2009

Prehispanic Warfare During the Early Horizon and Late Intermediate Period in the Huaura Valley, Peru

Margaret Brown Vega, Indiana University - Purdue University Fort Wayne

Available at: https://works.bepress.com/brown_vega/6/

Report

Prehispanic Warfare during the Early Horizon and Late Intermediate Period in the Huaura Valley, Perú

Margaret Brown Vega

Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, Pennsylvania 16802, U.S.A. (mybvega@psu.edu). 19 IX 08

Discussions of prehispanic warfare entail treatment of the relationship between ritual and war, and inform on interpretations of indigenous fortifications. Ten radiocarbon dates from recent excavations at the fortress of Acaray in the Huaura Valley, Perú, confirm the site was used during two periods: the Early Horizon (ca. 900–200 BC) and the Late Intermediate Period (ca. AD 1000–1470). These two periods are characterized by the construction of fortifications in neighboring valleys on the north coast and in the central highlands. The 23-ha site of Acaray is one of the largest fortified sites known in the near-north-coast area, and it holds significant potential for exploring these two widely separated periods of conflict on the coast of Perú. This paper presents spatial and material data in light of the new radiocarbon dates. Site function during the two occupations is considered given our state of knowledge of regional dynamics and new excavations at Acaray. The early and late fortresses were built in response to different kinds of conflicts. The Early Horizon configuration may be characterized by threats to religious power, as suggested by other scholars, while the Late Intermediate Period use of Acaray fits the model of a refuge used periodically.

Indigenous conflict in the pre-Columbian Americas remains a topic of theoretical debate in anthropology (Chacon and Mendoza 2007). In the Andes, part of the discussion hinges on whether the nature of prehispanic warfare was ritualized or destructive (Arkush and Stanish 2005). Iconographic depictions and excavations of sacrificed humans and trophy heads lend themselves more readily to examinations of ritual violence. In areas of the Central Andes where such data are lacking, fortifications are used as the primary evidence for warfare (Arkush 2006; Billman 1997; Ghezzi 2006; Topic and Topic 1978, 1987; Wilson 1987, 1988). Ceremonial or ritual characteristics of fortifications complicate an assessment of their function. Ethnographic and ethnohistoric data on ritualized battles known as tinku are used to interpret the nature of conflict at these defensive places (Bastien 1985; Orlove 1994).

Fortified hilltops are known in several time periods, including the Early Horizon (ca. 900–200 BC) and the Late Intermediate Period (LIP; ca. AD 1000–1476). During the Early Horizon, much of the Central Andes is defined by the rise, spread, and ultimate collapse of a “regional cult” known as Chavín, inferred from the widespread distribution of similar ceramic styles and iconography found on stone and textile artifacts (Burger 2008, 700). In contrast to the “horizon” of the Chavín phenomenon, the LIP is characterized as a time of fragmented polities throughout the region. There is evidence that people and polities were in contact with each other, though not organized under an umbrella political or religious structure. On the north and central Peruvian coast, there is a wide distribution of similar material culture that suggests interaction between these localized polities.

Fortified sites in the north, central, and near-north-coast valleys and adjacent central highlands are reported for the Early Horizon and the LIP (Cárdenas Martín 1977; Miasta Gutierrez and Merino Jimenez 1986; Nelson and Ruiz Rubio 2005; Parsons, Hastings, and Matos Mendieta 2000; Perales Munguía 2006; Proulx 1968, 1973, 1985; Przadka and Giersz 2003; Willey 1953; Wilson 1988, 1995). However, the construction and use of these sites remains temporally ambiguous. Aside from recent intensive investigations of the Early Horizon fort of Chankillo in the Casma Valley (Ghezzi 2006; Ghezzi and Ruggles 2007), few coastal defensive sites tentatively dated to any time period have been excavated or securely dated. Additionally, research has focused on north coastal valleys, and the near north coast has been largely ignored for these time periods. Ten radiocarbon samples from excavated contexts at the fortress of Acaray date its construction and use to the Early Horizon and the LIP. I suggest that fortified sites such as Acaray in the near-north-coast region are manifestations of different kinds of conflict during these time periods. I compare defensive sites in both the Early Horizon and the LIP elsewhere to the newly generated data from Acaray.

Acaray: Two Occupations

The fortress of Acaray in the Huaura River Valley (fig. 1) is situated on a ridge in the foothills along the northern margin of the valley neck. The fortress was constructed atop the summits of three hills that form this ridge, approximately 70 m above the valley floor below (240 m a.s.l.). It is part of a larger archaeological complex that consists of architectural compounds and cemeteries in the low-lying alluvial fans sur-
rounding the ridge. Cultural remains cover nearly the entire ridgetop, which extends over roughly 23 ha.

Acaray’s location at the opening of the river delta provides views up valley and of nearly the entire delta heading to the sea. In addition, Acaray offers a view of the foothills to its north. The easily defended location, the defensive architectural features such as parapets and bastions, and the presence of abundant slingstones over the surface of Acaray meet the criteria outlined by other scholars for the identification of a fortification (Keeley, Fontana, and Quick 2007; Topic and Topic 1987; Wilson 1988; see figs. A1, A2 in CA+ online supplement A).

Site Layout and Architecture
Defensibility and inaccessibility are key characteristics of fortified sites. The location of entrances and structures within walled areas and the placement of military architecture enable an analysis of how people moved within this space and how that movement and access were inhibited. Topographic map-
Figure 2. Map of the fortress at Acaray. Contour intervals are 1 m; hilltop sectors are indicated as A, B, and C.

Figure 2. Map of the fortress at Acaray. Contour intervals are 1 m; hilltop sectors are indicated as A, B, and C.
ways. The lower wall has two entrances, one of which leads to sector C. The second wall has two identifiable entrances, with a possible third one, that further restrict access. A third wall offers access to the hilltop via only one entrance. Each entrance in the lower wall has adjacent parapets or small rectangular enclosures. These would have regulated access not only along these entryways but also up to the entrances in the defensive wall above. The uppermost defensive wall of sector B has a single entrance with parapets running in either direction from it. Two possible bastions and another lookout structure have been identified for sector B (see fig. 3).

The walls of sector C abut those of sector B, indicating they were built later. The radiocarbon dates discussed below confirm this. Sector C has two poorly preserved defensive walls. The lower wall with three entrances was sufficiently preserved to permit mapping. Each entrance is associated with smaller rooms along the inside of the wall that could have served to regulate movement through these areas.

Entryways in sectors A and B are located on steeper slope areas. Sector C shows some variability in this respect, with one doorway that has a low-slope approach and is not well defended. Five tentatively identified bastions or lookout structures provide visibility along the northern side of the ridge and to the north, with some monitoring of the western area of the ridge. The bastions are in positions that permit monitoring of entryways in the defensive walls. Parapets have been identified in sectors A and B for both time periods.

Differences in construction material and technique provide insight into when certain architectural elements were in use or constructed at the site and allow for an interpretation of the changing extent of the site over time. Two readily identifiable construction techniques have been defined that were employed in building the defensive walls of Acaray. One technique is characterized by large cut stones set in mortar with smaller cut stones fitted between, giving the wall façade an orderly look. These wall segments have anchors along their
external base. Wall anchors serve to support the walls, affording them greater stability and permitting them to stand vertical. Eroded sections of wall expose construction fill, which is composed of rock and mortar. The builders had technical expertise and invested greater care in building these walls.

This technique is easily contrasted to the second technique. This technique was used to rebuild some of the walls built according to the methods described above, and thus is later (fig. 4). Builders of these later walls and wall sections employed smaller, irregular stones that are not well fit together. Stones that comprise the wall face were loosely stacked in mortar, and in some cases, plastered. The construction fill of these walls consists of alternating layers of plant remains and rock and rubble. The rocky layers contain abundant trash remains from the earlier occupation of the fortress. This construction technique permits the rapid building of walls, and results in the inward inclination of the external face of the wall. The alternating layers of fill provide the stability necessary for this type of wall.

Wall segments built using the first, early, technique are present in only sectors A and B. There are remains of walls of this same style located lower on the slopes of these two sectors. Based on this distribution of the early wall construction I suggest that the early configuration of the fort encompassed two hilltops (sectors A and B), and may have had lower megalithic walls that are now barely visible. The later configuration of the ridgetop is more extensive, encompassing a third hilltop (sector C) and associated with the building of the lower defensive wall in sector B.

Although differences were noted in material culture from surface collections and excavations at Acaray, the timing of these different associated occupations was not clear. Results from radiocarbon dating provide a basis for situating the early and later occupations that were identified initially through stylistic differences in wall construction techniques and artifacts.

Excavation and Radiocarbon Dates

Systematic purposeful sampling of the site was aimed at documenting variability in household and activity areas. Eight test units and five area excavations targeted different kinds of structures and trash areas within and outside of the defensive walls. Ten conventional radiocarbon samples recovered from excavated contexts and defensive walls (table 1) were processed at the Illinois State Geological Survey. With the exception of one charred sample, all samples consisted of unburned annual plants. Dates were calibrated using CALIB 5.0 (McCormac et al. 2004; Stuiver and Reimer 1993) and are reported in the text at 2σ when indicated in actual years. These dates confirmed there was an early component to Acaray that placed its initial construction in the Early Horizon. Eight of the 10 radiocarbon assays date to the LIP, and one has a range that extends into the Late Horizon (ca. AD 1476–1532) and early Colonial Period (beyond AD 1532).
The two Early Horizon dates are 2640 ± 70 BP and 2390 ± 70 BP. The later of these two comes from a burning event at the foundation of a small terrace (TU7). The earlier date is from a deep layer of construction fill used to build a 2–3-m-high terrace along the south side of ridge. The fill was sealed underneath a clean floor that had no evidence of any kind of activity (block 2). These dates confirm an Early Horizon use of the site. It is reasonable to assume that Early Horizon trash used as construction fill, albeit disturbed, does come from the ridgetop.

The earliest LIP dates come from excavations within the major structure on the summit of sector A (block 1B), and from two test units (TU4 and TU5) on the interior of the second and third defensive walls of sector B. The sample from block 1B was collected from beneath a “crude” wall of one of the rooms within the summit structure. Excavations in this block and within two other rooms within this structure revealed underlying architecture that had been destroyed. This early architecture is characterized by well-made stone and mortar walls and benches and fine, yellow, plastered surfaces. The reconstruction, and burying of this prior architecture, is dated by this sample. The samples from sector B come from construction fill (TU5), and from a deposit of botanical material in construction fill associated with the reconstruction of the defensive wall (TU4), with dates of 850 ± 70 and 810 ± 70 BP, respectively.

The sample taken from a layer of construction fill of the lowest defensive wall yielded a date of 790 ± 70 BP. The amplification of sector B by the construction of an additional concentric defensive wall took place at this time. Dates of 730 ± 70 and 670 ± 70 BP came from excavation block 3, which exposed two rooms along the interior of the lower defensive wall of sector B that probably restricted access on the interior of the wall. The earlier date is related to the building of the defensive wall. The later one comes from a floor surface.

The construction of a large platform on the northern side of the rooms within the summit structure. Excavations in this block and within two other rooms within this structure revealed underlying architecture that had been destroyed.

Table 1. Results of radiocarbon dating

<table>
<thead>
<tr>
<th>Lab identification</th>
<th>Age (RCYBP)</th>
<th>δ13C (‰)</th>
<th>Context</th>
<th>1σ</th>
<th>2σ</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISGS 5965</td>
<td>480 ± 70</td>
<td>−25.1</td>
<td>Construction layer, muralla 6 (C1)</td>
<td>1410 AD:1501 AD (0.88); 1594 AD:1613 AD (0.12)</td>
<td>1396 AD:1628 AD (1.0)</td>
<td>Plant (Pragmites sp./Equisetum sp.)</td>
</tr>
<tr>
<td>ISGS 5984</td>
<td>630 ± 70</td>
<td>−9.9</td>
<td>Construction layer, platform, TU8 (sector B2)</td>
<td>1307 AD:1361 AD (0.60); 1378 AD:1415 AD (0.40)</td>
<td>1286 AD:1441 AD (1.0)</td>
<td>Maize stems (Zea mays)</td>
</tr>
<tr>
<td>ISGS 5966</td>
<td>670 ± 70</td>
<td>−26.5</td>
<td>Construction layer, block 3A (sector B2)</td>
<td>1300 AD:1368 AD (0.77); 1372 AD:1393 AD (0.23)</td>
<td>1270 AD:1432 AD (1.0)</td>
<td>Plant pod (Inga sp.)</td>
</tr>
<tr>
<td>ISGS 5982</td>
<td>730 ± 70</td>
<td>−26.1</td>
<td>Floor surface, block 3B (sector B2)</td>
<td>1271 AD:1324 AD (0.56); 1344 AD:1389 AD (0.44)</td>
<td>1219 AD:1402 AD (1.0)</td>
<td>Bush/shrub (no ID)</td>
</tr>
<tr>
<td>ISGS 5974</td>
<td>790 ± 70</td>
<td>−24.5</td>
<td>Construction layer, muralla 3 (sector B1)</td>
<td>1214 AD:1304 AD (0.91); 1363 AD:1377 AD (0.09)</td>
<td>1159 AD:1329 AD (0.84); 1336 AD:1391 AD (0.16)</td>
<td>Branches, bush/shrub (no ID)</td>
</tr>
<tr>
<td>ISGS 5976</td>
<td>810 ± 70</td>
<td>−23.6</td>
<td>Intrusion in construction layer, TU4 (sector B4)</td>
<td>1190 AD:1196 AD (0.04); 1201 AD:1296 AD (0.96)</td>
<td>1052 AD:1076 AD (0.02); 1148 AD:1324 AD (0.88)</td>
<td>Maize (Zea mays)</td>
</tr>
<tr>
<td>ISGS 5964</td>
<td>850 ± 70</td>
<td>−18.6</td>
<td>Layer of shrubs below wall, block 1B (sector A3)</td>
<td>1164 AD:1167 AD (0.01); 1176 AD:1280 AD (0.99)</td>
<td>1044 AD:1089 AD (0.08); 1104 AD:1304 AD (0.91); 1362 AD:1377 AD (0.01)</td>
<td>Bush/shrub (no ID)</td>
</tr>
<tr>
<td>ISGS 5967</td>
<td>850 ± 70</td>
<td>−23.8</td>
<td>Fibers from layer of construction fill, TU5 (sector B3)</td>
<td>1164 AD:1167 AD (0.01); 1176 AD:1280 AD (0.99)</td>
<td>1044 AD:1089 AD (0.08); 1104 AD:1304 AD (0.91); 1362 AD:1377 AD (0.01)</td>
<td>Plant fibers (Gramineae)</td>
</tr>
<tr>
<td>ISGS 5975</td>
<td>2390 ± 70</td>
<td>−24.5</td>
<td>Burned plant remains, TU7 (sector B2)</td>
<td>537 BC:529 BC (0.02); 524 BC:355 BC (0.80); 289 BC:232 BC (0.18)</td>
<td>751 BC:686 BC (0.08); 667 BC:638 BC (0.03); 617 BC:615 BC (0.001); 594 BC:203 BC (0.89)</td>
<td>Plant carbon (no ID)</td>
</tr>
<tr>
<td>ISGS 5983</td>
<td>2640 ± 90</td>
<td>−23.9</td>
<td>Fibers from construction fill, block 2 (sector A1)</td>
<td>834 BC:728 BC (0.46); 693 BC:658 BC (0.14); 654 BC:542 BC (0.40)</td>
<td>902 BC:479 BC (0.94); 470 BC:414 BC (0.06)</td>
<td>Plant (Scirpus sp./Lagenaria sp.)</td>
</tr>
</tbody>
</table>

Note. ISGS = Illinois State Geological Survey; RCYBP = radiocarbon years before the present. Numbers in parentheses indicate probability.
Figure 5. Early Horizon neckless pot (A) and patterned burnishing (B); Late Intermediate Period Cayash (C), and Chancay black-on-white (D) ceramics from surface collections (drawings by Santiago Rivas Panduro). Numbers indicate diameter in centimeters.

of sector B is dated to 630 ± 70 BP. The platform, one of the few structures in the entire complex with adobe building materials, has little in the way of defensive architecture. This platform may be associated with a less defensive use of the site later in time. Cut stone and mortar walls were uncovered below this architecture that can be correlated to the Early Horizon occupation.

The latest date for Acaray comes from the defensive wall of sector C. The date, at 480 ± 70 BP, seems to correspond to a different architectural configuration linked to the latest addition to the fort. Several rectangular room structures with patios and benches are located in the uppermost sector delimited by this defensive wall. This may represent a third occupation or use of the fort that extended from the late LIP into the Late Horizon.

Material Culture

Radiocarbon dates discussed above help to define the temporal contexts of artifacts recovered from surface and excavation contexts. Similarities to assemblages from other Early Horizon fortresses and LIP sites can be made. The radiocarbon dates allow us to better link these assemblages, reported elsewhere, to a time range.

Ceramic sherds are the most stylistically diagnostic material culture encountered for both time periods (Early Horizon and LIP). Pottery forms found in greatest abundance are the neckless pot and flat-sided bowl (fig. 5). Both of these forms are characteristic of Early Horizon assemblages (Pozorski and Pozorski 1987; Proulx 1968, 1973, 1985; Valkenier 1995; Willey and Corbett 1954; Wilson 1988). Certain design features, such as the incised circle-and-dot motif, burnished lines in irregular net patterns, and other surface treatments have also been identified in other areas as Early Horizon.

LIP ceramics are less abundant than Early Horizon styles (fig. 5). Chancay black-on-white painted ceramics (Cornejo Guerrero 1992), Cayash ceramics (Krzanowski 1986), and a few fragments of Chimú black burnished mold-made pottery were recovered in surface and excavation contexts. Early Horizon sherds were not observed in sector C. This is consistent with the hypothesized Early Horizon and LIP configurations...
of the fort and with the radiocarbon date from sector C. All three sectors had similar percentages of LIP ceramics on the surface, suggesting that all three sectors were in use during the LIP, which is also consistent with the radiocarbon dates.

Ceramic panpipe fragments were recovered from all but one of the excavation units. Panpipe fragments are reported for other Early Horizon sites such as Chimu Capac, a possible fort in the Supe Valley (Valkenier 1995), and a number of sites in the Casma, Nepeña, and Santa valleys (Pozorski and Pozorski 1987; Proulx 1985). These artifacts come from construction fill, which supports the assertion that Early Horizon refuse was used to rebuild the fortress.

In addition to ceramic remains, two slate blade fragments were recovered. Slate blades are recognized in Early Horizon assemblages in Casma, Nepeña, and the highlands at Chavin de Huántar (Burger 1995; Muelle 1957; Proulx 1985). Lithic assemblages associated with the Early Horizon occupation include groundstone. In contrast, lithics associated with the LIP occupation are expedient, consisting of unifaces and end scrapers. A few abandoned Early Horizon handstones were used to rebuild defensive walls and other structures in the LIP rather than reused for grinding.

There is abundant trash associated with the Early Horizon occupation that was moved around and used during reconstruction of the fort during the LIP. There are considerably fewer refuse remains of the LIP occupation. A notable LIP context is a sacrificial offering of two textile bags, excavated from a layer of construction fill (fig. 6). Radiocarbon dates place the reconstruction of this structure to 1104–1304 cal. AD. The contents of the textile bags include seed necklaces, raw materials for weaving, and braided loom holders. The bags contained smaller textile bundles, each with contents (fig. 7; also see figs. A3–A5 in supplement A). The contents and the nested manner in which the bundles were assembled are similar to other reported finds that date to the LIP from the north and the central coasts (Eeckhout 2005; Montoya Vera 1998). Intrusive ceremonial trash deposits in the same structure suggest offerings were made subsequent to reconstruction of the fort. At Acaray, these deposits enhance security and strengthen defensive structures.

Discussion

Recent archaeological studies have reminded us that defense and ritual are not mutually exclusive (Arkush and Stanish 2005; Ghezzi 2006; Parkinson and Duffy 2007). The nature of the remains recovered from Acaray reveal that during both the Early Horizon and LIP, war and ritual were interrelated. But the nature of conflict during the two periods is different.

Despite having only two dates from the Early Horizon, by correlating building techniques and material culture to those dates, I suggest that the early configuration of Acaray encompassed two hilltops. Well-built concentric walls of worked stone with sturdy wall anchors indicate the construction of this early fortress was not expedient (in contrast to the later reconstruction). Similar construction techniques and site configurations are noted at the fortress of Chankillo in the Casma Valley (Ghezzi 2006), which dates to 300–220 BC, and several Early Horizon fortress sites described for the Culebras (Przadka and Giersz 2003), Nepeña (Proulx 1968, 1973, 1985), Santa (Wilson 1988), and Virú valleys (Willey 1953).

The Early Horizon dates indicate construction of the fortress began as early as the eighth century BC, at the beginning of the Early Horizon following the collapse of the late Initial Period (ca. 1800–900 BC) monumental centers of the central and north coast (Burger 1995).

Early Horizon fortresses have been interpreted as having both ritual and defensive functions. It has been suggested the Early Horizon fortresses within a valley are intervisible and play a role in building social cohesion (Daggett 1987). Others have argued they are not defensive at all but rather hilltop shrines. Such an interpretation is offered for Chimu Capac in the Supe Valley (Valkenier 1995), which shares some architectural similarities to Acaray. In the Virú Valley some of these sites have habitation or ceremonial elements that indicate a variety of activities took place within them (Willey 1953, 90). Most recently it has been suggested these sites may be fortified temples (Ghezzi 2006). Still others argue they served the primary function of defense (Pozorski 1987; Proulx 1973, 1985; Wilson 1987, 1988, 1995). These varied interpretations demonstrate the difficulty in reconciling evidence for ritual or other activities inside fortified sites with the fact that fortification is an indicator of war.

Remnants of what may have been a stepped plastered platform on the summit of sector A indicate the early architecture located inside the defensive walls was well made and consistent with interpretations of these sites as having symbolic power or ritual significance. The Early Horizon layout of this platform would have permitted public viewing of activities carried out on it. This suggests larger-scale ritual than for the LIP, when the same space is divided up by the construction of stone walls and rooms and linked to more private rituals. Two concentric defensive walls enclosed both hilltops, and additional lower walls inhibited access along routes up the ridge, indicating that there was a threat that required protection of the summits. By analogy to the nature of activities associated with a similar structure at Chankillo, I suggest the Early Horizon fort at Acaray is consistent with the hypothesis that these places are fortified temples used during a climate of “holy wars” (Ghezzi 2006, 80). People lived at Acaray permanently, which suggests that war and attacks were constant.

Rebuilding and reuse of the site began no earlier than AD 1100. There is no strong evidence for occupation in the intervening periods. Sectors A and B were in use from at least the middle LIP. Sector C appears to have been a later addition, possibly built or used into the Late Horizon (ca. AD 1476–1532). Defensive features such as parapets, bastions, and slingstones are present in sectors A and B but have not been clearly identified for sector C. River cobbles (i.e., slingstones) are used as construction fill in the defensive walls of sector.
C and are not found in piles that might indicate they were used as projectiles. This could mean a shift in site function during the Late Horizon. Nevertheless, access is restricted to, as well as within, sector C, and an entrance linking this space to sector B indicates it was built as an extension of the fortress.

Excavations revealed little evidence of formal LIP occupations. My research identified defensive architecture and indicators of a military use along with evidence for ritual activities as part of rebuilding and amplifying the fortress. The earlier fortification was destroyed during the Early Horizon and subsequently abandoned. Sacrificial offerings were placed in construction fill during the reconstruction of Acaray in the LIP. Offerings were also made in subsequent periodic visits to the fortress, times during which people probably sought refuge. Thus the fortress was not conceived of in purely “utilitarian” defensive terms (Parsons, Hastings, and Matos Mendieta 2000, 99).

Had the fortress at Acaray been a permanent settlement during the LIP, we might expect to find more domestic refuse and residential architecture associated with this occupation. Fortified settlements with habitation structures are documented in other areas of the Andes in the LIP (Earle et al. 1987). Acaray, however, is not this type of site in the LIP. Without evidence for a permanent resident population, I consider the site had a more ephemeral purpose. Use as a refuge is not inconsistent with this type of ephemeral use. Other uses such as a shrine for pilgrimage or cyclical ritual visits cannot be ruled out at this time. Arguments for purely ritual battles do not fit at Acaray, since such activities have been documented ethnographically and historically to take place in flat, open places away from other settlements (Bastien 1985; Orlove 1994). Moreover, bastions, parapets, and slingstones serve very real purposes. Their presence in other parts of the world is used as an indication of defense and, thus, warfare (Keeley, Fontana, and Quick 2007). The nature of the threat was sufficient to motivate reconstruction, but people did not live day in and day out at the fortress.

The lack of sufficient evidence for a foreign presence in Huaura during the LIP, such as imperial Chimú ceramics, suggests that Chimú armies did not rebuild the fortress. Two seasons of intensive surface reconnaissance and excavation of 13 units have yet to reveal any unequivocal evidence for a Chimú presence at Acaray. The few Chimú ceramic sherds recovered are probably present because of exchange or trade.
and not the presence of Chimú administrators. The dates for the reconstruction of Acaray are a bit early given dates for the incorporation of the Casma Valley into the Chimú Empire, which may have been as late as AD 1350 (Moore and Mackey 2008).² They would still be consistent with imperial forays into the Huaura area. The date from the sector C defensive wall corresponds to the time when such an incursion would have taken place.

It seems most plausible that Acaray was rebuilt by Chancay people. The radiocarbon dates presented here for Acaray are within the range of those reported for the Chancay culture, and the Huaura Valley is believed to have been part of Chancay territory (Krzanowski 1991; Pazdur and Krzanowski 1991). Chancay people perceived a threat from the southward expansion of the Chimú Empire and rebuilt Acaray. They did so rapidly, taking advantage of remaining structures and walls from earlier times and using an expedient construction technique. Data indicate reconstruction efforts began around AD 1100 and extended into the middle and late LIP. Sacrificial offerings recovered from construction fill provide evidence for ceremonial practices related to reconstruction and defense. Evidence of these activities inside the fortification supports an interpretation of warfare rather than conflicting with such interpretations. Lack of evidence for a permanent LIP occupation suggests Acaray was rebuilt as a refuge, used only when necessary, to safeguard people and animals in the event of attack. If Acaray was used sporadically as a refuge in the LIP, as the radiocarbon dates suggest, then there was an extended threat to the Huaura Valley over a the course of several hundred years. This hypothesis requires further evaluation through additional excavations at the site, and detailed analyses of valleywide and regional settlement data.

Acknowledgements

Research was funded by a Dissertation Travel Grant from the University of Illinois at Urbana-Champaign, a Fulbright-Hayes Doctoral Dissertation Research Grant, and a Wenner-Gren Dissertation Grant. Additional funds and support were generously provided by Tony and Frances Brown (my parents). Infrastructural support was provided by the Proyecto Arqueológico Norte Chico. Research was conducted and samples exported with permission granted by the Instituto Nacional de Cultura (National Institute of Culture) in Perú. I owe many thanks to my North American and Peruvian colleagues who worked with me throughout this research. Early drafts of this paper were read by Nathan Craig and Timothy Pauketat, whose comments greatly improved the paper. I also want to thank two anonymous reviewers for their critical and constructive comments and suggestions to strengthen the manuscript. I thank Mercedes Verástegui Xesspe for unwavering support and insightful comments.

² Other proposed dates are ca. AD 1290 (Vogel 2003) and AD 1305 (Mackey and Klymyshyn 1990).
References Cited

Pozorski, S., and T. Pozorski. 1987. Early settlement and sub-
sistence in the Casma Valley, Peru. Iowa City: University of Iowa Press.