Skip to main content
Presentation
Enhancing existing stockmarket trading strategies using Artificial Neural Networks: A Case Study
ICONIP: Neural Information Processing: 14th International Conference (2007)
  • Bruce J Vanstone, Bond University
  • Gavin Finnie, Bond University
Abstract

Developing financially viable stockmarket trading systems is a difficult, yet rea-sonably well understood process. Once an initial trading system has been built, the desire usually turns to finding ways to improve the system. Typically, this is done by adding and subtracting if-then style rules, which act as filters to the initial buy/sell signal. Each time a new set of rules are added, the system is retested, and, dependant on the effect of the added rules, they may be included into the system. Naturally, this style of data snooping leads to a curve-fitting approach, and the resultant system may not continue to perform well out-of-sample. The authors promote a different ap-proach, using artificial neural networks, and following their previously published methodology, they demonstrate their approach using an existing medium-term trading strategy as an example.

Keywords
  • stockmarket,
  • trading,
  • artificial neural networks
Publication Date
November 13, 2007
Comments
presented at ICONIP 2007
Citation Information
Bruce J Vanstone and Gavin Finnie. "Enhancing existing stockmarket trading strategies using Artificial Neural Networks: A Case Study" ICONIP: Neural Information Processing: 14th International Conference (2007)
Available at: http://works.bepress.com/bruce_vanstone/11/