January, 1998

Battery-Operated Atomic Force Microscope

Burford J. Furman, San Jose State University
J. Christman, San Jose State University
M. Kearny, San Jose State University
F. Wojcik, San Jose State University
M. Tortonese

Available at: https://works.bepress.com/burford_furman/5/
Battery-operated atomic force microscope

Burford J. Furman, Joseph Christman, Michael Kearny, and Frank Wojcik
Department of Mechanical Engineering, San Jose State University, San Jose, California 95192-0087

Marco Tortone
Park Scientific Instruments, Inc., Sunnyvale, California 94089

(Received 13 June 1997; accepted for publication 22 October 1997)

The design of a battery-operated atomic force microscope (AFM) using a piezoresistive cantilever is described. The AFM is designed so that all power to drive the scanning tube and detection electronics comes from a self-contained battery. The prototype AFM uses a 6 V, Ni–Cd, camcorder battery, however, any battery that supplies between 6 and 12 V may be used. Scanner control and data acquisition are implemented using commercially available software running on an external computer. The prototype AFM achieves a scan area of 53 by 53 μm, consumes 1.8 W of power, and can scan continuously for about 7 h on a single battery charge. © 1998 American Institute of Physics. [S0034-6748(98)05501-4]

I. INTRODUCTION

Scanning probe microscopes (SPMs) in general, and atomic force microscopes (AFMs) in particular, have had dramatic impact on the ability to measure surface properties at nanoscales in a wide variety of applications.1–3 Most implementations of AFMs, including all commercially available units, are relatively large and ultimately rely on electric power coming from a standard main supply (110 V, 60 Hz, for example). High voltage, typically on the order of ±200 V, is required to drive the scanning stage of the AFM, which uses piezoelectric actuators. Also, +15 and −15 V supplies are required to power the control electronics, which generate the scan signals and detect the cantilever deflection. In addition, the data acquisition and image processing systems usually run on a computer. The total power consumption for AFM systems typically range from about 600 to 1800 W, and they weigh on the order of 10–100 kg.4,5

The weight and utilities requirements to run an AFM preclude its use in remote locations, such as in space, or for in situ geological and biological studies. In this article, we demonstrate a battery operated, lightweight AFM, with a scan range of 50×50 μm. The AFM uses a dc-to-dc converter to step up the battery voltage to about +215 V to drive the piezoelectric scanner. We designed a novel, low-power consumption, high-voltage amplifier to allow 7 h of uninterrupted operation from a 6 V, 2.4 A h, Ni–Cd battery. Our demonstration system still requires utility power for the data acquisition computer and controller, however, a battery powered laptop computer with the proper interface could be used instead. Our work holds promise for further development and miniaturization of autonomous SPM measurement devices and related instruments.

II. DESCRIPTION OF THE MICROSCOPE

The design of the battery-operated AFM (referred hereafter as BAFM), including the electronic circuitry, control and data acquisition approach, and physical construction are presented and discussed in this section. The simplicity and modularity of the AFM are emphasized.
accessed by removing screws at the top and sliding it out by pulling on the handle.

Circuit boards slide into horizontal slots machined in the rack sidewalls, with the back wall serving as a stop. The rack is self-contained, so there are no hard-wired connections between it and the battery. Power connection to the electronics module is made by a brass leaf spring attached to the battery mount on the rear of the rectangular structure and a brass pin mounted on the module. Electrical connection of the battery to the electronics rack occurs when the rack is inserted into the rectangular housing.

The battery which powers the BAFM, mounts at the rear of the electronics housing (not shown). The prototype uses a battery from a video camcorder to make the power supply practical and low cost. The mount is virtually identical to those found on camcorders.

A. Electronics and control

Figure 2 shows an overall schematic diagram of the electronics associated with the BAFM. The major subsystems are: the battery, the dual low-voltage dc-dc converter, the high-voltage dc-dc converter, the tube deflection amplifier, the cantilever deflection amplifier, the computer, and the waveform rectifier. The low-voltage dc-dc converter produces nominally ±12 V, which powers the op-amps and other active components used in the tube deflection and tip deflection amplifier subsystems. The high-voltage converter, used to drive the piezotube scanner, steps up the battery voltage of 5–12 V to approximately +215 V.

The first prototype of the BAFM uses a Panasonic, Ni–Cd, 6 V, 2400 mA h camcorder battery, however, any battery that supplies between 6 and 12 V will power the microscope. We chose to use a camcorder battery, because they are relatively inexpensive, readily available, and rechargeable.

Figure 3 shows a schematic diagram for the circuit that steps up the battery voltage in order to drive the piezotube scanner. The circuit outputs a constant 215 V for voltage inputs between 4.8 and 12.2 V. Output voltage is regulated to within 0.5 V peak to peak, with a maximum secondary load current of 1.3 mA. The converter uses a modified flyback configuration based on the LT 1072 switching regulator IC. The IC functions as a combination of a pulse-width modulator (PWM) and switch. At the beginning of the duty cycle, the switch turns on and energizes the primary windings of the transformer. The switch turns off when the current going through the switch reaches a predetermined level. When the switch turns off, the energy stored in the magnetic field induces a stepped-up voltage in the secondary windings. The output voltage is controlled through an error amplifier internal to the IC that compares the output voltage with a reference voltage and sets the current level at which the switch turns off. The transformer has a 55-to-1 turns ratio (20 turns on the primary, 1100 on the secondary) wound on a split-bobbin ferrite core.

Most AFMs use bipolar high-voltage supplies to maximize the deflection and extension of the piezotube scanner. We did not attempt to design a bipolar supply for the first prototype, so as to minimize power consumption and simplify the electronics. We chose to design our own high-voltage converter, because we could not find a commercially available low-power dc-dc converter having more than about 15% efficiency and that could operate on a wide input voltage range. Our converter is about 25%–30% efficient, and will operate normally for input voltages between 5 and 12 V.

There are alternative approaches for voltage conversion, such as a generic boost topology, but these would require more components, more stages, and result in decreased efficiency in comparison to a flyback design. An additional advantage of a flyback converter is that it provides electrical isolation between high and low voltages.

Figure 4 shows a circuit schematic for the power supply
used to power all the ICs (except the LT 1072). The heart of the circuit is the relatively new ADP 1111 switchmode IC.8 The supply functions essentially as a boost regulator that also drives a charge pump to generate a negative voltage. A boost regulator takes a lower positive dc voltage and produces a higher dc voltage by means of a transistor switch that controls the charging of an inductor. Here, when the switch in the ADP 1111 is closed (essentially to ground), the inductor energizes. When the switch opens, current from the inductor charges capacitors c_1 and c_2. When the switch closes again, while the inductor charges, diode d_1 keeps c_1 from discharging, and the upper terminal of c_2 is forced to ground potential. At this instant, the lower terminal of c_2 carries a negative potential with respect to ground. This negative potential forward biases d_3 and charges c_3 (its upper terminal being negative with respect to ground). The average output voltage of the converter depends on both the load current and duty cycle of the switch.

We designed our own tube deflection amplifier, because most commercial high-voltage amplifiers consume more power, are usually not stable driving highly capacitive loads unless modified, and are physically larger than we desired. For example, commercial high-voltage operational amplifiers can draw quiescent current of 2 mA or more.9 For an output voltage of 200 V, this corresponds to a power consumption of 0.4 W or more. In contrast, the power consumption of all four of our high-voltage amplifiers combined is about 0.5 W.

The schematic diagram for the piezotube deflection amplifier is shown in Fig. 5. Each of the four quadrants of the piezotube has its own amplifier. The differences between x-axis and y-axis amplifiers are the value of resistor in the current source and the type of NPN transistor, as indicated. The circuit uses a P-channel metal-oxide-semiconductor field effect transistor (MOSFET) as a current source and an ultralow offset voltage op-amp to amplify signals from the computer to control the voltage applied to the tube quadrants. The zener diode keeps the gate voltage of the MOSFET about 10 V lower than the source voltage. The 10 V drop across the 20 kΩ resistor (or 90.5 kΩ for the y-axis amplifier) essentially determines the quiescent current of the amplifier, about 510 μA for each of the x-axis amplifiers and 110 μA for each of the y-axis amplifiers. The op-amp controls the voltage at the output node by means of the NPN transistor. When the input signal from the computer is at 0 V, the transistor is turned on enough to conduct all the current from the current source to the -12 V supply. When the input signal from the computer is in its range of 0 to -10 V, the transistor turns off enough so that enough current is forced through the 18.2 MΩ resistor in the feedback path to keep the summation of currents at the noninverting terminal of the op-amp equal to zero. With the resistor values shown, the gain of the amplifier is set to about 20.

We constructed the amplifiers for the x and y quadrants differently to minimize power consumption. The piezotube scans more rapidly in the x direction than in the y direction to achieve a raster pattern, about 16 Hz in x compared to 0.03–0.25 in y. The quiescent current in the x-axis amplifiers is necessarily larger than that in the y-axis amplifiers, because of the higher scan rate in the x direction. Since the piezotube behaves like a capacitor (about 30 fF per quadrant), a larger current is needed in the x-axis amplifiers, because the tube velocity is proportional to the time rate of
change of applied voltage, which is in turn proportional to the current charging the quadrant.

To simplify the detection of cantilever movement and minimize power consumption, we chose to use a piezoresistive cantilever. With this approach, the deflection of the cantilever is measured directly from its resistance change, so no external sensors are needed. The detector is simply a Wheatstone bridge circuit in which the cantilever functions essentially as a variable resistor in one leg of the circuit. In SPMs that use a reflected laser beam to detect the deflection of the cantilever, the diode laser typically draws about 50 mA at 5 V, which results in about 250 mW of power consumed. In contrast, the piezoresistive cantilever bridge circuit presents a 2 kΩ load on 2.5 V, which results in about 3 mW of power consumed.

Figure 6 shows the circuit schematic for the deflection amplifier. The bridge is powered by a REF-3 precision 2.5 V reference, stable to within a few millivolts. All fixed resistors are metal film types, with tolerances better than 1%. The 2 kΩ resistors are matched within 1 Ω. A potentiometer used in conjunction with the 1.5 kΩ resistor, allows the bridge to be easily balanced out to 0 V whenever a cantilever is replaced. Two first-order low-pass filters were added to eliminate noise on the output. Total power consumption of the deflection amplifier circuit is estimated to be less than 75 mW. Gain bandwidth of the circuit is limited by the filters to approximately 3.6 kHz.

One limitation of our prototype is that we built only one high-voltage power supply, consequently, we have only one polarity available to apply to the tube quadrants. We compensated for this limitation by designing an externally-powered half-wave rectifier between the D/A output and each pair of tube deflection amplifiers. The rectifier takes the triangle wave output from the D/A converter and splits it into a pair of synchronized, negatively-going triangle waves. The outputs from the rectifier drive the high-voltage deflection amplifiers of opposing tube quadrants. This arrangement enables us to drive all four quadrants with only two D/A channels. Figure 7 shows the rectifier circuit schematic.

B. Control and data acquisition approach

Scanner control and data acquisition for the prototype BAFM were carried out using a personal computer, a plug-in data acquisition card, and LabView software.

We used a Pentium, 133 MHz personal computer with 32 MB of RAM running under Windows 3.11 for both data acquisition and control of scanning. We used a National Instruments AT-MIO-16× multifunction data acquisition card to interface with the BAFM. The card is configured with eight differential analog input channels and two analog output channels, each with 16 bits of resolution.

The scanning and data acquisition programs were written in LabView 4.0. We chose to use LabView over other programming languages for its relatively short learning curve and ease in construction of a graphical user interface for controlling the microscope and viewing the scan results.

The control program generates analog voltages that are output to the waveform rectifier and piezotube amplifiers to...
III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Scan results

In its present configuration, the prototype BAFM is capable of approximately a 53 μm×53 μm scan area. The 16-bit data acquisition card limits the maximum lateral resolution of the microscope to 8 Å, and the maximum vertical resolution to 12 Å. The actual vertical resolution is about 24 Å rms due to switching noise from the low-voltage dc-dc converter. We have yet to implement z servoing, so scanning is limited to the cantilever being in contact with the sample with the pieztube in constant height mode.

Figure 8 shows an image taken with the BAFM of a 9.9 μm×9.9 μm reference grating.

B. Power measurements

We analyzed the power consumption of the BAFM and found that it is capable of operating continuously for about 7 h on a single charge of the battery. Figure 9 shows the battery voltage versus time. We also looked at power consumption as a function of battery voltage. This test was performed by substituting an adjustable power supply for the battery, and varying the input voltage from about 5 to 12 V. Figure 10 shows that the microscope consumes between 1.5 and about 2.2 W over the indicated voltage range. It should be noted that the externally-powered waveform rectifier was not included in the above measurements. It consumes about 325 mW by itself.

Table I summarizes power consumption of the subsystems powered by the 6 V battery. The high-voltage dc-dc converter consumes approximately 920 mW, about half of the total. Losses in the diodes on the high-voltage side of the transformer constitute about half of the power lost in the high-voltage converter.

C. Future Improvements

There are many opportunities for improvement of the BAFM. For example, it would be desirable to use a data acquisition card or DSP with at least four analog outputs to drive the four tube quadrants independently, thus eliminating the need for the waveform rectifier. Resolution of the microscope would be improved if 20-bit A/D and D/A converters were used and if improvements were made to reduce noise from the low-voltage dc-dc converter. Portability of the system would be enhanced if the I/O boards were in PCMCIA format, so a laptop computer could be used.

We hope that the work described in this article will encourage further developments of self-contained scanning probe devices.

ACKNOWLEDGMENTS

The authors acknowledge the support of Park Scientific Instruments, Inc., a grant from the National Science Foundation Academic Research Infrastructure Program, and an undergraduate research grant from the Electronic Materials Symposium for our work. They wish to recognize the contribution of John Alexander from Park Scientific Instruments in the design of the high-voltage amplifiers, Ralph Tarter of General Power Conversion for his custom design of the transformer in the high-voltage dc-dc converter, and Anthony Du of Analog Devices for his help with the construction of the ±12 V dc-dc converter. They also acknowledge

TABLE I. Power consumption of the various subsystems powered by the battery.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Power consumed (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-voltage dc-dc converter</td>
<td>0.92</td>
</tr>
<tr>
<td>Low-voltage dc-dc converter</td>
<td>0.40</td>
</tr>
<tr>
<td>X-axis high-voltage amplifier</td>
<td>0.32</td>
</tr>
<tr>
<td>Y-axis high-voltage amplifier</td>
<td>0.15</td>
</tr>
<tr>
<td>Cantilever deflection amplifier</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>1.81</td>
</tr>
</tbody>
</table>
Jesse Alvarez, Rick Garcia, Luca Nicoli, and Ericka Sleight for their groundbreaking work on the battery-operated AFM, and the help of Ping Hsu, Tom Matthews, and H. D. Chai from San José State University.

5 Product information for the Autoprobe SA, Park Scientific Instruments, Sunnyvale, CA 94089.