Animal Dwelling Modules

Caryn Brause, University of Massachusetts - Amherst
Carey Clouse, University of Massachusetts - Amherst
As humans grapple with the challenges of climate change and resource scarcity, the shape and structure of human development will also need to be reconsidered. Food security is a particularly troubling issue for many urban areas, and this project stems from the prospect that urban animal life may help to build food access. First and foremost, cities and towns across America will need to evolve to meet the hyper-local consumption demands of their own population centers. Ultimately, civic and social life will also adjust to new norms around self-provisioning and animal husbandry.

In this entry-level design studio, students began by reconsidering the role of animals in the future city, and by designing a dwelling space for their animal clients. Animals were selected for their productive services, highlighting those that increase biodiversity; provide food; provide clothing; provide companionship; pollinate; provide pest control; provide fertilizer; and provide items to trade or sell. While it would be hubris to think that humans could design habitation for other creatures that surpass those they produce for themselves, the intention of this design inquiry was to humbly pursue multiple pedagogical objectives. First, by deeply exploring the geometries, materials, and methods of other creatures’ habitats, students translated these lessons to similar generators of architectural space and form designed for humans. Additionally, as they explored the practical and poetic expression of materials and construction in a cross-species repertoire of architectural outcomes, students were able to get outside of the derivative architectural forms that haunt many studio projects.

The bats, bees, birds, chickens, ducks, tilapia, oysters, guinea pigs, rabbits and silk worms represented in projects had unusual programmatic needs, largely unfamiliar to these beginning design students. Unlike the typical design studio where students might project their own ideas about architectural space to a more universal building type, these unusual clients forced the students to think beyond themselves and their notions of housing. They were encouraged to consider, for instance, the unique needs of their animal clients, the typical forms and geometries that these animals use to construct their own dwellings, appropriate materials, and the ways in which humans interface with these species. Students developed a tectonic structure by referencing the additive, subtractive, and secretive construction methods found in nature.

Through this 2-week process, students discovered many advantages inherent to animal architecture that a typical studio project might otherwise lack. Their solutions sought to repair or remediate environmental conditions, address habitat loss, resolve construction issues through detailing and materiality, and educate humans about their animal client. In doing so, students shed the preconceived notions that might accompany the design for a human client, instead intensely investigating geometries, morphologies, materials, and methods to create a module for animal living.
ANIMAL DWELLING MODULE

A design research project that explores the practical and poetic expression of materials and construction for cross-species cohabitation.

As humans grapple with the challenges of climate change and resource scarcity, the shape and structure of human habitation will also need to be reimagined. Food security is a particularly pressing issue for many urban areas, and the project studies how to create an urban ecosystem that can both produce food and create habitat for local wildlife. This involves designing a dwellings for the animals in the city, and by designing a dwelling space for their animal clients, Animals were selected for their productive services. Highlighting those that increase biodiversity, provide food, provide habitat, generate compensatory: pollinate, provide pest control, provide fertilizer, and provide items to trade or sell.

While it would be ironic to think that humans could design habitats for other creatures that support those species for themselves, the intention of this design research was to explore how multi-species living is possible. First, by thoroughly understanding the materials, and methods of other organisms; fascinates scientists translated these systems to other systems of architectural space and form except for humans. Additionally, as they unfolded the biological and poetic expression of materials and construction is a cross-species repurposing of architectural vernaculars, students were able to get outside of the derivative, architectural forms that dominate many studio projects.

The bats, bees, birds, chickens, ducks, frogs, reptiles, worms, insects, rabbits and other animals represented had their own independent needs, largely unfamiliar to those beginning design students.车内 the typical design studio where students might project their own ideas about architectural space, a more humorous building type, these unusual clients forced the students to view themselves and their notions of housing. They were encouraged to consider, for instance, the unique needs of their animal clients, the typical terms that those clients use to communicate their own dwellings, significant materials, and the ways in which humans interact with these species. Students developed a technical language by referencing the wild, aquatic, and inclusive construction methods found in nature.

Through this 2-week process, students discovered many advantages inherent in animal architecture that a typical studio project might otherwise lack. Their solutions sought to repair or remediate environmental conditions, stimulate local food, restore the constructional degrees through facilitating and materiality, and introduce humans into new material and spatial systems to study the students and the project current issues and ways to parametrically design for a cross-spatial, multi-species investigation into materials, construction, and methods to create a module for animal living.