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Extremes of Nonlinear Vibration:
Comparing Models Based on
Moments, L-Moments, and
Maximum Entropy
Wind and wave loads on offshore structures show nonlinear effects, which require non-
Gaussian statistical models. Here we critically review the behavior of various non-
Gaussian models. We first survey moment-based models; in particular, the four-moment
“Hermite” model, a cubic transformation often used in wind and wave applications. We
then derive an “L-Hermite” model, an alternative cubic transformation calibrated by the
response “L-moments” rather than its ordinary statistical moments. These L-moments
have recently found increasing use, in part because they show less sensitivity to distribu-
tion tails than ordinary moments. We find here, however, that these L-moments may not
convey sufficient information to accurately estimate extreme response statistics. Finally,
we show that four-moment maximum entropy models, also applied in the literature, may
be inappropriate to model broader-than-Gaussian cases (e.g., responses to wind and
wave loads). [DOI: 10.1115/1.4007050]

Introduction

Nonlinear effects beset virtually all aspects of offshore struc-
tural loading and response. These nonlinearities cause non-
Gaussian statistical effects, which are often most consequential in
the extreme events—e.g., 100- to 10,000-year conditions—that
govern structural reliability. Thus there is engineering interest in
forming accurate non-Gaussian models of time-varying loads and
responses, and calibrating them from the limited data at hand.

Our goal here is to critically assess the accuracy of different
non-Gaussian models. In particular, two comparisons are
considered:

1. Models based on moments versus L-moments.
2. Moment-based models based on (Hermite) transformations

versus maximum entropy.

Comparison 1 is motivated by the increasing use of L-moments
[1] in offshore engineering; e.g., for wave runup [2] and Morison
drag [3]. This comparison is made with “Hermite” models, which
assume the non-Gaussian response xðtÞ is a cubic (Hermite) trans-
formation, either to or from a Gaussian process uðtÞ [4,5]. While
Hermite models based on traditional moments are well-known,
those based on L-moments are newly derived here. It is shown
here, however, that these L-moments may not convey sufficient
information to accurately estimate extreme response statistics.

Comparison 2 considers how moments—which are found supe-
rior to L-moments in the information they convey about
extremes—are optimally used. Specifically, Hermite models are
compared with four-moment maximum entropy models, also
widely applied in the literature (e.g., [6,7]). While based on the
same moment information, these models may show quite different
tail behavior. In particular, it is found that maximum entropy may
be inappropriate to model broader-than-Gaussian cases (e.g.,
responses to wind and wave loads).

Finally, note that many of our results—e.g., Figs. 2–9—use
examples that are largely academic (though the polynomial model
in Figs. 2–5 may represent a quadratic or higher-order drag

effect). This is to permit comparison with exact results, and thus
promote critical understanding of the accuracy of the different
methods. The last example (Fig. 10) is an actual wind loading
example, often studied in the probabilistic mechanics community
(e.g., [8,9]). Note too that we have found similar conclusions
when comparing these models to field measurements of North Sea
current speeds [10].

General Results for L-Moments

Due to their relative novelty, the properties of L-moments are
first surveyed. This section closely follows the work of Hosking
[1], where much additional information can be found. Perhaps the
simplest way to view L-moments is in terms of an ordered sample
of size n (X1:n � X2:n � � � � � Xn:n) drawn from the distribution of
X. The nth L-moment kn is then defined as a linear combination of
the order statistics E½Xi:n�. In particular, the first four L-moments
are

k1 ¼ E½X� (1)

k2 ¼
1

2
E½X2:2 � X1:2� (2)

k3 ¼
1

3
E½X3:3 � 2X2:3 þ X1:3� (3)

k4 ¼
1

4
E½X4:4 � 3X3:4 þ 3X2:4 � X1:4� (4)

Clearly k1 and k2 are measures of central trend and dispersion.
Higher L-moments reflect different aspects of distribution shape.
In terms of the CDF of X, FðxÞ¼P½X � x�, or its inverse xðFÞ, k3

and k4 reflect the second and third derivatives of these functions
(in a finite difference sense). If X is uniformly distributed on [0,1],
these functions are linear, E½Xi:n� ¼ i=ðnþ 1Þ, and hence kn¼ 0
for n � 3. Nonzero k3, k4;… reflect deviations of the distribution
of X from a uniform density: k3 and k4 reflect asymmetric and
symmetric deviations, respectively. Thus, the unitless quantities
s3¼ k3=k2 and s4¼ k4=k2 have come to be known, respectively,
as the L-skewness and L-kurtosis.

From the distribution theory of the order statistics Xi:n, Eqs.
(1)–(4) can be rewritten in terms of either FðxÞ or xðFÞ:
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kn ¼
ðF¼1

F¼0

xðFÞwnðFÞdF ¼
ðx¼þ1

x¼�1
x � wn½FðxÞ�f ðxÞdx (5)

in which f ðxÞ¼ dF=dx is the probability density of X. The weight
functions here (wn) are polynomial functions of F. In particular,
the first four L-moments use the following weight functions:

w1ðFÞ ¼ 1 (6)

w2ðFÞ ¼ 2F� 1 (7)

w3ðFÞ ¼ 6F2 � 6Fþ 1 (8)

w4ðFÞ ¼ 20F3 � 30F2 þ 12F� 1 (9)

To estimate L-moments from a data set of size N, it is convenient
to first sort the data into an ordered array x1 � x2 � � � � � xN . The
nth L-moment can then be estimated as

k̂n ¼
1

N

XN

i¼1

xiwnðF̂iÞ (10)

Here F̂i is the estimated CDF value associated with xi; e.g.,
F̂i¼ i=N. One may instead use other “plotting point” locations of
the general form F̂i¼ðiþ cÞ=ðN þ dÞ for d > c > �1.

L-Moments for Gaussian Variables. Consider now the spe-
cial case of a standard normal variable, commonly denoted U,
with cumulative distribution function FðuÞ¼UðuÞ and probability
density function /ðuÞ¼ expð�u2=2Þ=

ffiffiffiffiffiffi
2p
p

. From Eq. (5) its
L-moments are of the form

kn ¼
ðu¼þ1

u¼�1
u � wn½UðuÞ�/ðuÞdu ¼ EfUwn½UðUÞ�g (11)

Because w1ðuÞ and w3ðuÞ are even functions of u, uw1ðuÞ and
uw3ðuÞ are odd so that k1¼ k3¼ 0 in Eq. (11). The nonzero L-
moments k2 and k4 are evaluated to be

k2½U� ¼
1ffiffiffi
p
p ¼ 0:56419; k4½U� ¼ 0:06917 (12)

The corresponding L-skewness and L-kurtosis, s3¼ k3=k2 and
s4¼ k4=k2, are then

s3 ¼ 0; s4 ¼
0:06917

0:56419
¼ 0:1226 (13)

From Eq. (11) note that kn¼E½UwnðUðUÞÞ�, the expected prod-
uct of U and the weight function wnðUðUÞÞ. Figure 1 shows the
behavior of this product LnðuÞ¼ uwnðUðuÞÞ for n¼ 3 and 4. It is
clear that LnðuÞ, and hence kn, gives much less weight to tail val-
ues than u3 and u4, the weighting functions for standard moments
of orders 3 and 4.

In particular, in the tails the weight functions in Eqs. (6)–(9)
approach 1 in absolute value, so that extreme outcomes are
weighed roughly linearly by the L-moments, rather than to the
third and fourth powers by skewness and kurtosis. {This is sensi-
ble in that L-moments are linear combinations of order statis-
tics—hence their name—and, unlike ln¼E½ðX � mXÞn�, all
L-moments retain the units of X.} This tail insensitivity of L-
moments will be shown below to be a drawback when one fits
models to these moments to estimate extremes.

Transformation Models 1: Hermite Models

Hermite models are transformations of the form X¼ gðUÞ, in
which g is a cubic function rearranged in terms of the Hermite
polynomials He2ðUÞ¼U2 � 1 and He3ðUÞ¼U3 � 3U:

X ¼ mX þ rXj½U þ c3ðU2 � 1Þ þ c4ðU3 � 3UÞ� (14)

in which U is standard normal, and mX and r2
X are the mean and

variance of X. We consider here only “softening” cases, whose
kurtosis a4 exceeds 3, the value in the Gaussian case. (For
“hardening” cases in which a4 < 3, the roles of X and U are
interchanged, using the cubic transformation to expand the tails of
X to achieve Gaussianity. We believe this use of dual models
greatly enhances modeling flexibility.)

By using Hermite polynomials in Eq. (14), the quantity in
square brackets has zero mean and uncorrelated terms. Its var-
iance is then 1þ c2

3E½He2ðUÞ2� þ c2
4E½He3ðUÞ2�, or simply

1þ 2c2
3 þ 6c2

4. Thus, ensuring Eq. (14) to have consistent variance
requires

j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2c2

3 þ 6c2
4

p (15)

It remains to select the constants c3 and c4 to be consistent with
the skewness a3 and kurtosis a4 of X. This is the topic of the re-
mainder of this section.

Consider first the case in which c3¼ 0, so that X is symmetri-
cally distributed about its mean. Its kurtosis in this case is

a4 ¼
E½ðX � mXÞ4�

r4
X

¼ 3þ 24c4 þ 252c2
4 þ 1296c3

4 þ 3348c4
4

ð1þ 6c2
4Þ

2

(16)

Equation (16) gives an implicit result for c4, the cubic coeffi-
cient required to match the kurtosis a4 found from a given model
or data set. For small deviations from Gaussianity, c4 will be small
and explicit approximations for c4 are possible. The simplest,
“first-order” result retains only linear terms in c4 from Eq. (16):

a4 ¼ 3þ 24c4; c4 ¼
a4 � 3

24
(17)

The more standard, “second-order” Hermite model more accu-
rately captures kurtosis by also retaining quadratic terms in c4 (in
both numerator and denominator of Eq. (16)):

a4 ¼ 3þ 24c4 þ 216c2
4; c4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:5ða4 � 3Þ

p
� 1

18
(18)

The effect of skewness is reflected in Eq. (14) through nonzero c3

value. The (second-order) Hermite model uses the c3 value

Fig. 1 Weight functions LnðuÞ contributing to the L-moment
kn 5 E ½LnðUÞ� for a standard normal variable U . Note lesser
weight to extreme outcomes (large juj) for kn than for ordinary
moment E ½Un�.
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c3 ¼
a3

6ð1þ 6c4Þ
¼ a3

4þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:5ða4 � 3Þ

p (19)

Equations (18) and (19), together with Eqs. (14) and (15), form
the basis of the standard, second-order Hermite model.

Most recently, numerical routines are used (e.g., [11]) to obtain
“exact” c3 and c4 values from constrained optimization, minimiz-
ing errors in matching moments while requiring that the Hermite
transformation remains monotonic. (Newton-Raphson techniques
have also been suggested [12] to estimate c3 and c4.) Commonly
these routines yield the specified moments to the tolerance
requested. These are the source of the Hermite results shown here.
Note too (e.g., for spreadsheets) that polynomials have recently
been fit [13] to these exact c3, c4 values:

c3

a3

¼ p1 þ p2a4 þ p3a
2
3 þ p4a

2
4 þ p5a

2
3a4 þ p6a

3
4 þ p7a

4
3

þ p8a
2
3a

2
4 þ p9a

4
4 (20)

c4 ¼ p1 þ p2a4 þ p3a
2
3 þ p4a

2
4 þ p5a

2
3a4 þ p6a

3
4 þ p7a

4
3

þ p8a
2
3a

2
4 þ p9a

4
4 þ p10a

4
3a4 þ p11a

2
3a

3
4 þ p12a

5
4 (21)

Table 1 lists the pi values. Within the region where Eq. (14)
remains monotone—roughly, where a4 � 3þ ð1:25a3Þ2—Eqs.
(20) and (21) yield fitted R2 values of 0.9988 and 0.9994, respec-
tively [13].

Transformation Models 2: L-Hermite Models

We now seek to derive new models, again adopting a cubic
Hermite transformation (Eq. (14)) now calibrated by L-moments.
To calculate L-moments of Eq. (14), it is first useful to rearrange
terms. Regrouping U þ c4ðU3 � 3UÞ as ð1� 3c4ÞU þ c4U3 and
dividing by ð1� 3c4Þ, one finds the equivalent representation

X ¼ mX þ K½U þ bðU2 � 1Þ þ cU3� (22)

The benefit here is that the highest-order term is simplified to U3.
To preserve the variance r2

X, the scaling factor K now becomes

K ¼ rXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2b2 þ 6cþ 15c2
p (23)

In terms of the original coefficients c3 and c4, the new coefficients
are b¼ c3=ð1� 3c4Þ and c¼ c4=ð1� 3c4Þ.

Our goal now is to calibrate Eq. (22); i.e., choose b and c that
yield a specified set of (s3, s4) values. Appendix 1 of [14] shows
that this leads to the results

b ¼ 9:21s3

11:68� 2:5c
; c ¼ c� 1

11:68� 2:5c
; c ¼ s4

s4;Gauss

(24)

in which s4;Gauss¼ 0.1226 (Eq. (13)).

Equations (22)–(24) comprise the L-moment version of the
Hermite model—referred to below as the “L-Hermite” model.
The simplicity of these results is notable. The central moments
ln¼E½ðX � mXÞn� of Eq. (14) yield coupled results: both l3 and
l4 vary with both c3 and c4. This leads to approximate results for
these coefficients (Eqs. (18) and (19)), and hence an analytical
Hermite model that may only approximately match the desired
skewness and kurtosis. In contrast, the L-moments of the Hermite
model decouple: k3 depends only on b in Eq. (22), while k4

depends only on c. The results (Eq. (24)) permit the L-Hermite
model to preserve the L-moment ratios s3 and s4 without
approximation.

Example 1: Symmetric Transformations

We first consider XðtÞ as a symmetric transformation of a stand-
ard normal process UðtÞ:

XðtÞ ¼ gðUðtÞÞ ¼ UðtÞ þ cjUðtÞjm�1UðtÞ; m ¼ 2; 3; 4; ::: (25)

For fluid loads, the quadratic case (m¼ 2) corresponds to the
standard Morison drag load model. Higher m values reflect
higher-order models.

In general, the index m controls the tail behavior of X: jXj
grows like jUjm for large jUj. The coefficient c determines the rel-
ative importance of this nonlinear term; i.e., where in the distribu-
tion tails this term begins to dominate. For given m, the shape
parameter c can be related to either the kurtosis a4 or the L-
kurtosis s4. Such results are derived in appendix 1 of [14].

Our main goal here is to represent any symmetric nonlinear sys-
tem by either its kurtosis a4 or its L-kurtosis s4. It is thus useful to
compare different models, calibrated to have the same fourth
moment or L-moment, to see what variability remains. We hope
this remaining variability to be small; that is, that the fourth
moment goes a long way toward “explaining” the tail behavior of a
nonlinear system, regardless of the precise form of its nonlinearity.

Figures 2 and 3 show that for kurtosis-based models, this is
generally the case. These show the mean upcrossing rate of XðtÞ,
�ðxÞ, for the various transformed Gaussian models in Eq. (25)
with m¼ 2 through 5 (denoted “quadratic” through “quintic”). In
general, for any transformed Gaussian process XðtÞ¼ gðUðtÞÞ we
find

�ðxÞ ¼ �0 exp �u2ðxÞ=2
� �

; uðxÞ ¼ g�1ðxÞ ¼ U�1½FðxÞ� (26)

Here �0 is the upcrossing rate of the median of XðtÞ, and F is the
CDF of XðtÞ. All models in these figures have been calibrated—
that is, their c values chosen—to have a specific kurtosis value:
a4¼ 5 in Fig. 2 and a4¼ 7 in Fig. 3. (Numerical results in these
figures use Eq. (26), and normalize x by its standard deviation rX.

Table 1 Coefficients proposed for Eqs. (20) and (21) in [13]

Coefficients in Eqs. (20) and (21)

Equation (20) Equation (21) Equation (21)

p1 0.1967 �0.0721 p10 1.497� 10�5

p2 �1.646� 10�2 3.176� 10�2 p11 5.457� 10�7

p3 1.809� 10�2 �2.942� 10�2 p12 6.049� 10�9

p4 7.438� 10�4 �1.790� 10�3

p5 �9.209� 10�4 2.348� 10�3

p6 �1.366� 10�5 5.965� 10�5

p7 1.527� 10�4 �6.282� 10�4

p8 1.070� 10�5 �6.355� 10�5

p9 8.823� 10�8 �9.692� 10�7

Fig. 2 Mean upcrossing rates for various transformed Gaussian
models, all calibrated to have kurtosis a4 5 5
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Note also that the cubic model coincides here, by definition, with
the Hermite model.)

As may be expected, these models eventually diverge, and
models of higher order (larger m) have PDFs with broader tails,
and hence higher rates of upcrossings. Nonetheless, by preserving
the fourth moment, the models cluster notably, yielding similar
results to rates of about �ðxÞ=�0¼ 10�3. This is particularly signif-
icant because there are on the order of 1000 cycles in a typical sta-
tionary, 3-hour seastate (number of 10-s waves in 3 hours¼ 1080).
Thus, four-moment models appear here to describe the tails suffi-
ciently for practical purposes of extreme value analysis of marine
structures.

In contrast, models fit here to L-moments do not define the
response tails with comparable accuracy. Figures 4 and 5 show
similar upcrossing rates, now found by preserving the fourth
L-moment s4. Specifically, these results use the values s4¼ 0.185
and 0.220, which are roughly consistent with the cubic model
when a4¼ 5 and 7, respectively. Thus, the results for the cubic
model in Figs. 4 and 5 are similar to those in Figs. 2 and 3.

Most notably, different models with the same s4 yield markedly
different tail behavior, exhibited here at crossing rates of about
�ðxÞ=�0¼ 10�2. Thus, the benefit of L-moments—their tail insen-
sitivity—is also their weakness: model uncertainty here begins to
arise an order of magnitude more frequently—at levels crossed
every 100 cycles rather than 1000—compared to four-moment
Hermite models.

In concluding this example, we consider the expected fatigue
damage E½D� produced by these nonlinear loads. Because E½D� is an
integrated property, one may imagine that L-moment models can
yield greater accuracy in these applications. As shown in the Ap-
pendix, however, L-moment models show similar inconsistencies in

fatigue predictions (Figs. 13 and 14 versus Figs. 11 and 12), again
due to their relative tail insensitivity.

Example 2: Lognormal Models

To test asymmetric cases we consider the lognormal process
XðtÞ for which

XðtÞ ¼ gðUðtÞÞ ¼ x:50 exp rln XUðtÞ½ �; r2
ln X ¼ lnð1þ V2

XÞ (27)

in which x:50 and VX are the median and COV (coefficient of vari-
ation) of XðtÞ. Figures 6 and 7 show results for VX ¼ 0.5 and
VX ¼ 1.0, for which (a3, a4) are (1.63, 8.04) and (4.00, 41.0),
respectively. Findings here are similar to those in example 1.
Even for the extremely non-Gaussian case when VX ¼ 1.0, a four-
moment fit shows good accuracy to about �ðxÞ=�0¼ 10�3. In con-
trast, fits to four L-moments again begin to diverge from exact
results at around �ðxÞ=�0¼ 10�2. (The four-moment fits here use
“exact Hermite” models; i.e., Eq. (14) with c3, c4 chosen to give
exact a3, a4 values.)

Maximum Entropy Models

Finally, we consider another model suggested for non-Gaussian
processes: the “maximum entropy” model [6]. The resulting prob-
ability density of XðtÞ, assuming four moments are known, is of
the form

f ðxÞ ¼ exp �jðxÞ½ �; jðxÞ ¼
X4

n¼0

knxn (28)

Fig. 3 Mean upcrossing rates for various transformed Gaussian
models, all calibrated to have kurtosis a4 5 7

Fig. 4 Mean upcrossing rates for various transformed Gaussian
models, all calibrated to have L-kurtosis s4 5 0.185

Fig. 5 Mean upcrossing rates for various transformed Gaussian
models, all calibrated to have L-kurtosis s4 5 0.220

Fig. 6 Moments versus L-moments fits to a lognormal process
with coefficient of variation VX 5 0.5
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The coefficients k1; :::; k4 are chosen to preserve (or minimize
error in) the four moments. Unit area is achieved through k0.

Most critically, the behavior of Eq. (28) for large x is asymp-
totically given by its highest-order term. Thus, f ðxÞ will ultimately
decay like expð�k4x4Þ as jxj ! 1. This implies that

1. k4 � 0 so that f ðxÞ converges as jxj ! 1, and
2. Because k4 � 0, f ðxÞ will ultimately decay at least as fast as

the Gaussian density.

This makes the model of questionable use for “softening cases”
(a4 > 3), the most common practical case of interest.

Example 1 Revisited. We first revisit example 1, for which we
require that fXðxÞ be symmetric, hence k1¼ k3¼ 0. Because
k4 � 0, Eq. (28) must lead here to a “hardening” non-Gaussian
model (with kurtosis a4 � 3). In fact, in this case Eq. (28) coin-
cides with the exact result for a “Duffing oscillator,” which
includes a cubic hardening spring. Because our example 1 cases
require a4 > 3, there is no maximum entropy solution in these
cases. (Of course, a “softening” model with k4 < 0 can be forced
if Eq. (28) is truncated at a finite upper-bound xmax. However, all
results will then depend upon the user-defined value of xmax,
required to reconcile the inappropriate functional form—harden-
ing in Eq. (28)—with the actual softening behavior.)

Example 2 Revisited. We now revisit the lognormal cases in
example 2. In contrast to example 1, the positive skewness values
here yield negative k3 in Eq. (28), which expands the right tail of
fXðxÞ from the Gaussian model and hence can also give a4 > 3.
However, as noted above we still require positive k4, so that these
cases (and many others) yield ðk3; k4Þ values of opposing signs.
These opposing effects—and the resulting bimodal PDFs—are
clearly shown in Figs. 8 and 9. PDF results begin to diverge from
exact values when fXðxÞ=max½fXðxÞ� has fallen off to about 10�2.
Because fXðxÞ and �ðxÞ are roughly proportional—the proportion-
ality is exact if X and _X are independent—this suggests that maxi-
mum entropy fails at a level similar to that of L-moment models.
These failures, of course, have completely different causes: maxi-
mum entropy fails due to an inappropriate functional form, while
L-moment models fail because their parameters are insufficiently
tail sensitive.

Example 3. Because of its wide study in the literature (e.g.,
[8,9]), we consider a final case in which wind loads are applied to
a 1DOF structure. The structural motion XðtÞ satisfies

€X þ 2fxn
_X þ x2

nX ¼ YðtÞ2 (29)

in which YðtÞ is a normalized wind velocity process, assumed here
to be a Gaussian process. Following the cited references, we

assume here that xn¼ 1.26 rad/s, f¼ 0.30 (including viscous drag),
and the covariance between YðtÞ and Yðtþ sÞ is expð�0:12jsjÞ.
The response moments are then a3¼ 2.7 and a4¼ 14.3, suggesting
notable non-Gaussian behavior.

Figure 10 shows the distribution of X, estimated by simulation,
on normal probability scale. Also shown is a two-moment Gaus-
sian fit, which, as may be expected, dramatically underestimates
upper response fractiles of practical interest. The Hermite model
(with exact four moments) is a marked improvement, showing
good agreement far into the response tails. In contrast, the maxi-
mum entropy model is found inconsistent, due to its ultimate hard-
ening nature noted above. It thus underestimates response fractiles

Fig. 7 Moments versus L-moments fits to a lognormal process
with coefficient of variation VX 5 1.0

Fig. 8 Maximum entropy PDF models for a lognormal process
with coefficient of variation VX 5 0.5

Fig. 9 Maximum entropy PDF models for a lognormal process
with coefficient of variation VX 5 1.0

Fig. 10 Moment-fit versus maximum entropy models of the
wind response of a 1DOF oscillator
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xp systematically for p above 0.999 (exceedance probabilities
below 10�3).

Summary

A range of non-Gaussian models have been surveyed. We first
compare Hermite transformation models based on moments ver-
sus L-moments. While moment-based Hermite models are well-
known, those based on L-moments are newly derived here.

Traditional four-moment models are shown to accurately esti-
mate the response upcrossing rate �ðxÞ to levels of about �ðxÞ/
�0¼ 10�3. (Here �0 is an “average” cycle rate; strictly, the
upcrossing rate of the median of XðtÞ.) In contrast, models fit to
four L-moments are not found to define the response tails with
comparable accuracy. Different models with the same (s3, s4) are
found to begin to diverge at around �ðxÞ=�0¼ 10�2.

The benefit of L-moments—their tail insensitivity—is also their
weakness: model uncertainty here begins to arise an order of mag-
nitude more frequently—at levels crossed every 100 cycles rather
than 1000. Thus, in replacing moments by L-moments in the fit-
ting, one trades statistical uncertainty (in moments) to model
uncertainty (in the model’s tails given its relatively well-predicted
L-moments). Because model uncertainty is relatively more diffi-
cult to quantify, this use of L-moments may not be beneficial.

Four-moment fits based on maximum entropy have also been
considered (Eq. (28)). It is shown that the resulting functional
form is generally inappropriate for softening (a4 > 3) cases, the
situations of most common practical interest. This is because the
maximum entropy functional form yields narrower-than-Gaussian
tails in the upper limit. This mismatch is shown for a wind
response example (Fig. 10), in which maximum entropy models
underpredict exact results beyond about the p¼ 0.999 response
fractile.

Table 2 summarizes the results of Figs. 2–9. It focuses on the
maximum response x3h in a 3-hour seastate. Assuming this seast-
ate comprises 103 cycles, x3h is defined here as �ðx3hÞ/�0¼ 10�3.
For example, Fig. 2 shows that for a polynomial model with
a4¼ 5.0, exact values of x3h range from 5:4rx to 6:2rx for
2 � n � 5. Because the Hermite model predicts 5:8rx, it leads to
ratios of predicted/exact x3h ratios of 5.8/(5.4–6.2) or 0.94–1.07.
The other values in this table are found similarly. The relative ac-
curacy of the Hermite model seems clear.

Appendix: Fatigue Applications

For completeness we compare here fatigue damage estimates
from moment and L-moment models. If Miner’s rule holds and
xðtÞ is narrow band, the expected damage E½D� is proportional to
E½Rb�, the expected bth moment of the stress range R. (Here b is a
material property, which may be on the order of 2 � b � 5 for
welded steels and somewhat higher for some composite compo-
nents. In particular, two-slope S-N curves, with b¼ 3 and 5, are
often used for steel offshore structures.)

If xðtÞ is a standard narrow-band Gaussian process, R has Ray-
leigh distribution with moments

E½Rb� ¼
ð1

0

ð2uÞbu expð�u2=2Þdu ¼ ð2
ffiffiffi
2
p
Þb b

2

� �
! (A1)

If b is not an even integer, ðb=2Þ! should be interpreted as
Cð1þ 0:5bÞ.

We now consider non-Gaussian transformations, in which
xðtÞ¼ g½uðtÞ� in terms of a standard Gaussian process uðtÞ. Again
assuming narrow-band behavior, the symmetric peaks of uðtÞ at
S¼R=2 and �S¼�R=2 are similarly transformed to yield a
stress range

RNG ¼ gðSÞ � gð�SÞ (A2)

Fig. 11 Mean damage rates for various transformed Gaussian
models, all calibrated to have kurtosis a4 5 5

Table 2 Estimated 3-h extreme x3h from different methods divided by exact value. All
results assume mðx3hÞ/m0 5 10�3. Maximum entropy results also assume that mðxÞ and f ðxÞ
are proportional.

Ratio of estimated to exact x3h value

Exact model Nth order polynomial (2 � N � 5) Lognormal

Strength of
nonlinearity

Moderate Strong Moderate Strong
(a4 ¼ 5.0; s4¼ 0.185) (a4¼ 7.0; s4 ¼ 0.220) (COV¼ 0.5) (COV¼ 1.0)

Hermite 0.94–1.07 0.95–1.08 0.98 1.00

L-Hermite 0.65–1.18 0.61–1.25 0.93 0.76

Max entropy No solution available 1.01 0.79

Fig. 12 Mean damage rates for various transformed Gaussian
models, all calibrated to have kurtosis a4 5 7
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With the g function of example 1 (Eq. (25)), the Gaussian result in
Eq. (A1) is replaced by

E½Rb
NG� ¼ E½ð2gðSÞÞb� ¼

ð1
0

½2ðuþ cumÞ�bu expð�u2=2Þdu (A3)

As expected, when c¼ 0 this result reduces to Eq. (A1). More
generally, Eq. (A3) can be evaluated numerically; e.g., transform-
ing to y¼ u2=2 and using Laguerre quadrature.

For integer b, the term ðuþ cumÞb can be expanded as a series,
and each integral term evaluated using Eq. (A1). This has been
done here for 2 � b � 6, and the results are shown in Figs. 11–14.

Specifically, these figures show a correction factor on fatigue
damage over that predicted by a Gaussian model:

E½D�
E½DjxðtÞGaussian� ¼

E½Rb
NG�

ð2
ffiffiffi
2
p

rxÞbðb=2Þ!
(A4)

Again, E½Rb
NG� is found from Eq. (A3), which yields a closed-

form result for integral b. The c values are found as described in
example 1, calibrating Eq. (25) to have the desired a4 or s4 value.

As may be expected from our previous findings, the moment-
based results (Figs. 11 and 12) show little variability across mod-
els, particularly in the range 2 � b � 4. In contrast, knowledge of
L-moment values (Figs. 13 and 14) is not generally sufficient to
accurately predict fatigue in these cases.
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