Carnegie Mellon University

From the SelectedWorks of Cécile Péraire

September, 2016

Sustainable Software Development through
Overlapping Pair Rotation

Todd Sedano
Paul Ralph
Cécile Péraire

Available at: https://works.bepress.com/cecile _peraire/35/

B bepress®


http://www.cmu.edu/
https://works.bepress.com/cecile_peraire/
https://works.bepress.com/cecile_peraire/35/

Sustainable Software Development through Overlapping
Pair Rotation

Todd Sedano Paul Ralph Cécile Péraire
Pivotal University of Auckland Carnegie Mellon Unveristy
3495 Deer Creak Road Auckland Silicon Valley Campus
Palo Alto, CA New Zealand Moffett Field, CA 94035, USA

professor@gmail.com

ABSTRACT

Context: Conventional wisdom says that team disruptions
(like team churn) should be avoided. However, we have ob-
served software development projects that succeed despite
high disruption.

Objective: The purpose of this paper is to understand
how to develop software effectively, even in the face of team
disruption.

Method: We followed Constructivist Grounded Theory.
We conducted participant-observation of several projects at
Pivotal (a software development company), and interviewed
21 software engineers, interaction designers, and product
managers. The researchers iteratively sampled and analyzed
the collected data until achieving theoretical saturation.

Results: This paper introduces a descriptive theory of Sus-
tainable Software Development. The theory encompasses
principles, policies, and practices aiming at removing knowl-
edge silos and improving code quality (including discover-
ability and readability), hence leading to development sus-
tainability.

Limitations: While the results are highly relevant to the
observed projects at Pivotal, the outcomes may not be trans-
ferable to other software development organizations with dif-
ferent software development cultures.

Conclusion: The theory refines and extends our under-
standing of Extreme Programming by adding new princi-
ples, policies, and practices (including Overlapping Pair Ro-
tation) and aligning them with the business goal of sustain-
ability.

CCS Concepts

eSoftware and its engineering — Collaboration in
software development; Software development tech-
niques;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ESEM ’16, September 08 - 09, 2016, Ciudad Real, Spain

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3691-8/16/06. .. $15.00

DOL: http://dx.doi.org/10.1145/2915970.2916002

paul@paulralph.name

cecile.peraire@sv.cmu.edu

Keywords

Extreme Programming, Grounded Theory, Code ownership,
Sustainable software development

1. INTRODUCTION

Imagine being a software development manager when one
of your top engineers, Dakota, gives notice and is moving on
to a new job opportunity. You are simultaneously excited
because the new position provides a great career opportu-
nity for someone you respect, yet distressed that her depar-
ture may exacerbate your own project. How will the team
overcome this disruption? Your investment in this engineer
and her entire accumulated knowledge about the project is
evaporating. Dakota developed some of the systems’ tricki-
est, most important components. How long will it take the
other programmers to assimilate Dakota’s code? How will
this affect their productivity and future development?

Conventional wisdom says that team churn is detrimen-
tal to project success and that extensive documentation is
needed to mitigate this effect. Unfortunately, documenta-
tion quickly becomes out-of-date and unreliable [17], under-
mining this approach. During a Grounded Theory study, we
observed projects succeed despite high disruption and little
documentation. This raised the following research question:
“How do the observed teams develop software effectively
while overcoming team disruption?”

Exploring this question resulted in a descriptive theory of
“Sustainable Software Development.” The theory explains
how a collection of synergistic principles, policies, and prac-
tices help develop software effectively while overcoming team
disruption. This is done by engendering a positive atti-
tude towards team disruption, encouraging knowledge shar-
ing and continuity, as well as prioritizing high code quality.
Here, team disruption refers to substantial ongoing changes
in team composition, including team members joining or
leaving, as well as temporary vacations or leave of absence.

In Section 2, we present related work on Extreme Pro-
gramming and team disruption. In Section 3, we review
how we employed Constructivist Grounded Theory to de-
rive a descriptive theory supported by empirical data. We
also present the research context, introducing both the com-
pany and one of the five projects under study. In Section
4, we describe the theory and how its principles, policies,
and practices work together to achieve software development
sustainability. In Section 5, we evaluate the theory using es-
tablished criteria for evaluating a Grounded Theory. In the
last sections, we examine threats to research validity, con-
sider future research, and conclude the research.



2. RELATED WORK

In Extreme Programming [4], Kent Beck describes a set of
interdependent practices that manage feature development
(much like Scrum [24]), as well as technical practices that
facilitate a collaborative team environment. Extreme Pro-
gramming comprises 13 primary practices and 11 corollary
practices.

One Extreme Programming practice, collective ownership,
simply means that “anyone on the team can improve any
part of the system at any time.” Beck contrasts collective
ownership with “no ownership” and “individual ownership.”
With collective ownership, every developer takes responsi-
bility for the whole of the system. When developers see
opportunities to improve the code, they go ahead and im-
prove it if it makes their life easier [3]. Later, “collective
ownership” was renamed to “shared code” [4].

One Extreme Programming practice contributing to col-
lective code ownership is pair programming. Pair program-
ming is where production code is created by two developers
working together at a single computer [4]. Extreme Pro-
gramming does not prescribe how pairs are formed or for
how long a pair works together. Williams presents a pair
rotation strategy for maintaining specialization, by “choos-
ing the right partner for the right situation” [30]. People are
assigned modules of the code to own based upon expertise
and find partners from neighboring modules. While knowl-
edge is shared with pairing, one person owns every story
that touches their part of the system, building individual
code ownership. In one case study, the project started with
a pair rotation strategy based on skillsets but evolved into
a daily rotation determined randomly [28]. Some teams use
a pair programing matrix [1] (also called a pairing ladder
[9]) to track who has paired with whom for the purpose of
pairing people who have not paired recently.

Truck Number is “The size of the smallest set of people
in a project such that, if all of them got hit by a truck,
the project would be in trouble.” [19]. Truck Number, or
Bus Count, reminds management about the effects of dis-
ruptive events for a team. In 1994, Coplien [8] mentions
“Truck Number” as a risk to his Solo Virtuoso pattern of
using only one talented developer to create a software sys-
tem. Awati suggests that Truck Number can be increased by
reducing complexity, cross-training, and documentation [2],
all of which are found in Extreme Programming. However,
Extreme Programming implements “documentation” as dis-
coverable, intention revealing code. Ricca [22] examines the
difficulty in computing the Truck Number.

Rigby quantifies turnover using knowledge at risk analy-
sis on abandoned files [23]. A line of code is abandoned if
the most recent contributor has left the company. A file is
abandoned if more than 90% of the lines in the file are aban-
doned. Izquierdo examines how teams managed orphaned
code [14]. Joseph examines job turnovers to understand the
reasons developers leave their company [15].

3. RESEARCH METHOD

3.1 Constructivist Grounded Theory

We adopted Grounded Theory [6], which provides an iter-
ative approach to data collection, data coding, and analysis
resulting in an emergent theory. We selected Charmaz’ Con-
structivist approach to Grounded Theory, which “empha-
sizes understanding and acknowledges that data, interpreta-

tions, and resulting theory depend on the researcher’s view”
[26]. The two primary data sources were field notes collected
during continuous participant observations of a seven-month
project and interviews with Pivotal software engineers, in-
teraction designers, and product managers. Interviews were
recorded, transcribed, coded, and analyzed using constant
comparison. In addition, the first author was involved in
four other projects as participant-observer.

Grounded Theory immerses the researcher within the con-
text of the research subject from the point of view of the
participants. As the research progresses, Grounded Theory
allows the researcher to “incrementally direct the data collec-
tion and theoretical ideas.” The theory provides a starting
place for inquiry, not a specific goal known at the begin-
ning of the research. As we interact with the data, the data
influence how we progress and alter the research direction.
When starting a Grounded Theory research study, the core
question is, “What is happening here?” [11]. Our initial core
question was “What is happening at Pivotal when it comes
to software development?”

3.2 Participants

The first author interviewed 21 interaction designers, prod-
uct managers, and software engineers who had experience
with Pivotal’s software development process. They were
distributed across four different Pivotal offices. Interaction
designers identify user needs predominately through user in-
terviews; create and validate user experience with mockups;
determine the visual design of a product; and support engi-
neering during implementation. Product managers are re-
sponsible for identifying and prioritizing features, convert-
ing features into stories, prioritizing stories in a backlog, and
communicating the stories to the engineers. Software engi-
neers implement the solution. Participants were not paid for
their time.

3.3 Data Collection

We relied on “intensive interviews,” which are “open-ended
yet directed, shaped yet emergent, and paced yet unrestricted”
[6]. Open-ended questions were used to enter into the par-
ticipant’s personal perspective within the context of the re-
search question. The interviewer attempts to abandon as-
sumptions to better understand and explore the intervie-
wee’s perspective. Charmaz [6] contrasts intensive inter-
views from informational interviews, which facilitate collect-
ing accurate ‘facts’ and investigative interviews that attempt
to reveal hidden intentions or expose practices and policies.

The initial interviews were open-ended explorations start-
ing with the question, “Please draw on this sheet of paper
your view of Pivotal’s software development process.” The
interviewer specifically did not force initial topics and merely
followed the path of the interviewee.

While exploring new emergent core categories, whenever
possible, subsequent interviews were initiated with open-
ended questions. For example, asking the participant, “Please
draw your feelings about the code” often resulted in conver-
sations about code ownership.

Each interview was transcribed into a Word document
with timecode stamps for each segment.

In addition to collecting data from interviews, the first au-
thor collected field notes while working as an engineer on the
project described in Section 3.6. The field notes comprised
multiple paragraph entries recorded several times a week,



collected over seven months. These notes described individ-
ual and collective actions, captured what participants de-
fined as interesting or problematic, and included anecdotes
and observations.

3.4 Data Analysis

Data analysis began with line-by-line coding as recom-
mended by Charmaz [6]. Coding line-by-line helps the re-
searcher identify nuanced interactions in the data and avoid
jumping to conclusions. The data then advanced from these
initial codes to focused codes, focused codes to core cate-
gories, and core categories to an emergent theory.

We reviewed the initial codes while reading the transcripts
and listening to the audio recordings. We discussed the cod-
ing during weekly research collaboration meetings. To avoid
missing insights from these discussions [11], we recorded and
transcribed them into grounded theory memos.

As data was collected and coded, we recorded initial codes
in a spreadsheet and we used constant comparison to gener-
ate focused codes. Only ideas expressed by multiple inter-
viewees informed focused codes and subsequent analysis.

We constantly compared new codes to existing codes to
refine codes and eventually generate categories. We period-
ically audited each category for cohesion by comparing its
codes. When this became complex, the codes were printed
on index cards, and then arranged and re-arranged until co-
hesive categories emerged. We wrote memos to capture the
analysis of codes, examinations of theoretical plausibility,
and insights.

Constant comparison allowed us to identify “the concep-
tual relationship between categories and their properties as
they emerged” [12], leading to a resulting descriptive theory.
The resulting theory is presented in Section 4 and illustrated
in Table 2. The table includes the main categories and their
organization into principles, policies, and practices. Exam-
ples of quotes leading to some categories are presented in
Table 1.

3.5 Research Context

Pivotal is a large American software company (with 16
offices around the world), which provides solutions for cloud-
based computing, big data, and agile development.

This study focuses on one Pivotal subsidiary, Pivotal Labs,
which provides agile developers, product managers, and in-
teraction designers to other firms. Its mission is to de-
liver highly-crafted software products and provide a trans-
formative experience for clients’ engineering cultures. To
change the client’s development process, Pivotal combines
the client’s software engineers with Pivotal’s engineers at a
Pivotal office where they can experience Extreme Program-
ming in an environment conducive to agile development. For
startups, Pivotal engineers might be the first to work on the
project. For enterprise clients, Pivotal provides additional
engineering resources to accomplish new business goals.

Pair programing ability is a strong pre-requisite for be-
coming a Pivotal Labs developer. During job interviews,
applicants engage in multiple pair-programming rounds to
reveal their ability to listen to and empathize with pairs.

Typical teams include six developers, one interaction de-
signer, and a product manager. The largest project in the
history of the Palo Alto office had 28 developers while the
smallest had two. Larger projects are organized into smaller

Table 1: Quotes for Selected Categories

Engendering Positive Attitudes Toward Team Disruption

“I’'m excited when a new person joins the team. That
person has experience that might add something to the
project.”

“I like that people bring new energy. Projects often get
into the state of a lull with the same people working on
it and have the same cadence. New people bring a new
perspective. [Two engineers recently joined] and it was
really cool to see their fresh perspective. I always like
people joining a project.”

“Team members go out of their way to make new team-
mates feel welcome and help ramp them up.”

Team Code Ownership

“I feel ownership of the code as a whole, and I feel empow-
ered and able to go and work on any part of the codebase.”

“I don’t feel like I have [individual] ownership. It’s really
a collaborative effort to achieve where we are today ...I1
feel like everybody owns this product.”

“There is a lot of emphasis that you are not your code.”

“I never feel like a specific piece is mine or something
belongs to other people.”

Overlapping Pair Rotation

“To make sure that knowledge silos don’t form we rotate
pairs. As people work on specific stories and specific parts
of the code, we want to share that knowledge.”

“Rotating pairs reduces knowledge silos and reduces the
bus factor. We do not want the departure of one developer
from the project to cripple the project.”

“We rotate pairs because everyone has a different set of
knowledge. When you work with someone you get a little
bit of that knowledge. The more you pair with them, the
more knowledge you get.”

coordinating teams with one product manager per team and
one or two interaction designers per team.

Commonly utilized technologies include Angular, Android,
backbone, i0S, Java, Rails, React, and Spring. These are
often deployed onto Pivotal’s Cloud Foundry.

Pivotal Labs has followed Extreme Programming [4] since
the late 1990’s. While each team autonomously decides what
is best for each project, the company culture strongly sug-
gests following all of the core practices of Extreme Program-
ming, including pair programming, test-driven development,
weekly retrospectives, daily stand-ups, a prioritized backlog,
and team code ownership.

We only observed teams at Pivotal Labs. Other teams,
especially teams in other divisions, might have a different
culture and follow different software practices.

3.6 Project Context: Project Quattuor

While we observed five projects in total, this paper focuses
on Project Quattuor. This project shares many similarities
with the other four. To preserve client confidentiality, we can



Dave
Carol

Bob |
Alice |

0 5 10 15 20
Week # of the Project

Developers Allocated

Figure 1: Planned Developer Staffing

only reveal that Project Quattuor’s purpose was to develop
a mobile application for controlling expensive equipment.

The project lasted 43 weeks. The initial four weeks, called
Discovery and Framing, include four main activities: 1) in-
teraction designers investigate user needs through user in-
terviews, 2) product managers define the features for the
initial release based on those needs, 3) interaction designers
create an initial interaction design and validate their mock-
ups with users, and 4) engineers mitigate technology risks.
Discovery and Framing was followed by code implementa-
tion, resulting in two releases to both the Apple store and
Google Play store.

The 35-person project consisted of an iOS team of ten
engineers, an android team of ten engineers, and a Java
back-end team of eight engineers with the support of two
to four interaction designers and three product managers.
Here we focus on the iOS team. The first iOS release to
the Apple store occurred in week 23. Given the success of
the project, the client extended the engagement for a second
iOS release that happened on week 43.

Figure 1 shows the staffing plan at the start of Project
Quattuor. The plan was to start the project with two devel-
opers, while adding more developers as more tracks of work
became available. Figure 2 shows the actual staffing, which
is quite different from the plan.

The bar chart on the top of Figure 2 shows when individ-
ual developers started and stopped working on the project.
Five developers were on the project for most of its duration,
while 22 people worked on the project in total. The max-
imum team size was 12 developers working together at the
same time. The graph on the bottom of Figure 2 shows the
total number of developers allocated to the project at any
given week. Developers ramped up from week 5 to week
12, with an average team size of 10 and a maximum of 12
developers.

Developers were routinely rotated and were replaced for
various reasons, including promotions, medical leave, leaving
the company, transferring to a different office, and vacations.
Atypically, the client was more concerned with feature devel-
opment than cost, so absent developers were replaced, lead-
ing to 22 different people working on the same ten-person
project.

The ongoing rotation of team members likely undermined
the team’s sense of identity [27]. In addition, the project
experienced many challenges, including not having access to
production back-end systems or expensive dependent phys-
ical components, and cultural differences between Pivotal
and the client’s deployment organization. Yet the team suc-

||
EE
- '] 20
o TS
W L E——
S % [
o @
z 5 E——
E'I = 15
% e S —— —
8 £ —
o7 I, R T
o = 10
]
[
| E— [
e e e e e s 5
: ere———e————————
Dave | |
Carol ]

Bob | |
Alice I

0 5 10 15 20 25 30 35 40
Week # of the Project

# of Developers
for each week
(=R Y e

=
on

10 15 20 25 30 35 40
Week # of the Project

Figure 2: Actual Developer Staffing

cessfully completed the project. The client was delighted,
even claiming that the team delivered a multi-year project
in five months by delivering the first release.

Contrary to conventional wisdom, high team disruption
did not appear to negatively influence the success of Project
Quattuor. This observation raises our research question:
“How do the observed teams develop software effectively
while overcoming team disruption?”

4. THEORY OF SUSTAINABLE SOFTWARE
DEVELOPMENT

Sustainable software development refers to the ability and
propensity of a software development team to mitigate the
negative effects of major disruptions, especially team churn,
on its productivity and effectiveness. Our theory of Sus-
tainable Software Development, summarized in Table 2, is
targeted towards software developers and has emerged from
the Grounded Theory research described above. We hypoth-
esize that sustainability emerges from synergistic principles,
policies, and practices, which collectively explain how the
observed Pivotal teams overcome disruption. The ability of
any pair to work on any story while caring about the code is
the primary mechanism by which these principles, policies,
and practices mitigate disruption.

In this section, we document each principle, policy, and
practice. For each policy and practice, we present how it
is used at Pivotal, and discuss anti-patterns and potential



Table 2: Theory of Sustainable Software Development: Principles, Policies, and Practices

Sustainable Software Development

Underlying Principles Policies

Removing Knowledge Silos
Practices

Caretaking the Code

Practices

Engendering Positive Attitudes
Toward Team Disruption

Team Code Ownership

Encouraging Knowledge Shar- | Shared Schedule

ing and Continuity

Avoid Technical Debt

Caring about Code Quality

Continuous Pair Programming

Overlapping Pair Rotation

TDD / BDD

Continuous Refactoring

Knowledge Pollination

Supported by Live on Master

alternatives. We provide deeper descriptions for practices
rarely documented in the literature.

4.1 Principles

4.1.1 Engendering Positive Attitudes Toward Disrup-
tion

Conventional wisdom says that team disruption should be
avoided. Yet, team disruption is a reality in the industry,
as exemplified by Project Quattuor where only five of 22
developers worked on the project for most of its duration
(see Figure 2). However, the observed organization engen-
dered a positive attitude towards disruption, transforming
a challenge into an opportunity and hence demonstrating
remarkable business agility. Team members rolling off the
project were replaced as needed. New members rolling onto
the project were viewed as an opportunity to improve the
current code base by providing a fresh perspective. When
a new team member did not understand the code base, he
or she revealed issues with code discoverability. New team
members often questioned the team’s assumptions and chal-
lenged “cargo culting.”

The first underlying principle of Sustainable Software De-
velopment is engendering an open and positive attitudes to-
wards team disruption, transforming a challenge into an op-
portunity to improve code quality.

4.1.2 Encouraging Knowledge Sharing and Conti-
nuity

Despite the fresh perspectives added by new team mem-
bers, team disruption can precipitate in significant knowl-
edge loss for the organization. Policies and practices that
encourage knowledge sharing and continuity mitigate this
risk. These policies are Team Code Ownership, and Shared
Schedule, while the practices are Continuous Pair Program-
ming, Overlapping Pair Rotation, and Knowledge Pollina-
tion (which are discussed below).

The second underlying principle of Sustainable Software
Development is encouraging knowledge sharing and conti-
nuity, enabling the knowledge to spread from one developer
to the next, and eventually reach the entire team. Knowl-
edge sharing and continuity make the team more resistant
to disruption.

4.1.3 Caring about Code Quality

Enabling knowledge sharing and continuity does not guar-
antee sustainable development if the team starts incurring
technical debt [18]. A set of policy and practices aimed at
taking good care of the code itself mitigates this risk. The

policy is Avoid Technical Debt, while the practices are Test-
Driven Development / Behavior-Driven Development and
Continuous Refactoring (which are discussed below).

The third underlying principle of Sustainable Software De-
velopment is caring about code quality, hence avoiding tech-
nical debt and enabling sustainable team productivity.

4.2 Policies
4.2.1 Team Code Ownership

Description: Team code ownership is the extent to which
any team member can modify any part of the team’s code.
Code ownership is influenced not only by official policy but
also each developer’s familiarity with and emotional rela-
tionship to the code.

Purpose: Everyone on the team is responsible for the
team’s code. Simply saying “Any team member can modify
any piece of the code” is not sufficient to achieve the desired
result of team code ownership. We documented five factors
that affect the team’s sense of code ownership and eight risks
observed on Pivotal teams [25]. Achieving team code own-
ership requires a set of enabling practices. These enabling
practices aim at removing knowledge silos and taking good
care of the code, as described in the following sections.

At Pivotal: Every developer is empowered to work on
any part of the team’s code and is encouraged to refactor
any code section to improve its quality as needed, especially
in cases of low code discoverability and readability.

Anti-pattern: Removing team code ownership makes
sustainable software development challenging. FEvery line
of code written via strong ownership might create a knowl-
edge silo. Code reviews are a mitigation strategy with an
asynchronous delay. When the delay is too long, merging
code onto the master becomes problematic, which discour-
ages Continuous Refactoring.

4.2.2 Shared Schedule

Description: Shared Schedule signifies that all team mem-
bers have the same work schedule.

Purpose: Shared Schedule enables Continuous Pair Pro-
gramming, Overlapping Pair Rotation, and Knowledge Pol-
lination practices. With Shared Schedule, teams form new
pairs at the beginning of the day. The evening becomes a
natural interruption to the continuous software development
workflow.

At Pivotal: Team members at the Palo Alto office work
Monday to Friday from 9:00 am to 6:00 pm. This is done
without management coercion; each team member agreed
to this fixed schedule to achieve the benefits of Sustainable



Software Development. While Shared Schedule is the norm,
exceptions are possible.

Pivotal prefers co-located teams in order to promote syn-
chronous and osmotic communication. Project Quattuor
was an exception with the team split between Palo Alto
and San Francisco. Each day, developers in one location re-
motely paired with developers in the other location to spread
the knowledge across the two offices.

Anti-pattern: Flexible work hours potentially jeopar-
dizes Continuous Pair Programming, Overlapping Pair Ro-
tation, and Knowledge Pollination practices. A team with
flexible work hours might find it difficult to pair program
on all stories (as described in the Continuous Pair Program-
ming practice). A team member consistently soloing from
8:00 am to 10:00 am might be building knowledge silos.

When developers arrive whenever they feel like it, rotat-
ing pairs (as described under the Overlapping Pair Rotation
practice) becomes awkward, as there is no longer a natural
time to rotate pairs. Trying to schedule a time midday to
rotate pairs feels artificial. Even if the team says they will
rotate later in the day, once pairs get into their stories and
form context on what needs to be done, they typically forget
about re-pairing until it is time to go home.

Pivotal experimented with pairing when developers ar-
rived, but this meant that developers coming early were
making decisions for the team members who arrived later,
hence loosing some benefits of pair programming.

Alternatives: A possible mitigation strategy could be
to adopt core work hours. Individuals would solo on simple
cleanup chores outside of core hours, and switch to pair pro-
gramming for feature development when the whole team is
in the office.

4.2.3 Avoid Technical Debt

Description: Technical Debt refers to delaying needed
technical work, by taking technical shortcuts, usually in pur-
suit of calendar-driven software schedules [18].

Purpose: Avoid Technical Debt enables a team to bal-
ance feature development with Continuous Refactoring (as
described under the Continuous Refactoring practice). When
a team is pressured to finish work by a deadline, they might
be tempted to focus on feature delivery, take on technical
debt, and stop refactoring. When a team delays refactor-
ing and takes on technical debt, the code becomes harder
to work with, which in turn makes it more difficult for de-
velopers to rotate onto that part of the code base. There is
a dialectic tension [21] between Continuous Refactoring and
delivering more features while accruing technical debt.

At Pivotal: A pair tends to create well-crafted code by
avoiding shortcuts and short-term fixes. The team codes for
the “present” by building the simplest solution for the cur-
rent story. The team eschews over-engineering for potential
future features. The team avoids technical debt by building
the best solution for the moment at hand. When inheriting
a large code base with existing technical debt, we observed
a team actively paying down technical debt while delivering
new features.

Anti-pattern: On Project Quattuor, the product man-
ager suggested that the team deliver more stories at the cost
of technical debt to make a release date. Some team mem-
bers followed this suggestion, skipped the refactoring step,
and introduced harder to maintain code. This decision made
it difficult for pairs to rotate onto parts of the code. Pairs

Programming

Overlapping
Pair
Knowledge Rotation
Transfer:
<>
Knowledge
Gap:
Knowledge
Pollination

Figure 3: Three Levels of Knowledge Sharing

making the decision to skip refactoring caused future pain
for the next pair to work with that part of the code. Imme-
diately after the first release, the team spent several weeks
refactoring the code to pay down the debt and consistently
deliver new features again.

4.3 Removing Knowledge Silos Practices

This section presents practices for encouraging knowledge
sharing and continuity, enabling the knowledge to spread
from one developer to the next, and eventually reach the
entire team. This phenomenon is illustrated in Figure 3,
where letters A to F represent six developers working in
pairs.

4.3.1 Continuous Pair Programming

Description: Continuous Pair Programming is two de-
velopers collaborating to write software together as their
normal mode of software development.

Purpose: When two developers work together, they are
likely to bring more knowledge, and generate more diverse
solutions compared to a solo developer. Additionally, there
are many documented benefits of pair programming [30].
When two developers work together, knowledge spreads from
one developer to the next [31], as illustrated in Figure 3.
Overall, pairing reduces knowledge silos and can improve
code quality.

At Pivotal: Pairing happens with two monitors, two
keyboards, two mice, and one computer. Developers always
work in pairs, unless exceptional circumstances arise. For
instance, solo programming occurs when one developer is
out of the office for part of the day (e.g. at the doctor’s
office), out of the office the whole day (e.g. out sick), or
involved in another business activity for a few hours (e.g.
interviewing candidates, scoping a new project). When solo
programming, developers take low-risk chores, refactorings,
or stories. With any sizable project, there usually is some-
thing the team has been meaning to do that one person can
safely do and report back to the team on its completion.

Anti-pattern: Removing this practice results in solo pro-
gramming where there is a clear owner for the code written.



This would increase individual ownership and start creating
knowledge silos.

Alternatives: In solo programming, to remove silos, de-
velopers could take the stories for the part of the code they
know least about. Assigning stories to developers who have
the least understanding of the code could be a hard sell to
management as it reduces productivity (at least initially).
Bird [5] suggests that this approach would introduce more
defects.

4.3.2  Overlapping Pair Rotation

Description: Overlapping Pair Rotation happens when
there is a rotation of the people working on a track of work:
one developer rolls off the track and another developer rolls
on, keeping continuity of one developer at each rotation.
This results in knowledge continuity for a track of work, as
illustrated in Figure 3. Typically, rotations happen in the
morning as the evenings provide a natural interruption to
the work.

Purpose: The rotation of developers helps spread knowl-
edge and promotes team code ownership. The goal is to pre-
vent the situation where one or two developers understands
how part of the system works and must be assigned any
story related to that part of the system. The entire team
should be able to modify the code. Rotation helps prevent
knowledge silos and individual code ownership from forming.

At Pivotal: Whenever a knowledge silo begins to emerge,
the team actively fights against it and tries to spread that
knowledge around through pair rotation. During the study,
three strategies were observed.

Optimizing for people rotation: Most teams rotate based
on who has paired with whom. Developers try to pair with
the person they “least recently paired with” (basically a
Least Recently Used strategy). Some teams use rotation
techniques or tools to track this information.

This strategy does not clearly articulate the purpose of
knowledge silo removal and the need for knowledge transfer.
As an example, developers who recently left a track of work
might ask to be rotated back without realizing the potential
cost to the team. This prevents an opportunity to spread
the knowledge to the rest of the team. (This issue is more
serious on larger teams; on a four person team, this is not
an issue).

Optimizing for personal preferences: A few teams allow
developers to pick with whom they will work or on which
stories to work based on individual preferences. This has
the same downsides as the previous strategy.

Optimizing for context sharing: A few teams are experi-
menting with rotating onto a track the person who has not
been working on the track for the longest time. The goal
each day is for the developer leaving the track next to em-
power the developer who will remain on the track. Before
any rotation, the remaining developer is asked, “Was enough
context shared with you?” If the answer is no, then the first
developer does not leave and the pair continues to work to-
gether for another day. This provides a feedback loop on
how well the team is transferring knowledge.

Anti-pattern: Removing this practice means that de-
velopers can work on the same part of the code base for
extended periods of time, developing individual code own-
ership and knowledge silos. One participant described their
experience at a previous company that follows Extreme Pro-
gramming. Developers could be paired for more than a

month working on only one part of the system. This lack of
pair rotation led to deep knowledge silos.

Ideally, developers work on the next, non-blocked story
at the top of the backlog. When developers start skipping
down the backlog, it can be an indication that they might
not have enough context to work on any story. On Project
Quattuor, a knowledge silo emerged around a complicated
bug related to an obsolete technology that only a handful of
people understood. Often developers would skip over sto-
ries and bugs related to that technology. At one point, the
product manager reminded the team to keep “working from
the top of backlog.”

Sometimes a developer wants to see a story through to
completion over multiple days. Maybe he or she enjoys the
technology or the feature. In these situations, agreeing to
the request may result in forming knowledge silos and creat-
ing a sense of personal ownership. Statements like “We need
Marion on that story, only she really knows the Apple watch
code base,” or “Shea knows the ins-and-outs of the legacy in-
tegration, we need him to work on this story,” suggest that
knowledge silos have emerged.

Alternatives: Team members that build a knowledge
silo can share what they learned through a demo, code walk
through, or a team huddle. This helps a team share knowl-
edge, but is less effective than working directly with the
code.

4.3.3 Knowledge Pollination

Description: Knowledge Pollination refers to the set
of activities contributing to knowledge sharing in an un-
structured way. Examples include daily stand-up meetings,
weekly retrospections, writing or sketching on whiteboards,
overhearing a conversation, using the backlog to commu-
nicate current status about a story, calling out an update
to the entire team, or simply reaching out to others to ask
questions as needed.

Purpose: Knowledge Pollination contributes to spread-
ing knowledge among the team as illustrated in Figure 3.

At Pivotal: Daily standups create awareness of who is
working on what. Teams can write down a “parking lot” of
issues to discuss during daily standups. A pair may record
the current status of a blocked story so that the next pair
picking it up knows the situation. Osmotic communication
helps when a developer overhears another pair discussing an
issue and offers needed knowledge. Instead of thrashing, a
pair interrupts another pair to gain the needed information.
Thus, interruptions are encouraged because they make the
entire team more efficient as knowledge pollinates across the
team.

Calling out an update to the entire team might be a sim-
ple as shouting “The build is broken, we are looking into
it”, or this interchange: “We just checked in a presenter,”
followed by “We just used your presenter. That’s great col-
laboration.”

While working on a story, a pair may discover that they
are missing some key context that prevents them from effi-
ciently proceeding. If the issue is about the acceptance cri-
teria for a story, they clarify with the product manager. If
the issue is about the code base, the pair can ask the people
who recently worked on that section of code, or ask the en-
tire team. To determine whom to ask, the pair may remem-
ber who did what at stand-up, look through Pivotal Tracker
(an agile project management tool) to see who worked on



a story, or check out source code version history (e.g. git
annotate). Two-, four-, and six- person teams seem to have
collective memory of who worked on which features from
daily standup.

These mechanisms help a team build awareness. Chong
observed that “transmission of awareness information is a
relatively effortless act in the XP environment” in her ethno-
graphic study comparing an Extreme Programming team to
a traditional team [7].

Anti-pattern: An organization that provides little op-
portunity to share knowledge leads to wasted time as devel-
opers must acquire the knowledge through other means or
end up reinventing the wheel.

4.4 Caretaking the Code Practices

4.4.1 Test-Driven Development, Behavior-Driven De-
velopment

Description: In Test-Driven Development (TDD) devel-
opers write unit tests before creating a design and writing
code. In Behavior-Driven Development (BDD) developers
implement acceptance tests before creating a design and
writing code. Most lines of production code are tested be-
fore the production code is written. The software’s design
emerges from the tests and subsequent refactorings.

In Extreme Programming, Kent Beck describes his cor-
responding “Testing” practice as developers writing “auto-
mated unit tests” and implementing customer provided “func-
tional tests” for story acceptance [3]. Later, he refines these
ideas as “Test-first programming” [4].

Purpose: This practice creates a safety net and empow-
ers a pair to have the confidence to modify the code base.
This enables any pair to pick up any story. Continuous
Refactoring results in easier to modify tests.

At Pivotal: Developers use a combination of TDD and
BDD. While each project is different, programmers tend to
use BDD to describe interactions between the user and the
system and TDD at a unit test level. Teams use a variety
of TDD strategies including testing the responsibilities and
interactions [10] or contract testing using mocks [20]. In
Pivotal’s ideal, the design emerges from the creation and
exploration of the test cases.

Anti-pattern: Without this testing practice, developers
no longer have the confidence to change any part of the code
as they may unknowingly end-up breaking something else.

Alternatives: For a system without a test suite docu-
menting the system specification, a possible remedy is for
developers to own particular parts of the system in order
to understand the ramifications of changes. Creating strong
code ownership and knowledge silos is exactly the problem
that sustainable software development is trying to solve.

Writing tests after the code is written could produce a
safety net for refactoring, provided that tests correctly ex-
ercise the system. (A test that never failed might not be
testing anything). We did not observe this behavior and
future research is necessary to determine if any testing ap-
proach is sufficient for sustainable software development.

4.4.2 Continuous Refactoring

Description: Continuous Refactoring is the systematic
improvement of the code base concurrently with new feature
development. When developers identify something wrong
such as a code smell, they simply fix it. In this regard, de-

velopers are caretaking the code by continuously improving
it. This practice results in an emergent software design, as
well as empathy for the code as developers learn to “listen
to the code.”

Purpose: Continuous Refactoring enables any pair to
work on any part of the system. Long-term benefits for the
team include increased code discoverability, code readability,
code modifiability, and code simplicity.

At Pivotal: Developers typically do some refactoring
while implementing stories. Developers are encouraged to
improve the code’s design, make the code easier to under-
stand, and increase the discoverability of a component based
on its responsibility. Usually, the team prefers “pre-factoring”
where the developer does the complicated work to make the
implementation of the current story as simple and easy as
possible, as opposed to “post-factoring” where refactoring
happens after the story is done, but before it is delivered.

Anti-pattern: Removing this practice might produce
difficult to modify and messy code. Developers might not
be able to easily work on any part of the code base. When
refactoring is skipped, code might be simply bolted on to
the existing design. Soon it becomes increasingly difficult to
bolt more code on. A dilemma arises for the programmers
working on the next story: do they continue bolting on more
code, or do they perform the pretermitted refactorings? Re-
moving this practice may also result in hard-to-change tests.

Alternatives: Postponing refactoring may be necessary
in extreme situations, for instance, when the company might
go out of business unless the company releases the next ver-
sion. In such situations, the team risks taking on uncon-
trolled technical debt as “refactoring later” turns into “refac-
toring never.”

4.4.3 Live on Master

Description: Live on master means that developers in-
tegrate their code several times a day, as quickly as possible.
ExtremeProgramming.org calls this practice “Integrate Of-
ten” [29].

Purpose: For teams to continuously refactor and mini-
mize the waste of merge conflicts, the entire team needs to
routinely merge their code onto master. If a pair commu-
nicates to the team that they are actively “refactoring” a
component, they are asserting exclusive temporary owner-
ship over the file to avoid merge conflicts. While this is a
normal practice for a few hours, if it happens for multiple
days, the team is losing collective ownership of that code.
The team is not able to receive any of the benefits until the
work is merged back to master.

At Pivotal: In the ideal workflow, developers merge their
code to master many times a day. If a pair has not merged to
master by the afternoon, the pair typically starts examining
why this is difficult and explores ways of incrementally mak-
ing changes. Developers may use branches to save spikes.
When rotating pairs, developers may use branches to move
work-in-progress code between machines.

Anti-pattern: Removing this practice means that code
lives in branches for days or weeks. Integrations might be
painful due to merge conflicts and developers might delay
needed refactorings. If a developer has code only on their
machine, then no one else on the team can use or modify
that code. When code lives only on one machine for many
days in a row, the machine acts as a “virtual branch.” Run-



ning a Continuous Integration box and having long running
branches is an anti-pattern.

S. THEORY EVALUATION

Charmaz identifies four criteria for evaluating a Grounded

Theory: credibility (“Is there sufficient data to merit claims?”),

originality (“Do the categories offer new insights?”), reso-
nance (“Does the theory make sense to participants?”), and
usefulness (“Does the theory offer useful interpretations?”)
[26].

Credibility: The current data set is rich and its analy-
sis leads to theory saturation. (Saturation means that the
properties of the theory are complete and are not affected by
new data.) The data set comprises 21 intensive interviews
conducted in four different offices, field notes from partici-
pant observation on Project Quattuor, and the first author’s
involvement in four other projects as participant-observer.

Originality: The theory uniquely depicts the principles,
policies, and practices enabling software development sus-
tainability in an organization. Since the organization un-
der study follows Extreme Programming, it is not surprising
that many of the practices of Sustainable Software Develop-
ment are defined in Extreme Programming. However, over-
lapping pair rotation and its supporting principles, policies,
and practices are central and unique to the proposed theory.

Resonance: The participants examined the theory. The
theory resonates with their experience and reflects the way
they work.

Usefulness: The theory informs Pivotal engineers as to
why Pivotal purposefully avoids knowledge silos, and how
the theory’s principles, policies, and practices work together
to accomplish the team’s goals. The theory explains why
the principles, policies, and practices should be incorporated
together. A few managers use the theory to help potential
clients understand how Pivotal achieves the business goals
of both the client and Pivotal.

6. THREATS TO VALIDITY
6.1 External Validity

Generalizability across situations: Grounded Theory
does not support statistical generalization from a sample to
a population. The results may not be applicable to other
teams or other domains. There are four broad types of sci-
entific generalization: 1) from data to descriptions, 2) from
descriptions to concepts, 3) from concepts to theory, 4) from
theory to description [16]. Grounded Theory research in-
volves the first three kinds of generalization. Generalizing
from a theory tested in one context to descriptions of a new
context (the fourth kind of generalization) could be done by
the researchers in the new context, on a case-by-case basis.
However, we have not attempted to perform any type four
generalizations at this time.

6.2 Internal Validity

Researcher bias: A risk of the participant-observer tech-
nique is that the researcher may lose perspective and become
biased by being a member of the team. An outside observer
might see something the researcher missed. We mitigated
this risk by recording interviews and with a colleague re-
viewing the coding process.

Prior knowledge bias: With Grounded Theory, prior
knowledge can aid the researcher in looking at interesting

research questions or create difficulties by blinding the re-
searcher about possible explanations [13]. We mitigated this
risk with a colleague reviewing the coding process.

7. FUTURE RESEARCH

We are interested in the tension between individual and
team ownership, as well as the factors that foster and de-
crease the sense of ownership. Developers, interaction de-
signers, and product managers all have different goals for
their role. In future work, we plan to examine how the sense
of ownership is driven by different factors for each role.

Some programmers naturally adapt to team code owner-
ship, while others struggle with the transition. Future re-
search could follow new Pivotal engineers and examine their
journey in transitioning from individual code ownership to
team code ownership. Perhaps there are specific practices
that Pivotal or the development team could employ to ease
the transition. We could also investigate the optimal team
size for team code ownership, or explore whether Sustained
Software Development works for a distributed team with a
Shared Schedule.

8. CONCLUSIONS

This paper introduces a descriptive theory of “Sustain-
able Software Development” as a solution to the challenge
of software development sustainability for an ever chang-
ing workforce. The theory emerged from a Constructivist
Grounded Theory research study. By collecting data from
21 intensive interviews conducted in four different Pivotal of-
fices, field notes from participant-observation on the Project
Quattuor, and the first author’s involvement in four other
Pivotal projects as participant-observer, the study inves-
tigates the research question “How do the observed teams
develop software effectively while overcoming team disrup-
tion?”

The emergent theory is characterized by a collection of
synergistic principles, policies, and practices encouraging a
positive attitude towards team disruption, knowledge shar-
ing and continuity, as well as caring about code quality.
The theory refines and extends Extreme Programming by
adding principles, policies, and practices (including Over-
lapping Pair Rotation) and aligning them with the business
goal of sustainability.

Conventional wisdom says that team disruptions should
be avoided, and that extensive documentation is needed to
prevent knowledge loss during team churn. Unfortunately,
documentation often quickly becomes out-of-date and un-
reliable. The theory positions team code ownership with
overlapping pair rotation and knowledge pollination as an
alternative and potentially more effective strategy to miti-
gate against knowledge loss.

The primary benefits to the software developer are the
ability to understand the entire system, the ability to work
on every story, increased in teaching opportunities to share
one’s expertise, and more nuanced understanding of the uti-
lized technologies.

The primary benefit to the employer is business agility.
The engineering team continues to deliver software week af-
ter week, month after month, while surviving cataclysmic
events. Things do not fall apart when the superstar devel-
oper leaves because features or components are not critically
tied to a particular individual. Critical feature work can



be parallelized since anyone can work on any feature. The
whole team’s talents are leveraged.

9.

ACKNOWLEDGEMENT

Thank you to Rob Mee, David Goudreau, Ryan Richard,
and Zach Larson for making this research possible. Thank
you to Karina Sils for creating Figure 1 and Figure 2 using
Sketch.

10.

[

[15]

[16]

REFERENCES

N. Alaverdyan. Pair programming matrix / board,
2010. URL: http://alaverdyan.com/readme/2010/12/
pair-programming-matrix-board/.

K. Awati. Increasing your team’s bus factor, 2008.
URL: https://eight2late.wordpress.com/2008/09/03/
increasing-your-teams-bus-factor/.

K. Beck. Extreme Programming Ezplained: Embrace
Change. Addison-Wesley Professional, 2000.

K. Beck and C. Andres. Extreme Programming
Ezxplained: Embrace Change (2nd Edition).
Addison-Wesley Professional, 2004.

C. Bird, N. Nagappan, B. Murphy, H. Gall, and

P. Devanbu. Don’t touch my code!: Examining the
effects of ownership on software quality. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software
Engineering. ACM, 2011.

K. Charmaz. Constructing Grounded Theory. SAGE
Publications, 2014.

J. Chong. Social behaviors on XP and non-XP teams:
A comparative study. In Proceedings of the Agile
Development Conference, ADC, Washington, DC,
USA, 2005. IEEE Computer Society.

J. O. Coplien. A generative development process
pattern language. In Proceedings of Pattern languages
of Program Design, PLoP, 1994.

R. Davies and L. Sedley. Agile Coaching. Pragmatic
Bookshelf, 2009.

S. Freeman and N. Pryce. Growing object-oriented
software, guided by tests. Pearson Education, 2009.

B. Glaser. Theoretical Sensitivity: Advances in the
Methodology of Grounded Theory. Sociology Press,
1978.

B. Glaser. Basics of grounded theory analysis:
emergence vs forcing. Sociology Press, 1992.

B. Glaser. Doing Grounded Theory: Issues and
Discussions. Sociology Press, 1998.

D. Izquierdo-Cortazar, G. Robles, F. Ortega, and

J. M. Gonzalez-Barahona. Using software archaeology
to measure knowledge loss in software projects due to
developer turnover. In 42nd Hawaii International
Conference on System Sciences, HICSS, 2009.

D. Joseph, K.-Y. Ng, C. Koh, and S. Ang. Turnover of
information technology professionals: A narrative
review, meta-analytic structural equation modeling,
and model development. MIS Quarterly, Sept. 2007.
A. S. Lee and R. L. Baskerville. Generalizing
generalizability in information systems research.
Information Systems Research, 2003.

(17]

(18]
(19]

20]

(21]

(22]

(23]

(24]

(25]

[26]

27]

28]

29]
(30]

(31]

T. C. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: The state of
the practice. IEEE Software, 2003.

S. McConnell. Managing technical debt. Technical
report, Construx Software Builders, Inc, 2008.

G. Paci. Trucknumber. Portland Pattern Repository.
URL: http://c2.com/cgi/wiki?TruckNumberFixed.

J. Rainsberger. Integration tests are a scam, 2013.
URL:
https://www.youtube.com/watch?v=VDfX44fZoMec.
P. Ralph. Developing and evaluating software
engineering process theories. In Proceedings of the 37th
International Conference on Software Engineering,
ICSE, 2015.

F. Ricca, A. Marchetto, and M. Torchiano. On the
difficulty of computing the truck factor. In
Product-Focused Software Process Improvement.
Springer, 2011.

P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and

A. Mockus. Quantifying and mitigating
turnover-induced knowledge loss: Case studies of
chrome and a project at Avaya. In Proceedings of the
38th International Conference on Software
Engineering, ICSE, 2016.

K. Schwaber and M. Beedle. Agile Software
Development with Scrum. Prentice Hall PTR, 2001.
T. Sedano, P. Ralph, and C. Péraire. Practice and
perception of team code ownership. In Proceedings of
the 20th International Conference on Evaluation and
Assessment in Software Engineering, EASE, 2016.
K.-J. Stol, P. Ralph, and B. Fitzgerald. Grounded
theory in software engineering research: A critical
review and guideline. In Proceedings of the 2016
International Conference on Software Engineering,
ICSE, 2016.

B. W. Tuckman. Developmental sequence in small
groups. Psychological bulletin, 1965.

J. Vanhanen and H. Korpi. Experiences of using pair
programming in an agile project. In 40th Annual
Hawaii International Conference on System Sciences,
HICSS, 2007.

D. Wells. Integrate often, 1999. URL: http://www.
extremeprogramming.org/rules/integrateoften.html.
L. Williams and R. Kessler. Pair Programming
llluminated. Addison-Wesley Pearson Education, 2002.
F. Zieris and L. Prechelt. Observations on knowledge
transfer of professional software developers during pair
programming. In Proceedings of the 38th International
Conference on Software Engineering Companion.
ACM, 2016.



	Carnegie Mellon University
	From the SelectedWorks of Cécile Péraire
	September, 2016

	Sustainable Software Development through Overlapping Pair Rotation
	tmpTKiJ84.pdf

