproportion-
ate amount of bug fixes. Developers need a balance between

Figure 1: “Draw how you feel about the code”

creating new features and fixing bugs each week. Working
only on bugs for weeks affects their sense of ownership.

Threat: Pressure to deliver and deprioritizing con-
tinuous refactoring. When developers are pressured to
deliver more features at the expense of Continuous Refac-
toring, the code acquires technical debt, the code becomes
more difficult to work with, and developers can begin to feel
indifferent about the code. When developers begin to expe-
rience code apathy, this decreases their sense of team code
ownership.

When the team neglects refactoring, new code is simply
bolted onto the existing design. Each time the team bolts
something else on, bolting on the next piece becomes more
complicated. Thus, a dilemma arises for the programmers
working on the next story that touches this part of the code:
do they continue bolting on more code, or do they perform
the pretermitted refactoring? A team’s avoidance of refac-
toring may be a sign that code apathy is settling in. Code
apathy results in reduced quality, as the developers become
less invested in the craftsmanship of the code.

One developer felt “proud and disgusted” about the code
base. He is simultaneously proud of each refactoring that
the team performed and disgusted by the technical debt the
team accrued by taking shortcuts to ship more features. The
developer drew Figure 1 to show his feeling about the code,
“It is generally orderly with a few bits that maybe are not as
orderly.”

Before the first launch of a product, the product manager
suggested that the team deliver more features at the expense
of technical debt. For some of the team, this was an unac-
ceptable tradeoff, and those developers decided not to cut
corners. Others on the team complied with the request and
incurred technical debt. The entire team ended up paying
the consequences with extensive refactors after the launch.
On a communal code base, one pair adding tech debt affects
everyone on the team.

When code apathy settles in, team members adopt the
attitude that someone else will solve the problem with the
code. When this attitude permeates a team, no one is solv-
ing the problems.

The team wants to feel pride in improving code quality. It

feels good to be improving the code design and readability.
If the team starts neglecting these concerns, it can engen-
der a sense of disgust and apathy for the code can spread
throughout the team.

4.4 Product Fit
Definition: Product fit is developers believing that fea-

tures of the product will satisfy the user’s needs.
Purpose: Engineers want to create products that matter

to the users. Delivering a product that matters to someone
satisfies the self-identity motivation of psychological owner-
ship.

Threat: Ignoring user feedback. When the product
manager ignores feedback from user research and usability
testing, developers may lose faith in the product’s ability
to achieve its goals. Developer motivation and engagement
can decrease when developers perceive they are building a
feature that users have explicitly said they do not want yet
is built to solve a business goal.

Threat: Ignoring developers feedback about the
product. Pivotal’s balanced team approach is founded on
collaboration between product managers, interaction design-
ers, and developers. When product managers or other stake-
holders ignore feedback from developers, developers can be-
gin to feel less ownership in the product, and in turn, be less
motivated to work on the project.

Feature apathy or product apathy can result in a poorly
crafted product that does not meet the customer’s needs.

4.5 Team Cohesion
Definition: Team cohesion is the degree to which team

members identify as part of the team, stick together through
adversity and take pride in the team’s accomplishments [5,
1, 18].

Purpose: Team cohesion satisfies the “having a place”
motivation of psychological ownership.

Threat: Distancing a developer from the team.
Team apathy manifests when developers do not feel that
they are a part of the team. Developers feel less ownership
of the code base when they feel excluded from the team.

We observed several behaviors that can distance a de-
veloper from the team: interrupting the developer during
discussions, using poor listening skills so that the developer
feels unheard, or talking beyond the developer’s level of tech-
nical expertise.

On one team, during discussions, the team talked about
code but never looked at the source code. One developer
found these abstract discussions difficult to follow. Some-
times the team discussed parts of the code that the indi-
vidual had not seen recently. When the team discussed two
variants of coding practices without showing concrete ex-
amples, the programmer could not contribute. When the
developer raised this issue to the team and the team contin-
ued with the status quo, the programmer felt marginalized
by the team.

Poor onboarding of developers can contribute to feelings
of isolation. On one project, there was a time crunch and
the team was feeling the pressure to deliver stories. When
the team added developers, the team had a “sink or swim”
attitude, letting new team members figure things out on
their own, hence making them feel unwelcome.

When developers feel that the team does not care about
them, their sense of ownership can decrease.

5. DISCUSSION

5.1 Transitioning to team code ownership
The above results have numerous implications for teams

attempting to transition to team code ownership.
Some developers effortlessly make the transition to team

code ownership. They immediately see the benefits of being
able to modify any part of the code base and quickly shift
from “I made this” (personal ownership) to “we made this”
(collective ownership.)

Others may struggle with team code ownership for several
reasons:

• Developers may struggle to transition to a caretaker
mindset. In one interview, a software engineer strug-
gled to describe the developer’s relationship with the
code on a very challenging project and settled in on
the caretaker metaphor: “Sometimes I kind of feel like
a janitor to [the code base]. Maybe caretaker would
be better. Yeah, probably caretaker. I feel like a jani-
tor just cleans up messes, but a caretaker makes things
better.”

• A developer may be distraught at “seeing my work
slowly removed from the app.”

• Developers can no longer take pride in functionality
that they exclusively develop.

• Existing knowledge silos, which hinder team code own-
ership, may be slow to break down.

New hires struggling with the transition slowly realize that
“Someone else is going to take over and they’re going to
do fine. I can move onto something else and that’s okay.”
They recognize the lack of long-term individual authorship,
learn to expect their code to be transitory, develop trust in
their teammates and thus loosely hold personal contribu-
tions. “The code that I write today may be in the code base
for a little while, and it will evolve into something better.”
Eventually, they experience the benefits of a collaborative
environment: “People are a lot more flexible all across the
board, with changing things or accepting feedback or collab-
orating,” and the team can say “Hey, this is our code!”

Shifting from individual to team code ownership may re-
quires multiple and complementary practices to actively re-
move knowledge silos. In this case, daily pair rotation helped
combat knowledge silos. Moreover, for developers with strong
individual ownership tendencies, sharing ownership first with
a small group (where trust and communication come easier)
may help. One Pivotal engineer uses improvisation and col-
laboration games to help teams practice letting go of control,
trusting the team, and learning to be pleasantly surprised
by what emerges.

5.2 Results Evaluation
The factors influencing team code ownership presented in

Section 4, have emerged from the Grounded Theory research
study introduced in Section 2.2. While other factors may
influence team code ownership, we focus only on those that
were observed during the study. Grounded Theory studies
can be evaluated using the following criteria [6]:

Credibility: The 21 intensive open-ended interviews and
numerous field notes from participant-observation serve as
a rich and credible data set for the analysis.

Originality: The paper broadens the idea of team code
ownership by acknowledging that collective code ownership
is more than a policy statement, and by uniquely identifying
factors that affect the team’s sense of code ownership.

Resonance: Several participants reviewed our findings
and indicated that both the factors and threats resonate
with their experience.

Usefulness: The study identifies factors associated with
ownership and suggests several ways of engendering team
code ownership.

This work analyzed software projects at the Silicon Val-
ley office of Pivotal following Extreme Programming. From
an external validity perspective, grounded theory is non-
statistical, non-sampling research. Our results therefore can-
not be statistically generalized to a population. Rather, re-
searchers and professionals can adapt the concepts and ideas
to other contexts case-by-case.

Finally, our results might be influenced by researcher
bias or prior knowledge bias. A risk of the participant-
observer technique is that the researcher may lose perspec-
tive and become biased by being a member of the team.
While a participant-observer gains perspective an outsider
cannot, an outside observer might see something a partic-
ipant observer will miss. Similarly, while prior knowledge
helps the researcher interpret events and select lines of in-
quiry, prior knowledge may also blind the researcher to al-
ternative explanations [10]. We mitigated these risks by
recording interviews and having the second and third au-
thors review the coding process.

6. CONCLUSION
This paper reports results from a participant-observation,

constructivist grounded theory study at Pivotal, a large
American software company employing Extreme Program-
ming practices. It provides three main contributions.

1) Our observations clearly indicate that team code own-
ership is a feeling to be engendered not a policy to
be decreed.

2) Meanwhile, both discussions with and observations of
participants suggest five factors associated with strong feel-
ings team code ownership. Pivotal developers more acutely
feel team code ownership when i) they understand the sys-
tem context; ii) they have contributed to the code in ques-
tion; iii) they perceive code quality as high; iv) they believe
the product will satisfy user needs; and v) they perceive
team cohesion as high.

3) Moreover, diverse events and trends can undermine
sense of ownership, including: increasing knowledge silos,
increasing code base size, increasing team size, inability to
contribute, pressure to deliver and deprioritizing continu-
ous refactoring, ignoring user feedback, ignoring developer
feedback, and distancing a developer from the team.

In conclusion, Pivotal’s developers find team code owner-
ship highly advantageous; however, transitioning to a team
code ownership model is easier for some than others. Some
agile practices including continuous pair programming, over-
lapping pair rotation, continuous refactoring, and test driven
development appear to help. Promising angles for future re-
search include more nuanced explorations of the code own-
ership spectrum, further exploration of the roles of emotion
and identity, as well as developing specific practices for fa-
cilitating ownership transitions.

Thank you to Rob Mee, David Goudreau, Ryan Richard,

and Zach Larson for making this research possible.

7. REFERENCES
[1] D. J. Beal, R. R. Cohen, M. J. Burke, and C. L.

McLendon. Cohesion and performance in groups: a
meta-analytic clarification of construct relations.
Journal of Applied Psychology, 88(6):989, 2003.

[2] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 2000.

[3] K. Beck and C. Andres. Extreme Programming
Explained: Embrace Change (2nd Edition).
Addison-Wesley Professional, 2004.

[4] C. Bird, N. Nagappan, B. Murphy, H. Gall, and
P. Devanbu. Don’t touch my code!: Examining the
effects of ownership on software quality. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software
Engineering. ACM, 2011.

[5] K. A. Bollen and R. H. Hoyle. Perceived cohesion: A
conceptual and empirical examination. Social forces,
69(2):479–504, 1990.

[6] K. Charmaz. Constructing Grounded Theory. SAGE
Publications, 2014.

[7] R. Formanek. Why they collect: Collectors reveal their
motivations. Interpreting objects and collections, 1994.

[8] M. Fowler. Code ownership, 2006. URL:
http://martinfowler.com/bliki/CodeOwnership.html.

[9] B. Glaser. Theoretical Sensitivity: Advances in the
Methodology of Grounded Theory. Sociology Press,
1978.

[10] B. G. Glaser. Doing Grounded Theory: Issues and
Discussions. Sociology Press, 1998.

[11] S. Isaacs. Social development in young children.
British Journal of Educational Psychology, 1933.

[12] W. James. The Principles of Psychology. Holt, 1980.

[13] J. Meier, D. Hill, A. Homer, T. Jason, P. Bansode,
L. Wall, R. Boucher Jr, and A. Bogawat. Microsoft
Application Architecture Guide. Microsoft Press Book,
2009.

[14] B. Murphy. Code ownership-more complex to
understand than research implies. Software, IEEE,
32(6):19, Nov 2015.

[15] J. L. Pierce, T. Kostova, and K. T. Dirks. Toward a
theory of psychological ownership in organizations.
Academy of Management Review, 26(2):298–310, 2001.

[16] T. Sedano, P. Ralph, and C. Péraire. Sustainable
software development through overlapping pair
rotation. In Proceedings of the International
Symposium on Empirical Software Engineering and
Measurement International Conference on Software
Engineering, ESEM, 2016.

[17] K.-J. Stol, P. Ralph, and B. Fitzgerald. Grounded
theory in software engineering research: A critical
review and guideline. In Proceedings of the 2016
International Conference on Software Engineering,
ICSE ’16, 2016.

[18] E. Whitworth and R. Biddle. Motivation and cohesion
in agile teams. In Agile Processes in Software
Engineering and Extreme Programming. Springer,
2007.

	Carnegie Mellon University
	From the SelectedWorks of Cécile Péraire
	June, 2016

	Practice and Perception of Team Code Ownership
	tmpLwuQHY.pdf

