Skip to main content
The Lattice of Congruences on a Band of Groups
Glasgow Mathematical Journal (1973)
  • Carl Spitznagel, John Carroll University

It is implicit in a result of Kapp and Schneider that, if Sisa completely simple semigroup, then the lattice Λ(S) of congruences on S can be embedded in the product of certain sublattices. In this paper we consider the problem of embedding Λ(S) in a product of sublattices, when S is an arbitrary band of groups. The principal tool is the θ-relation of Reilly and Scheiblich. The class of θ-modular bands of groups is definedby means of a type of modularity condition on Λ(S). It is shown that the θ-modular bands of groups are precisely those for which a certain function is an embedding of Λ(S) into a product of sublattices. The problem of embedding the inverse semigroup congruences into a certain product lattice is also considered.

  • Congruence,
  • lattice,
  • band,
  • groups
Publication Date
Citation Information
Carl Spitznagel. "The Lattice of Congruences on a Band of Groups" Glasgow Mathematical Journal Vol. 14 (1973)
Available at: