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ABSTRACT 

Our society is fascinated with risk in many different areas and disciplines. One of the main ways 

to describe and communicate the level of risk is through risk indices, which summarize risk 

using numbers or categories such as words, letters, or colors. These indices are used to 

communicate risks to the public, understand how risk is changing over time, compare among 

different risks, and support decision making. This paper emphasizes the importance of describing 

risk with a probability distribution, developing a numerical risk measure that summarizes the 

probability distribution, and finally translating the risk measure to an index. Measuring the risk is 

the most difficult part and requires the analyst to summarize a probability distribution into one or 

possibly a few numbers. The risk measure can then be transformed to a numerical or categorical 

index. We apply the method outlined in this paper to construct a risk index that compares the risk 

of fatalities in aviation and highway transportation.  

 

Keywords: risk measure, risk index, transportation, risk communication 

 

1. INTRODUCTION 

 Our society is preoccupied with the subject of risk. From financial risk to the risk of a 

terrorist attack to the risk of disease, individuals want to understand how a disastrous event may 

affect them and how they can avoid it. With so many different types of risks present in modern 

society, risk indices have increasingly become an important way to communicate the seriousness 

of a risk. A search for the term “risk index” in Google Scholar returns 980 results for the year 

2001 compared to 4,460 results for the year 2011 even though a search for the term “risk” returns 

more than three times as many results for 2001 as for 2011. It would appear that risk indices are 
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outpacing the risks that they measure. The increasing popularity of risk indices demands a 

careful study of risk indices and the best ways to construct a risk index. 

Three well-known examples of risk indices, which summarize the risk of an event via a 

single number or category, demonstrate their wide variety. The American Society of Civil 

Engineers
(1)

 uses a letter grade to rate the quality of U.S. infrastructure; value-at-risk is a single 

number that describes how much a portfolio could lose at a specified probability level; and the 

now-defunct Homeland Security Advisory System used a color and word categorization to 

describe the national security threat level. First, each index summarizes risk differently: one uses 

letters, another uses real numbers, and the third uses colors with word descriptors. Second, each 

risk index covers a different discipline: engineering, financial, and security. Third, the purposes 

of the indices vary: the letter grades are used to motivate investment and attention on U.S. 

infrastructure, an investment firm usually calculates value-at-risk for its own internal benefit, and 

the Homeland Security Advisory System was designed to communicate the risk of terrorism to 

an entire nation.  

As these three examples show, risk indices can have varied purposes. A risk index 

usually attempts to fulfill at least one of the following objectives.  

 Describe risk accurately 

 Communicate the level of risk 

 Compare among different risks 

 Identify the most serious risk  

 Translate how risk changes over time 

 Measure the effectiveness of risk-reduction strategies 

 Recommend actions for a given level of risk 
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Despite the different goals, audiences, and means of constructing risk indices, this paper offers 

general recommendations to aid in the construction of a risk index for any discipline. We argue 

that the specific goals and intended audience of a risk index should determine the final form of 

the index. Because risk indices summarize risks into a single metric, careful decision making 

where risk is present should eschew the index in favor of a more complete description of risk. As 

Cox
(2)

 demonstrates, selecting among different risk reduction strategies should rely on both the 

cost and effectiveness of each strategy.   

 In order to arrive at guidelines for constructing a risk index, Section 2 first defines a risk 

index and distinguishes it from a risk measure. An analyst who wants to create a risk index 

should first calculate a numerical risk measure and second translate that measure to an index. 

Section 3 categorizes the different choices for a numerical risk measure and explores the 

possibility of creating a measure composed of multiple numbers. We discuss some of the 

advantages and disadvantages of each type of risk measure. Section 4 develops options for how 

an analyst can use the numerical measure to create a risk index. Section 5 applies the variety of 

risk measures and indices to an illustrative example focusing on the risk of transportation. The 

conclusion describes how the above objectives can help determine the most appropriate type of 

risk index. 

 

2. STEPS TO CREATING A RISK INDEX 

 The term risk index is frequently used but rarely defined. In economics, where the subject 

of indices has been explored both theoretically and practically, indices are “statistical summaries 

used to compare different situations, times, conditions, or objects.”
(3)

 Similarly, a risk index 

summarizes the risk of an event or situation by using numbers or categorical values for the 
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purpose of identifying and comparing risks. Summarizing information appeals to all of us who 

want to feel informed but do not have time to fully digest the entirety of the information. 

Before exploring how risk can be summarized, one must understand the most complete 

way to describe risk. In the tradition of probabilistic risk analysis, risk is best defined as a 

combination of the probability of an unwanted event occurring and the severity or consequences 

if that event occurs.
(4,5)

 Fully describing risk involves calculating a probability distribution over 

the range of possible consequences for an event. A risk index is therefore a summary of the 

probability distribution over the range of possible consequences. 

 The terms risk measure and risk index are often used synonymously, and both attempt to 

summarize risk through a single value. This paper makes an important distinction between the 

two. A risk measure is a numerical summary of risk, and that number is a real number. As will be 

discussed later, we also allow the measure to be a vector of real numbers. A risk index can also 

be a real number, but it is often composed of ordinal numbers, letters, words, or colors, thus 

widening the means of communicating risk to the user. We view risk measures to be a subset of 

risk indices. 

To construct a risk index, an analyst should first develop a probability distribution over 

the range of consequences that fully describe the risk of an event, investment, or project. Next, 

the analyst should develop a numerical measure that accurately summarizes the probability 

distribution. Finally, the risk measure can be translated to a different scale (like a color or ordinal 

number) to communicate the risk to a larger audience. Many experts
(6,7,8,9)

 have described how to 

conduct probabilistic risk analysis, and this paper focuses on the last two steps. The next section 

discusses and comments on some of the commonly used approaches for calculating a risk 

measure. 
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3. CHOICES FOR RISK MEASURES  

 We classify the many different risk measures in use today into four general categories: 

moments of a probability distribution, quantiles of a distribution, disutility functions, and 

combined factors. Each of these risk measures has positive and negative aspects. We also discuss 

how a risk measure can also be composed of multiple numbers such as the first two moments of 

a distribution or three different quantiles.  

This paper uses a random variable 𝑋 to represent the consequences of an event whose 

risk we are interested in measuring. 𝑋 < 0 implies negative or adverse consequences (e.g., 

money lost on an investment, deaths resulting from an event); 𝑋 > 0 implies positive 

consequences; and 𝑥1 < 𝑥2 indicates that 𝑥1 has worse consequences than 𝑥2. 

 

3.1. Moments of a Distribution 

 In statistics, moments are the most accurate ways to summarize a probability distribution, 

and they can serve as good measures of risk. The mean value is perhaps the most frequently used 

risk measure, and the risk of an event may be stated as the mean or expected value.
(2,10,11)

 

Standard deviation can also serve as a measure of risk, especially in finance, and the greater 

variability, the more risk to which an individual is exposed. Relying on just one of these 

measures can ignore important information. The mean fails to convey any information about the 

spread of the distribution, and only relying on standard deviation as a risk measure is problematic 

because it gives no indication of the central tendency. Using standard deviation as a measure of 

risk could lead to situations where a decision maker prefers a certain outcome of no gain or loss 

to a highly variable situation where only positive outcomes are possible.
(12)
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A risk measure may combine the first two moments into a single number in order to 

incorporate both the location and spread of the probability distribution. Based on Vrijling et 

al.,
(13)

 we present a measure 𝑀(𝑋) in Eq. (1) that is a weighted sum of the mean 𝜇(𝑋) and 

standard deviation 𝜎(𝑋) where 𝑘 is a risk aversion parameter. Because the risk measure is a 

function of the negative of the mean, the measure gets larger as consequences worsen. 

𝑀(𝑋) = − 𝜇(𝑋) + 𝑘𝜎(𝑋) (1) 

Risk neutrality implies 𝑘 = 0, and risk aversion implies that 𝑘 > 0. The 𝑘 parameter can be 

tailored to reflect an individual’s willingness to trade off between the mean and the standard 

deviation.  

 

3.2. Quantiles of a Distribution 

 Risk analysis often focuses on extreme events, which are low-probability, high-

consequence events. The quantile of a distribution can measure these high-consequence events, 

where the q-quantile is the value of the consequences 𝑥 at probability 𝑞 such that 𝑞 = 𝑃(𝑋 ≤ 𝑥). 

Perhaps the best example of using a quantile as a risk measure is value-at-risk (VAR). With 

origins dating to the early twentieth century but popularized in the 1990s, VAR is defined as the 

worst loss that might be expected from holding a security or portfolio given a specified level of 

probability.
(14)

 VAR does not, however, describe the maximum possible loss or take into account 

losses that exceed VAR. Because VAR is not a convex function, it does not necessarily 

encourage diversification of risky investments, which is a desirable characteristic of financial 

risk measures.
(15,16)

  

Conditional value-at-risk (CVAR) calculates the expected value given that losses exceed 

VAR, and it better captures the extreme tails and encourages portfolio diversification.
(17,18)
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Although CVAR was introduced as remains most popular as a financial risk measure, it has also 

been proposed to measure the risk of transporting hazardous materials,
(19)

 industrial production 

under uncertain demand,
(20)

 and wait times at hospitals.
(21)

 This measure has been suggested as a 

useful tool for analyzing engineering risk as part of the partitioned multiobjective risk method 

which seeks to find Pareto optimal sets of alternatives based on different measures of risk.
(9,22)

 

 Although measures based on a quantile of a distribution can describe the risk of extreme 

events to a greater degree than mean or variance, they do not account for risks that are less 

extreme than the chosen quantile. Two distributions could be identical for all values less than the 

value corresponding to 𝑞 but differ for values greater than VAR, and a risk measure based on 

quantiles would be the same for these two distributions. Using a quantile of a distribution as a 

risk measure seems most suitable if it is used in concert with a measure representing the average 

risk or if the analyst is primarily concerned with extreme events and can ignore less extreme risk 

scenarios.  

 

3.3. Disutility Functions 

The third type of risk measure is based on disutility functions. Because utility functions 

provide a solid foundation for making decisions under uncertainty, measuring risk with these 

functions is a natural extension.
(23,24)

 Expected disutility is given in Eq. (2) where 𝑉(𝑥) is the 

disutility function and 𝑓𝑋(𝑥) is a probability density function over the potential outcomes.  

𝑀(𝑋) = ∫ 𝑉(𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
 (2) 

Disutility functions are decreasing functions where one of the parameters usually represents an 

individual’s tolerance for (or willingness to accept) risk.
(25)

 If the risk measure is designed to 

only capture potential losses (downside risk), the upper limit of integration should be zero 
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instead of positive infinity. Risk measures based on a disutility or utility function have been 

advocated in finance because these functions encourage portfolio diversification,
(18)

 provide a 

consistent measure of risk over time,
(26,27)

 and can be modified to incorporate uncertainty in the 

probability distribution for an investment.
(28)

   

Although many different disutility functions may be appropriate, this paper will focus on 

exponential disutility and the α-t model. The exponential disutility function is given in Eq. (3) 

where 𝛾 reflects an individual’s tolerance for risk. 

If risk averse,  𝑉(𝑥) = 𝑒−𝛾𝑥 − 1,  γ > 0 

If risk neutral, 𝑉(𝑥) = −𝑥                                                     (3) 

If risk seeking, 𝑉(𝑥) = 1 − 𝑒−𝛾𝑥,  γ < 0  

All of these functions are positive when 𝑥 < 0, and the disutility function equals 0 if 𝑥 = 0.  

Another possible disutility function defines risk as a failure to meet a target outcome or 

objective. Fishburn
(29)

 generalized this viewpoint in the α-t model, which is defined in Eq. (4) 

where 𝑡 is a fixed upper bound so that only consequences below this upper bound are included in 

the risk measure, and 𝛼 characterizes the risk attitude. 

𝑀(𝑋) = ∫ (𝑡 − 𝑥)𝛼𝑓𝑋(𝑥)𝑑𝑥
𝑡

−∞
 (4) 

The parameter 𝛼 < 1 implies risk seeking, 𝛼 = 1 implies risk neutrality, and 𝛼 > 1 implies risk 

aversion. A typical value for 𝑡 is 0, which indicates that only outcomes where 𝑥 < 0 will be 

included in the risk measure.  

 Both the exponential disutility and the α-t model can be transformed so that the units of 

the risk measure are in the same units as the consequences x. This can be accomplished by taking 

the inverse function of the disutility function: for exponential disutility, 𝑉−1(𝑀(𝑋)) where 

𝑉−1(∙) is the inverse function of Eq. (3) and 𝑡 − 𝑀(𝑋)1 𝛼⁄  for the α-t model. 
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 Estimating the risk attitude parameter poses the most difficult obstacle for using a risk 

measure based on disutility. If multiple individuals are going to use the risk measure, as is 

usually the case, determining a single risk attitude parameter that can be used for the entire group 

may be impossible. Even if everybody’s risk attitude could be assessed, individuals have 

different tolerances for risk,
(30,31)

 and one measure will likely not accurately reflect each 

individual’s attitude toward risk.  

 

3.4. Functions of Indicators or Factors 

 The fourth category of risk measures are those based on factors or indicators which are 

aggregated together. Several factors that are related to the risk of the event are aggregated 

together, often through a weighted linear combination of the factors.
(32)

 Some risk measures or 

indices based on factors describe the risk of earthquakes,
(33)

 hurricanes,
(34)

 climate change,
(35)

 and 

terrorist activity.
(36)

   

 One reason indices or measures based on aggregating different factors are popular is 

because these factors or indicators can usually be measured or easily assessed from experts. 

When data are available, regression can be deployed to calculate the weighting parameters. 

Aggregating these factors through a functional form makes the measure appear objective, and the 

challenging task of estimating a probability distribution is usually not necessary.   

As deterministic functions, these measures frequently fail to account for the uncertainty 

that is inherent in risk. Even when they incorporate uncertainty, they treat uncertainty or the 

frequency of the event as another indicator or factor rather than using a true probability 

distribution. For example, failure mode and effect analysis (FMEA), a risk measure used 

frequently in industry to identify points of failure in a process or system, measures the frequency 
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of a problem, the likelihood the problem will not be detected, and the severity on ten-point 

scales. The risk priority number is calculated as the product of the three factors. As Gilchrist
(37)

 

and Ben-Daya and Raouf
(38)

 discuss, this method can generate some serious inconsistencies. 

FMEA assumes each factor is linear with respect to the risk priority number, which may not be 

the case. According to FMEA, if severity and frequency have the same score on the ten-point 

scale, reducing the severity by one point is equivalent to reducing the frequency by one point. 

However, if frequency were measured with probability and severity were measured with a real 

quantity like cost, reducing either frequency or severity might be a much better risk-reduction 

strategy.  

 

3.5. Risk Measures of Multiple Values 

 Using a risk measure composed of two or three values conveys more information than a 

measure based on a single value. A risk measure based on the moments of the distribution can 

include both the mean and standard deviation of the probability distribution. Investment science 

has traditionally used mean-variance analysis to evaluate and compare different investments. 

This measure conveys both the location and the spread of the distribution, and the closer the 

distribution is to a normal distribution, the more the mean and standard deviation fully describe 

the distribution. 

In order to emphasize extreme events without ignoring less extreme scenarios, a three-

number measure may be composed of different quantiles, like the 0.05, 0.50, and 0.95 quantiles. 

Such a description could communicate a fairly accurate picture of the probability distribution. 

People interested could compare the risks of two different events on a quantile-by-quantile 

basis.
(39)
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 Because the major difficulty with a disutility-based measure is determining a risk attitude 

parameter appropriate for several individuals, a risk measure could be composed of multiple 

values, each of which corresponds to a different risk attitude. For example, one value could be 

expected disutility for a moderately risk seeking person, another value for a risk neutral person, 

and the final value for a moderately risk averse person. A person using this risk measure could 

use the measure that best corresponds to his or her risk preference.  

 One difficulty with using a risk measure composed of multiple values is that the measure 

does not instruct a user how to rank or compare risks. For example, if a risk measure is 

composed of the mean and standard deviation, anyone using the measure must still decide 

whether the mean or standard deviation is more important. If the measure should determine that 

one event carries more risk by weighting the importance of the standard deviation vis-à-vis the 

mean, the risk measure in Eq. (1) provides an appropriate option. Alternatively, an analyst could 

present the two- or three-value risk measure and realize that different people will make different 

conclusions about the riskiness of the event based on their own beliefs. 

Despite the ability to communicate more information with multiple values, most risk 

measures appear to be single value. It is unclear as to why a single-value measure might be 

preferred: because analysts prefer to summarize their research into a single value or because 

users of these measures want to interpret a single value. We encourage analysts to think more 

seriously about whether a risk measure composed of multiple values better meets the goals 

behind the research.  

 

4. FROM A RISK MEASURE TO A RISK INDEX 

After choosing a risk measure, the analyst may want to transform the measure to a risk 
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index. As this paper has defined a risk measure and risk index, a risk measure can be considered 

a risk index without any further calculations or operations. However, transforming the scale of 

the risk measure may help facilitate a better understanding of the index. For example, a value 

such as 20.2 might be difficult to interpret, but if that measure was transformed to a value such as 

80 on a scale from 0 to 100, it is easier to understand that the number represents a serious risk. If 

a measure is composed of multiple values, each value could be mapped to the new scale. 

Whether a single or multiple-value measure is used, the new scale can be composed of 

continuous real numbers (a numerical index) or discrete categories or numbers (a categorical 

index). 

 

4.1. Numerical Index 

A continuous numerical scale is appropriate if the risk index is going to be used to 

compare different risks that are quite similar or to see how risk is changing over time because 

such a scale reveals subtle changes and differences. If decision makers are going to use the 

measurement or index as a basis for decisions, a numerical scale is preferable to a categorical 

scale because the numerical scale can provide greater detail and more levels of differentiation 

than a general category. 

A 100-point or 10-point scale is probably the most natural type of scale for a numerical 

index, as humankind has relied on a decimal numerical system for millennia. A linear 

transformation of the risk measure to a new scale requires identifying the maximum and 

minimum possible values of the risk measure—𝑀𝑚𝑎𝑥 and 𝑀𝑚𝑖𝑛—which correspond to 0 and 

100 on the 100-point scale. Eq. (5) demonstrates how the risk measure can be mapped to a 100-

point risk index 𝐼(𝑋).  
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𝐼(𝑋) =
𝑀(𝑋) − 𝑀𝑚𝑖𝑛

𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛
∗ 100 (5) 

Determining a value for 𝑀𝑚𝑎𝑥 presents a greater challenge than selecting 𝑀𝑚𝑖𝑛, which 

will usually equal 0. One could choose a value for 𝑀𝑚𝑎𝑥 that represents the minimum value of 

risk that is considered unacceptable. Some governmental agencies have developed thresholds for 

individual fatality risks
(40)

 which can help guide the selection of 𝑀𝑚𝑎𝑥.  

Such a numerical risk index may raise questions about whether the intervals between 

numbers on the index have any meaning. For example, if one event has a value of 20 on the risk 

index and another event has a value of 40, is the latter twice as risky as the former? Does a 

difference of five between two values mean the same thing whether or not the values are in the 

twenties compared with whether the scores are in the eighties? 

These questions can be answered by investigating if a risk index has the following 

mathematical properties: positive homogeneous, additive, and translation invariant. An index 

with positive homogeneity means that if all the consequences worsen by a factor of 𝜆 > 0, the 

index number is multiplied by 𝜆, as Eq. (6) shows. 

𝐼(𝜆𝑋) = 𝜆𝐼(𝑋) (6) 

Positive homogeneity implies that an event with an index value of 40 is twice as risky as an 

event with an index value of 20. If 𝑀𝑚𝑖𝑛 = 0 and the risk measure is positive homogeneous, the 

numerical index obeys this property. 

An additive index implies that if two events are combined, the risk of these two events 

equals the sum of the risks of each event, as shown in Eq. (7) where 𝑋 and 𝑌 are random 

variables representing two events. 

𝐼(𝑋 + 𝑌) = 𝐼(𝑋) + 𝐼(𝑌) (7) 

For the risk index to be additive, 𝑀𝑚𝑖𝑛 must equal 0. The appealing feature of this property is 
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that an organization can separately measure multiple risks and add the risks together to obtain a 

numerical measure of the organization’s risk. 

 Finally, a translation invariant index means that improving the consequences by some 

real number 𝛽, the riskiness of the event decreases by that same amount, as given in Eq. (8).  

𝐼(𝑋 + 𝛽) = 𝐼(𝑋) − 𝛽 (8) 

A translation invariant risk index means that the numerical difference between two index values 

can be interpreted using the units used to measure the consequences. If the risk measure is 

translation invariant, i.e., if 𝑀(𝑋 + 𝛽) = 𝑀(𝑋) − 𝛽, mapping the measure to a 100-point scale 

as shown in Eq. (5) implies the relationship in Eq. (9). 

𝐼(𝑋) − 𝐼(𝑋 + 𝛽) =
100𝛽

𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛
 (9) 

Thus, the index is translation invariant if 𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛 = 100 and the risk measure is 

translation invariant. The first condition that 𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛 = 100 seems unlikely. If the risk 

measure is translation invariant but the first condition is not met, the difference between two 

values on the index can still be used for comparisons among index values. For example, a 

difference of five between two scores means the same thing whether the scores are in the 

twenties or the eighties. 

 The mean value is the only risk measure considered that satisfies the positive 

homogeneity, additive, and translation invariant properties. VAR, CVAR, and the measure 

combining mean and standard deviation as in Eq. (1) are positive homogeneous and translation 

invariant
(18)

 but not additive. Standard deviation and the α-t model are positive homogeneous but 

neither translation invariant nor additive. Exponential disutility is additive if 𝑃(𝑋 ≤ 0) =

𝑃(𝑌 ≤ 0) = 1 and 𝑋 and 𝑌 are independent, and it is translation invariant but not positive 

homogeneous. (For any of these properties to hold for the two disutility models, the inverse 
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function of the disutility model must be used.)  

 The type of risk measure chosen may be influenced by whether the analyst or decision 

maker believes it is more important that the risk index should have any of these properties. If 

separate risks are going to be combined into an overall risk measure, the additive property is 

necessary. If risks are going to be compared against each other, a positive homogeneous measure 

might be better because saying something like one risk is twice as risky as another event has a 

clear mathematical meaning. If all three properties are important, using the mean as the measure 

might be the best choice. 

  

4.2. Categorical Index 

If the analyst is uncomfortable about communicating specific numbers or is worried that 

these numbers might give an inaccurate impression, he or she might want to transform the 

measure to a categorical rather than a numerical risk index. A categorical risk index is most 

appropriate when the goal is to give people a general sense of the level of risk. Especially if a 

large number of people are going to be using a risk index, using categories can facilitate broader 

communication because categories can be understood more easily than a numerical scale.  

A categorical risk index provides an ordering relationship among the categories, which 

can be composed of numbers, words, letters, or colors. Using words as categories like “severe” 

or “moderate” has an explicit communication purpose, and using letters implies a grading system 

in the United States. Another popular type of risk index is a color-coded chart. If a risk is 

classified in the “red” category, it sends a clear signal that the risk is very serious and may 

automatically trigger mitigating actions.   

Regardless of the categorical scale chosen, the index should still rely on a careful analysis 
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of the risks, and the level of a category should be based on a numerical risk measure. After 

determining the type of category, the analyst would choose the number of categories. A general 

rule of thumb for determining how many categories is to minimize the number of categories but 

have enough categories to so that distinct risks are categorized differently. 

 The next step is to decide how to translate the numerical risk measure to a categorical 

scale. The simplest method is to divide the range of measures into equally divided intervals. 

Another method is to choose the categories based on the actual calculated risk measures. For 

example, 10 different events may have the following measures: 2.0, 2.5, 6.4, 7.0, 7.3, 9.2, 10.0, 

11.0, 13.0, and 13.5. The analyst may want to put the first two events in the same risk category, 

the next three events in another category, the next three events in one or possibly two categories, 

and the final two events in another category.  

Another method of creating categories is based on where a distinction between categories 

will most likely be noticed. Gustav Fechner, a German psychologist, postulated the intensity of a 

sensation increases as the logarithm of the stimulus increases, and several risk scales—including 

the Richter scale for earthquakes and the Torino scale for near-Earth objects like asteroids—use 

a logarithmic scale.
(41)

 Dividing the categories according to the base-10 logarithm of the risk 

measure (i.e., 10
-2

, 10
-1

, 0, 10) may follow most closely with how people perceive changing 

intensities.
(42)

 

 One benefit of using a categorical scale is that recommended actions can be attached to 

each category. If the risk falls into a certain category, the public can be advised to take certain 

actions. For example, the National Weather Service issues tornado watches and warnings. Each 

advisory has a specific meaning and carries recommendations for people who receive a watch or 

a warning.
(43)

 Because these advisories have been used for a long time and are issued frequently 
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in areas where tornadoes appear, people understand what these advisories mean. A person 

subconsciously attaches his or her own risk attitude to these advisories when deciding whether to 

follow the recommended actions.  

 

5. ILLUSTRATIVE EXAMPLE: TRANSPORTATION RISK 

An illustrative example comparing the risk of fatal accidents between aviation and highway 

demonstrates the construction and interpretation of risk measures and indices. Approximately 

35,000 people die in transportation-related incidents in the United States each year, and the vast 

majority of fatalities result from accidents on the road.
(44)

 Whether driving or flying is safer 

depends on the assumptions used to calculate the probability of a fatal accident.
(45,46)

 

Communicating the risk of fatalities of different transportation alternatives may help people 

make more informed choices, and policy makers are interested in reducing transportation-related 

fatalities.
(47,48,49,50)

 Risk measures and indices for aviation and highway risk can inform both the 

general public and policy makers. These indices could satisfy several purposes: to inform the 

public about the relative risk of each mode of transportation, to understand if one mode is 

becoming safer or more dangerous over time, and to help determine if additional safety measures 

are needed.  

Consequences of a highway or aviation incident can include fatalities, injured persons, 

and the monetary cost of accidents. Because our interest is to demonstrate how consequences can 

be incorporated into a risk measure and index as opposed to generating a complete picture of 

transportation risk, the consequences in this example are composed solely of fatalities. Aviation 

risk is divided into two categories based on U.S. Federal Aviation Regulations: air carriers or 

commercial aviation, and air taxi and commuters or on-demand and chartered flights. The data 
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reveal a large difference in the risk of fatalities between these two categories of aviation. Most of 

the flying public use air carriers, and the risk of a fatal accident from an air carrier may be 

independent of the fatal risk from air taxis and commuters. The number of fatalities from each 

fatal accident in aviation and highway travel in the United States is recorded from 2005 through 

2009 in Tables I – III. The data are derived from the Bureau of Transportation Statistics,
(51,52,53,54)

 

the National Transportation Safety Board,
(55)

 and the National Highway Traffic Safety 

Administration.
(56)

 

 

Table I. Fatalities from air carrier incidents in the U.S., 2005-2009. 

Fatalities 

per incident 

Count 

of incidents 

Count 

per million miles 

1 4 0.0000983 

20 1 0.0000250 

49 1 0.0000250 

50 1 0.0000250 

 

  

This is the peer reviewed version of the following article: Risk Analysis v.34, Issue 12 (2014): 2143-2162, which has been 
published in final form at  doi: 10.1111/risa.12220. This article may be used for non-commercial purposes 

 in accordance with Wiley Terms and Conditions for self-archiving.



 20 

Table II. Fatalities from air taxi and commuter incidents in the U.S., 2005-2009. 

Fatalities 

per incident 

Count 

of incidents 

Count 

per million miles 

1 18 0.0724 

2 14 0.0563 

3 7 0.0282 

4 7 0.0282 

5 4 0.0161 

6 2 0.00843 

7 2 0.00843 

8 2 0.00843 

9 1 0.00402 

 

Table III. Fatalities from highway incidents in the U.S., 2005-2009. 

Fatalities 

per incident 

Count 

of incidents 

Count 

per million miles 

1 165,614 0.0111 

2 12,177 0.000814 

3 1,858 0.000124 

4 509 0.0000340 

5 144 0.00000962 

6 38 0.00000254 

7 14 0.000000935 

8 5 0.000000334 

9 4 0.000000267 

10 2 0.000000134 

11 1 0.0000000668 

12 1 0.0000000668 

17 1 0.0000000668 

23 1 0.0000000668 

 

 We assume that the data perfectly represent the probabilities for fatalities per incident and 

that the number of incidents per one million miles equals the probability of an incident per one 

million miles. In reality, there is certainly a non-zero probability that an air carrier incident could 

result in two, three, or even several hundred fatalities.  

 The different formulas discussed in Section 3 are used to measure the risk of fatalities for 

the three different transportation modes. Table IV depicts the mean, standard deviation, VAR for 

two different quantiles, and CVAR. Figure 1 displays risk measures using Eq. (1), which 
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combines the mean and standard deviation into a single risk measure, for different values of 𝑘. 

Figures 2 and 3 plot risk measures for exponential disutility and the α-t model (where 𝑡 = 0) for 

different risk attitudes. The risk measure for the exponential disutility function and the α-t model 

are transformed by taking the inverse of 𝑉(𝑥) so that the measure is in units of fatalities. If 

𝛼 < 1, raising 𝑀(𝑋) to the power 1 𝛼⁄   results in an extremely small number. Consequently, the 

risk measure for the α-t model is not in units of fatalities for a risk seeking attitude. 

 

Table IV. Summary risk measures for transportation 

 
Mean 

Standard 

deviation 

VAR CVAR 

 𝑞 = 0.05 𝑞 = 0.01 𝑞 = 0.05 𝑞 = 0.01 

Air carrier 0.0037 0.36 0 0 0.061 0.31 

Air taxi and 

commuter 
0.67 1.57 4 8 6.17 8.40 

Highway 0.013 0.13 0 1 0.27 1.12 

 

 

Fig. 1. Risk measure as a weighted sum between the mean and standard deviation as given in Eq. (1). 
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Fig. 2. Risk measure using an exponential disutility function. 

 

Fig. 3. Risk measure using the α-t model where 𝒕 = 𝟎. 
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Air taxi and commuter carries the largest risk of fatalities according to all the risk 

measures under consideration. If the mean (or a risk neutral attitude) is used as a risk measure, 

highway transportation carries more risk than air carrier transportation. The mean number of 

deaths from highway transportation is 3.5 times greater than the mean number of deaths for air 

carrier transportation. VAR and CVAR, both of which attempt to measure extreme values in the 

tails of the probability distributions, also produce risk measures in which highway carries more 

risk than air carriers.  

The risk of fatalities from highway transportation also exceeds that from air carrier travel 

for moderate risk averse attitudes (Figures 2 and 3), but as risk aversion increases, air carriers 

become riskier than highway. Because the probability of 49 or 50 fatalities is non-zero for air 

carriers, this mode of transportation has a larger standard deviation than highway. The standard 

deviations for both modes of transportation are much larger than their respective means, and 

putting a small amount of weight (𝑘 ≥ 0.1) on the standard deviation in measure in Eq. (1) 

changes the ranking of these two risks. Similarly, if 𝛾 ≥ 0.055 in the exponential disutility or if 

𝛼 ≥ 1.45 in the α-t model, air carrier risk exceeds highway risk. The larger values for 𝛾 and 𝛼 

emphasize crashes with scores of fatalities, which have occurred with air carriers. 

Whether a user interested in transportation fatalities would exhibit risk aversion depends 

on the goal of the risk measure and the user’s preferences. If the goal is to help inform policy 

makers about reducing transportation fatalities, any risk attitude may be justified. Debate exists 

within the decision and risk analysis literature over the appropriate risk attitude for fatalities in a 

public policy context.
(57,58,59)

 Many risk assessments of potential fatalities assume moderate risk 

aversion.
(60,61,62)

 People tend to prefer a situation with a large probability of a small number of 
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fatalities to one with a smaller probability of a larger number of fatalities even if the expected 

number of fatalities is identical in both situations.
(63,64)

 However, Slovic et al.
(58)

 question the risk 

aversion assumption due to an experiment in which people chose to reduce the number of single-

fatality incidents rather than reduce the probability of a catastrophic incident with a large number 

of fatalities. Another study
(65)

 revealed that people may exhibit both risk seeking and risk averse 

attitudes, depending on how the situation is framed. Because incidents with a large number of 

fatalities receive more media and public attention, a policy maker may want to focus on 

minimizing the number of accidents with many fatalities.  

 The risk measure may also be used to inform an individual whether he or she is more 

likely to die traveling in an airplane or in a motor vehicle. For this purpose, the probability of a 

fatal incident is the best measure, which corresponds to 𝛾 = −∞ and 𝛼 = 0. As seen in Figure 3, 

the probability of a fatal incident per one million miles is 0.23 for air taxi and commuter, 0.012 

for highway, and 0.000175 for air carriers. Ceteris paribus, an individual should travel with air 

carriers to minimize his or her chances of being killed while traveling. 

Translating the above risk measures to a different numerical scale may help with 

communication and give people a more intuitive sense of risk. A 100-point numerical scale is 

created where a value of 0 on the scale is equivalent to no fatalities (𝑀𝑚𝑖𝑛 = 0) and a value of 

100 is equivalent to exactly one fatality per one million miles (𝑀𝑚𝑎𝑥 = 1). Table V depicts risk 

indices using this scale for the measures based on the mean values, probabilities of a fatal 

incident, exponential disutility where 𝛾 = 0.05, and α-t model where 𝛼 = 1.25. (Decimals are 

rounded to the nearest integer for these four indices.) The logarithmic index in the last column of 

Table V uses a different transformation and will be analyzed shortly 
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Table V. Transportation risk index 

 100-point scale 

Logarithmic 

10-point scale 

 

Mean 

Probability 

of fatal 

incident 

Exponential 

disutility 

𝛾 = 0.05  

α-t model 

𝛼 = 1.25 

Air carrier 0 0 1 2 7.5 

Air taxi and commuter 67 23 73 95 9.8 

Highway 1 1 1 3 8.1 

 

The severity of the risk as communicated by the index differs according to the risk 

measure. The index value of 95 based on the risk averse α-t model makes air taxi and commuter 

risk appear extremely severe, but the index value of 23 based on the probability of a fatal 

incident makes the risk appear much more acceptable. When compared with air taxi and 

commuter, the indices for air carrier and highway are much less severe, and the air carrier index 

is zero or close to zero for indices based on the mean, probability of a fatal incident, exponential 

disutility, and the α-t model. 

The logarithmic index is the most unique index depicted in Table V. This index is 

calculated by adding 10 to the base-10 logarithm of the expected number of fatalities. Thus, one 

fatality per one million miles corresponds to an index value of 10, and 10
-10

 expected fatalities 

corresponds to 0. (If 10
-10

 expected fatalities is too small to serve as an effective lower bound for 

the index, the base of the logarithm can be changed to reflect a different lower bound.) Taking 

the logarithm of the expected values as opposed to linear scaling—as in the other indices—

compresses the differences between the expected number of fatalities. The risks of fatalities from 

each of the three modes of transportation appear more similar with a logarithmic index, but this 

index may more accurately reflect how people naturally perceive the differences among these 

risks.
(66)

  

 The analyst or the decision maker needs to determine which index best serves the 
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objective. If the goal is to inform the public about the risk of each mode of transportation, the 

risk index based on the mean or probability of a fatal incident or the logarithmic index may be 

most appropriate. An index based on either of the disutility functions or a measure involving 

CVAR may best communicate how risk is changing over time to a policy maker that wants to 

emphasize incidents with a large number of fatalities. One of the risk measures from Table IV 

(probably the mean or a measure composed of two or three values) can help a decision maker 

identify if more safety measures are needed for one of the transportation modes; however, that 

decision should also incorporate the cost and effectiveness of the proposed safety measure.
(2) 

 

6. CONCLUSION 

This paper has explored the different uses and types of risk indices and measures. We 

argue that a risk index should be based on a numerical analysis of the risk using probabilities and 

consequences. A risk measure summarizes the probability distribution and can be categorized 

into one of four types: moments, quantiles, disutility functions, and weighted indicators or 

factors. Risk measures can also be composed of two or three values, and decision makers who 

want to rely on risk measures should consider measure composed of multiple values. 

Once the risk measure has been calculated, the analyst can map that measure to a 

numerical or categorical index, or the measure itself can serve as a risk index. Recall the list of 

objectives for risk indices outlined in the introduction. The most important goals for a situation 

should determine the type and structure of the risk index. If the most important goal is to 

describe the risk of an event in the most accurate way possible, the analyst should use the 

probability distribution or rely on a measure with multiple numbers. If a single number is 

desired, using a disutility function that incorporates the decision maker’s preferences to the 
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greatest possible extent is best. A numerical measure is also most appropriate when the goal is to 

assess how a mitigating action impacts the risk. The measure can provide a metric to judge the 

effectiveness of different mitigation strategies if it is known how these mitigation strategies 

impact the probability distribution. In this case, the risk is first measured under the assumption of 

no mitigation strategy and then assessed assuming the mitigation strategy was enacted. The 

difference between the two measures describes the benefit of the mitigation strategy. 

A numerical risk index can best achieve the objectives of comparing between different 

risks, determining the most serious risk, and understanding how a risk changes over time. A 

numerical risk index can enable a user to clearly see which risk is most serious and how close the 

risk is to the maximum level of risk, although determining the maximum level of risk can pose 

serious challenges.  

A categorical scale can be most useful when the primary goal is to communicate risk to a 

large group of people and recommend actions if the risk falls into a certain category. Simple and 

clear messages can be most effective, especially in moments of crises, and a categorical scale 

that uses colors or words may be the clearest communication tool. If more than one goal is 

important as is usually the case, the analyst or policy maker should choose the index that best 

meets those goals and the situation.  

The audience must also be considered when choosing the type of risk measure or index. 

If the audience is limited to a group of people who understand probability distributions, the 

analyst may forgo a risk measure and present the group with a probability distribution over the 

consequences. If the audience is composed of people who regularly work with numbers but who 

do not have the expertise or the time to work with probability distributions, a risk measure 

composed of multiple numbers may be the most appropriate. If the audience is an entire nation, a 
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categorical index that is simple but informative may be ideal.  

In all of these cases, an explanation should accompany the risk index. The analyst needs 

to explain what the number or category means, what it means if the risk increases or decreases, 

what it means if two risks have different risk numbers or are categorized differently, and the 

limitations of the risk index or measure. It takes time for people to trust and learn how to react to 

a new risk index. If the categories are specific and people understand why a risk is categorized at 

a given level, the index can provide useful information about the risk of an event to the users. 
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