Skip to main content

About Bruce S. Cushing

I am an integrative biologist, with a specialty in Behavioral Neuroscience. I started out as a behavioral ecologist studying predator prey interactions. I was particularly interested in how behaviors associated with obtaining a mate (reproduction) increased vulnerability to predation. While I loved the theoretical aspects of this work I found myself continually drawn to understanding the mechanisms regulating behavior and how natural selection acted on the mechanisms. With that I started my journey into hormonal regulation and eventually into the brain, the ultimate regulator of behavior.
I maintain an active research program averaging 5 plus papers per year recent publications, and am always interested in having energetic students at both the graduate and undergraduate level participate in research. I am currently studying the role of steroids, primarily estrogen, and neuropeptides, oxytocin and vasopressin, in regulating the expression of social behavior. While I work with a number of species and conduct comparative research most of my current studies use the prairie vole Microtus ochrogaster. Prairie voles are a socially monogamous mammal, with a family based social system similar to many humans. There are also closely related species, such as the meadow vole, which are polygynous. This means that prairie voles are a good rodent model system for studying human biomedical issues, as well as basic comparative studies on function and expression of social behavior. We use a number of tools in our studies, including behavior, immunocytochemistry to label receptors and peptides production in the brain, molecular techniques, and viral vectors to regulate the expression of receptors in the brain. The following is a list of some of the specific areas of interest.
1. The role of estrogen receptors in regulating male social behavior. Estrogen acting via ER masculinizies male behavior. Therefore I am testing the hypothesis that for males to express high levels of social behavior there must be a reduction in ER in parts of the brain that regulate social behavior.
2. Developmental effects of oxytocin with an emphasis regulating steroidal responses and the expression of estrogen receptors. This is testing a novel hypothesis. In adults the effects of oxytocin are steroid dependent with estrogen increasing the effect. However I have hypothesized that during development that neuropeptides can regulate steroidal response.
3. We are using the prairie voles as a model system to study autism. Autism is associated with the significant deficits in social behavior and is much more common in males than females. By manipulating early neuropeptides and steroids we can examine the effects on social behavior, especially in males, to determine their possible role in the expression of mental health disorders.
4. I am also interested in epigenetic regulation of social behavior and the role of the early social environment in regulating the expression of social behavior and the effect on the underlying mechanisms.

Positions

Present Professor, Department of Biology, The University of Akron
to

Disciplines


$
to
Enter a valid date range.

to
Enter a valid date range.


Contact Information

Phone: (330)972-6018
Office: ASEC B235

Email: