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∗Undergraduate students.

Abstract
The authors present a modern technique for teaching matrix transformations on R2 that incorporates works of visual
art and computer programming. Two of the authors were undergraduate students in Dr. Hamburger’s linear algebra
class, where this technique was implemented as a special project for the students. The two students generated the im-
ages seen in this paper, and the movies that can be found on the accompanying webpage www.wku.edu/˜bruce.kessler/.

1 Introduction

As we struggle to increase the number of students succeeding in the science, technology, engineering,
and mathematics disciplines, it is the opinion of the authors that

• we must find ways to motivate a larger audience as to the importance and relevance of these disciplines,
and

• once we have convinced students to invest in a discipline, we must then be innovative in the ways that
we engage the students in learning, so that they stay in the discipline.

The second of these ideas was put into practice in Dr. Hamburger’s Fall 2008 linear algebra class, in such a
way that both the scientifically-minded and artistically-minded students were actively engaged in the course,
and eventually learned a great deal about the topic.

Matrix multiplication has a number of applications that can attract the interest of students, but as we move
to a more abstract understanding of matrices as generators of transformations, we sometimes lose the interest
of the more application-driven students. In general, multiplying an m× n-matrix (that is, a matrix with m
rows and n columns) on the right by an n-vector (column), generates an m-vector, so it can be interpreted as
a transformation from Rn to Rm. We generally illustrate this type of transformation in R2 with rather dull
diagrams, such as the ones shown in Figure 1. If the matrix causes the same change with every vector in R2,
then the effect of the matrix multiplication would be shown on one vector, as on the left in Figure 1, where
R(x,y) is a counterclockwise rotation about the origin of 60◦. If the matrix has varying effects depending
on the choice of the vector, then perhaps two vectors are shown under the transformation, as on the right in
Figure 1, where T (x,y) stretches vectors horizontally by a factor of 2 and vertically by a factor of 1.5. (See
sample college-level linear algebra texts [1, 2, 3, 4], where [3] probably comes closest to the work illustrated
in this paper with its visual interpretation of matrix transformations.)

This method of showing the effects of matrix multiplication is antiquated and goes back to a time when
computers were not available. A better understanding of the effect of the matrix multiplication would be
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Figure 1: Typical diagrams illustrating the effects of matrix multiplication.

gained by applying the matrix to every point in R2, an impossibility. However, we can look at a large
number of regularly-spaced vectors in the plane, but drawing all of the vectors would cause an undecipherable
mess. Instead, we start with a digital image that we recognize, so that we can tell the effects of the matrix
transformation on each pixel of the image. This could be a digital portrait of anyone, but given that some
people might object to having their portrait warped, we decide instead to use famous works of visual art.
This gives the observer an original image to which they can compare, and has the added bonus of capturing
the interest of students that have an affinity to the visual arts.

The following section provides a brief introduction to matrix transformations in general, and to the
specific code that was used to generate the examples in this paper.

2 Definitions and Code Used

Terminology. A transformation on R2 is any mapping T that takes a point in R2 to a point in R2. Any
transformation on R2 that can be expressed in the form

T
(

x
y

)
=
[

a(x,y) b(x,y)
c(x,y) d(x,y)

][
x
y

]
, (1)

where a, b, c, and d are real-valued functions dependent upon x and y, is called a matrix transformation

on R2. Note that we use the short-hand notation T
(

x
y

)
in place of the bulky, but more accurate, notation

T
([

x
y

])
. For example, the transformation T defined by

T
(

x
y

)
=
[

x2 + y2

2xy

]
can be considered a matrix transformation, since T

(
x
y

)
=
[

x y
y x

][
x
y

]
.

Not all transformations are matrix transformations. As an example, the transformation T defined by

T
(

x
y

)
=
[

a b
c d

][
x
y

]
+
[

e
f

]
, a,b,c,d,e, f ∈ R, (2)

called an affine transformation, is defined for all (x,y) ∈R2 and always maps to a point in R2, but it does not

fit the form of (1) unless
[

e
f

]
=
[

0
0

]
. In that case, the transformation is said to be a linear transformation.

Programming the Transformations. The code used for this project was written by the author Kessler for
the algebraic manipulation software package MathematicaTM, due to the ease in generating graphics and
movies, and due to our students’ familiarity with the software from their prerequisite coursework. The



code is presented here in the syntax of the MathematicaTM programming language, which is very readable
since the commands are usually full English words. The code generates an animation of the transformations
applied recursively, which we obviously can not show here. In our illustrations, we show selected frames
from the animations. The full animations are available for download at www.wku.edu/˜bruce.kessler.

We opted to center the digital images on our coordinate axes, as shown in Figure 2. This allows us the
best “viewing window” with which to watch the effects of the matrix transformation on the image when
using our choices of matrices. The units on the axes are pixel-widths. The size of the images were not
standardized, as our code adjusts for the size of the image.

Figure 2: Placement of the coordinate axes with respect to the digital images.

While we want to give the appearance that we are moving the pixels to different locations in the plane,
we are actually considering each pixel as a fixed location. Thus, instead of changing the location of a pixel
P by repeated multiplying by a matrix A, we apply the inverse matrix A−1 to each pixel P, and note the
color of its resulting pixel P′. We then recolor each pixel P to that color, giving the illusion of applying the

transformation to each pixel. The MathematicaTM code is given below, with the matrix set to
[79

80 0
0 39

40

]
.



3 Examples

The students experimented with a number of different types of 2× 2 matrices. The following sections
and figures show some of the more interesting results from this experimentation. The still figures show
the effects of the various matrix transformations much more effectively than the vector diagrams shown in
Figure 1, and the animations are even more illustrative.

Dilations. Matrix transformations with matrices of the forms[
k 0
0 1

]
and

[
1 0
0 k

]
are called horizontal and vertical dilations, respectively. If 0 < k < 1, the dilation is a contraction. If k > 1,
then the dilation is called an expansion. The effects can be combined into one dilation matrix, since[

k1 0
0 1

][
1 0
0 k2

]
=
[

1 0
0 k2

][
k1 0
0 1

]
=
[

k1 0
0 k2

]
.

The images shown in Figure 3 were generated by applying the dilation matrix
[79

80 0
0 39

40

]
to a 580 pixel

wide by 418 pixel tall digital image of Salvador Dali’s painting “Persistence of Memory”. This causes a
horizontal contraction, and a slightly faster vertical contraction.

Shears. Matrix transformations with matrices of the forms[
1 k
0 1

]
and

[
1 0
k 1

]



Figure 3: The original picture at left. Ten applications of the contraction matrix at center. Fifty applications
of the matrix at right.

are called horizontal and vertical shears, respectively. The sign of the value k determines the direction of
the shear.

The images shown in Figure 4 were generated by applying the shear matrix
[

1 0.01
0 1

]
to a 563 pixel

wide by 705 pixel tall digital image of one of Van Gogh’s self-portraits. This causes a horizontal shear, with
the top moving to the right and the bottom moving to the left. Figure 5 shows the effects of a vertical shear

with the matrix
[

1 0
−0.02 1

]
applied to the same image.

Figure 4: The original picture at left. Twenty applications of the horizontal shear matrix at center. One
hundred applications of the matrix at right.

Rotations. Matrix transformations with a matrix of the form[
cosθ −sinθ

sinθ cosθ

]
are called rotations. Multiplication by this matrix causes a counterclockwise rotation by θ degrees about the
origin.

The images shown in Figure 6 were generated by repeatedly applying the rotation matrix
[

cos(1◦) −sin(1◦)
sin(1◦) cos(1◦)

]
to a 400 pixel wide by 572 pixel tall digital image of Leonardo daVinci’s painting “Mona Lisa”.



Figure 5: The original picture at left. Twenty applications of the vertical shear matrix at center. One hundred
applications of the matrix at right.

Figure 6: The original picture at left. Twenty applications of the rotation matrix at center. One hundred
applications of the matrix at right.

Distance-dependent rotations. Matrix transformations with a matrix of the form[
cos( f (d)) −sin( f (d))
sin( f (d)) cos( f (d))

]
,

where f is a function defined on non-negative real numbers and d is the Euclidean distance from the origin√
x2 + y2 for the pixel with coordinates (x,y), are called distance-dependent rotations. The images shown

in Figure 7 were generated by repeatedly applying the distance-dependent rotation matrix
cos

(
2

√
x2+y2

rmax2+cmax2 1◦
)
−sin

(
2

√
x2+y2

rmax2+cmax2 1◦
)

sin

(
2

√
x2+y2

rmax2+cmax2 1◦
)

cos

(
2

√
x2+y2

rmax2+cmax2 1◦
)
 ,

where rmax and cmax are as defined in the MathematicaTMcode, to a 400 pixel wide by 572 pixel tall digital
image of Leonardo daVinci’s painting “Mona Lisa”.

Stochastics. Matrices of the form [
a 1−b

1−a b

]
,



Figure 7: The original picture at left. One application of the distance-dependent rotation matrix at center.
One hundred eighty applications of the matrix at right.

where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1, are called stochastic matrices. Stochastic matrices are used to calculate
probabilities, and are usually thought of in the context of Markov chains or random walks. While not
generally thought of in the context of matrix transformations, we can certainly define matrix transformations
using these matrices.

The images shown in Figure 8 were generated by applying the stochastic matrix
[29

30
1

60
1
30

59
60

]
to a 750 pixel

wide by 652 pixel tall digital image of James Whistler’s painting best known as “Whistler’s Mother”.

Figure 8: The original picture at left. Five applications of the stochastic matrix at center. Twenty-five
applications of the matrix at right.

Other Matrices. The undergraduate students went through their own type of transformation – from being
mathematics students using matrices on art, to “matrix artists” using mathematics to generate their pieces.
The students involved in this project were very creative in developing matrices, other than the types described
above, that generated beautiful animations, using time and distance dependencies in their matrices. In order
to increase computation efficiency, they replaced the pictures with grids of points in the plane, colored
according to their initial quadrant as shown at the top left in Figure 9, thereby allowing the students to run
experiments more quickly. Figure 9 shows selected frames from animations created by the students, using
the transformations

T
(

x
y

)
=

[
1− 1

xy − 1
xy

1
xy 1− 1

xy

][
x
y

]
and T

(
x
y

)
=

cos
(

n
√

x2+y2

200 1◦
)
−sin

(
n
√

x2+y2

200 1◦
)

sin
(

n
√

x2+y2

200 1◦
)

cos
(

n
√

x2+y2

200 1◦
)
[x

y

]
.



at top and at bottom, respectively, where n is the iteration number. Again, the still frames do not do the
animations justice, and we encourage readers to view the animations on the previously mentioned website.

Figure 9: The original picture at top left. Progressive frames of one animation, top center and top right.
Progressive frames of another animation, bottom row.

4 Conclusion

It has often been said that “A picture is worth a thousand words.” In our cases illustrated here and on the
fore-mentioned webpage, this idea could be extended to say “An animation is worth a thousand diagrams.”
While the idea of using matrix transformations to create art is not new, it was definitely a new approach to
learning linear algebra for our students. There can be little doubt that the students who worked on this project
now have a better understanding of the effects of these matrices on points in the plane than they would have
ever had just looking at vector diagrams. In the course of analyzing the results, they have also touched upon
other seemingly unrelated topics, like vector norms, eigenvalues, and matrix limits. In the course of doing
so, they have broadened their recognition of art, and have learned how to create their own “masterpieces”.
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