Ritualized Coping During War: Conflict, Congregation, and Emotions at the Late Pre-Hispanic Fortress of Acaray

Margaret Brown Vega
The Archaeology of Anxiety

The Materiality of Anxiousness, Worry, and Fear
Chapter 8
Ritualized Coping During War: Conflict, Congregation, and Emotions at the Late Pre-Hispanic Fortress of Acaray

Margaret Brown Vega

Introduction

As Tarlow (2000) has pointed out, emotions are often implied in archaeological interpretations, but remain undertheorized. Moreover, the assumptions underlying these implications have not been thoroughly examined. Such uncritical assertions result in matter-of-fact, common-sense-derived notions about how people in the past felt. This paper is an exercise in making emotion an explicit part of interpreting the archaeological record.

The context in which I am interested in examining emotions is one of congregation and conflict in a time of war. While the anthropological and archaeological literature on war abound with reference to fear and anxiety, from an archaeological perspective we have not fully considered ways in which those emotions are made material. Their materiality can tell us more about people living with war than what has been asserted as obvious—that they are angry, full of rage, or afraid. Some archaeological treatments of war depict past peoples as unemotional, or simply sidestep the issue. In the history of warfare studies, this is probably related to the pacification of past peoples as peaceful “noble savages” (Keeley, 1996). Alternatively, societies that wage war may be labeled as aggressive and vengeful, but does this state characterize them all the time? Simplistic characterizations of societies as “warlike” or “peaceful” (Kelly, 2000) essentialize groups of people as having principal emotional states.

More recent studies of war in the past recognize people as active agents in complex “fields of actions” (Nielsen & Walker, 2009, p. 9) or “multidimensional fields” of culture, space, place, practices, and conflict (Pauketat, 2009, p. 251). Climates of fear might be acknowledged in these studies, yet archaeology can do
more to specify the cultural contexts of fear and bring emotion to a central place in studies of war and violence. Otherwise, ancient people seem not to have the complexity of emotions that humans experience today, but rather vacillate between happy passivity, fierce aggression, or passive fear. More importantly, without such attention, emotions are considered to play a relatively insignificant role in culture change.

I do not doubt that there were happy, passive, fierce, angry, vengeful, or afraid peoples in the past. However, how they have sometimes been characterized is not their constant emotional state. Just as people enact a variety of behaviors in their daily lives, such as cooking, dancing, and killing, it is reasonable to assume that they experience a variety of emotions. What constitutes emotional experiences also varies by cultural context. Understandings and expression of fear must, then, vary. An array of emotions must go into making war. Moreover, people, as active agents, may creatively “unmake” war and violence in their own lives (Nordstrom, 1998, pp. 110–113). The residues of these varied activities and emotions are important to consider to better understand not only conflict, but the circumstances of conflict and culture change more broadly. I seek to specify the emergence of an “emotional community” (Rosenwein, 2010) in the context of late pre-Hispanic warfare on the coast of Perú. I argue that collective efforts of physical and spiritual defense, evidenced by the construction of a large fortification within which group healing rituals took place, indicate two things: what this new community perceived as harmful to them and how they worked together to confront that harm.

I will first highlight the materiality of emotion by reviewing how emotions are embodied. Following Harris and Sorensen I treat “emotion” as encompassing the states of emotion (in this case, fear, anxiety, and stress) and their bodily expression (as illness). Their terms “attunement” and “atmosphere” are also useful for illuminating the impetus for certain emotions to be embodied. I recognize the possibility for a range of emotions contingent on specific circumstances and relations, what they term “affective fields” (Harris & Sørensen, 2010, pp. 149–150).

Drawing on literature from medical anthropology and ethnography, I develop some specific expectations for the evidence for ritual coping with emotions that we might see archaeologically. I will then consider such evidence from the Fortress of Acaray in the Huaura Valley, Perú (Fig. 8.1), to demonstrate that it is feasible, and desirable, to recover emotion in the archaeological record.

Materiality and the Embodiment of Emotion

Recent theorizing in archaeology emphasizes practices and is informed by theories of materiality (Dobres, 2000; Miller, 2005; Pauketat & Alt, 2005; Saunders, 2003; Sillar, 2009; Walker, 1995; Walker & Schiffer, 2006). This shift to a focus on human practices has focused attention to the body as a site of cultural construction. Anthropological studies have moved beyond conceptualizing the body as a receptor of culture, reflective of culture, or “inscribed” by culture, much like a text (Csordas, 1994;
Joyce, 2005). The concept of embodiment emphasizes, rather, bodily experiences and engagement with other human and nonhuman agents in the social world (Csordas, 1994, p. 12).

For some scholars in medical anthropology, embodiment refers to “sensations, perceptions, and experiences bounded by the interior, frame, and flesh of an individual,” although Greenway has pointed out that these extend beyond the human

Fig. 8.1 Map showing location of the Huaura Valley and sites mentioned in the text
body to society and to objects (Greenway, 1998b, p. 148). Objects can become stand-ins for people, their qualities making them appropriate for embodying emotions of people or groups. Yet objects are better viewed not as representations, but as material things that, in tandem with people and places, come into being together (Dobres, 2000; Harris & Sørensen, 2010; Ingold, 2006; Latour, 2005). This perspective makes an explicit link between things, people, and circumstances as a “relational construct,” or affective field (Harris & Sørensen, 2010, p. 150). In archaeology, we have access to evidence that informs directly on things, perhaps less directly on circumstances, and indirectly on people and practices. I draw on this perspective of embodiment that extends beyond the body by focusing on: (1) the qualities of certain objects and inferring relationships between those objects, (2) the practices of peoples, and (3) their experiences and surroundings. This approach highlights emotion as something that is beyond the body—as a social and a constructive force in the world.

In arguing for social (i.e., collective) emotions, it is not my intention to assert that there are universal emotions shared by all people. My use of emotion in this paper is more in line with a “constructivist” conceptualization of the term (Tarlow, 2012, p. 170). I make reference to fear and anxiety, yet I focus on the specific cultural context in which people have different understandings of these emotions and in which they construct them through the material world. The revealing of the world, including emotions and affective fields, to those in it is achieved through materiality, i.e., “attunement” after Harris and Sørensen (2010, p. 151). This conceptualization of emotions is consistent with the idea of “emotional communities,” within which people define what is harmful to them (Rosenwein, 2010, p. 11). In studying a context of war, archaeologists cannot assume fear and other associated physiological or psychological reactions. Rather, the material dimension by which people express concerns for their safety must be interrogated. The construction of fortifications, “an architectonic setting,” creates an atmosphere “that emerge[s] at the intersection of people, places and things” (Harris & Sørensen, 2010, p. 152). Ritual practices in this atmosphere inform on affective fields and attunement. Emotions are commonly expressed in rituals, making them an ideal context through which these expressions are revealed to the archaeologist (Tarlow, 2012, p. 173).

Physical Harm and Illness: Ethnographic Perspectives

Much ethnographic and medical anthropological literature deals with the emotional or psychosocial aspects of the lived experiences of war and postwar times (Green, 1994b, 1998; Henry, 2006; Nordstrom, 1998). Social violence, and more specifically warfare, creates contexts in which people embody conflict. People may be physically injured or may report trauma, distress, and bodily ailments that have physical manifestations.

War brings tremendous suffering and illness, revealed both in very direct ways like visible wounds, severed limbs, or dead bodies, but also in innumerable indirect ways: somatic
expressions of fear, exposure, and vulnerability. Because war and political conflict are often directed toward a group, the violence is collectively experienced yet also uniquely and individually manifest. (Henry, 2006, p. 391)

Osteological studies of human remains inform on understandings of the physical experience of violence and war (Komar, 2008; Martin, Akins, Crenshaw, & Stone, 2008; Milner, 1995; Tung, 2007; Verano, 2007; Walker, 2001). As Walker pointed out, human skeletal remains, including trophy heads and dismembered bodies, can provide direct evidence of violence (Walker, 2001, p. 574) and are clearly approachable through archaeological analysis. Yet as the quote from Henry above also points out, people embody the experience of war in other ways, such as through illness. Because people deal with illness in material ways, the remains of these practices can be available to archaeologists for analysis as well.

Illness has been linked to experiences of social violence and war. In our own society, the reluctant yet growing recognition of posttraumatic stress disorder is a clear example of the physical manifestation of violence and war on people’s bodies (Green, 1998, p. 5). Such illnesses are referred to as psychosomatic or “culture-bound” illnesses and may be explained as “folk” beliefs. Yet Pederson and colleagues argue that such states are better considered as “idioms of distress,” which are culturally defined and changing depending on past and present circumstances (Pederson, Kienzler, & Gamarra, 2010).

Pederson and colleagues demonstrate how chronic violence, social inequality, and uncertainty contribute to the appearance of various maladies, which are assigned different meanings (Pederson et al., 2010). In a similar fashion, Pike and colleagues argue that “community-wide insecurity, displacement, individual trauma, and loss of access to sufficient food and other necessary resources” create health and psychosocial consequences for people who experience violence and disruptions in their normal daily existence (Pike, Straight, Oesterle, Hilton, & Lanyasunya, 2010, p. 48). Explicit links to health seem logical, and recent theorizing emphasizes “social suffering,” which is both individual and collective in scale (Kleiman, Das, & Lock, 1996; Rylko-Bauer, Whiteford, & Farmer, 2009; Scheper-Hughes, 1996; Tapias, 2006).

Well-known illnesses that are pervasive in Latin America, and that have been ethnographically documented in the Andes, are susto (fright sickness or soul loss), mal aire (bad or evil airs), and nervios (anxiety or worry, literally nerves) (Burman, 2010; Dressler, 2010, pp. 280–282; Greenway, 1998a; Lincoln, 2001). These illnesses are acquired from frightening events (susto) or can be absorbed from forces outside of the body for which there is a lack of protection (mal aire). These illnesses may be interrelated. For example, losing one’s soul to susto makes one more susceptible to mal aire. In one study of the long-term effects of the Peruvian “dirty war” of the 1980s and 1990s, scholars found that the embodiment of sustained political violence as susto and nervios was manifest even long after the war was over (Leatherman & Thomas, 2009, pp. 211–212).

Other illnesses with deeper antiquity in the Andes have been documented as well. Pederson and colleagues identify llaki and ūnakary as present-day conditions that have roots at least as far back as the early colonial period from the late 1500s to the early 1600s (Pederson et al., 2010, pp. 290–292). Both are a form of suffering. Llaki is linked to individual suffering. Ūnakary, a collective form of suffering, is of interest for the present discussion. Holguín mentions a related root in his early dictionary, ñaccari, which
means “to suffer” (Holguín, 2007 [1608], p. 176), and Taylor confirms this meaning (Taylor, 1991). Today, ñakary is believed to afflict an entire group of people and results from unexpected, and unfortunate, external (to the community) events. Once the external source of the malady is removed the collective suffering ceases, but the illness cannot be defeated by a single individual. Only a collective effort can overcome ñakary (Pederson et al., 2010, p. 290).

These ailments are treated in a number of ways, usually through traditional methods and medicinal plants. It is commonly reported that treatment involves pulling the illness out from the body to heal the individual (Oths, 1992, p. 81), or in the case of susto in calling the soul to return to the body. Medicine bundles, referred to as mesas in much of the Andes, are commonly used when removing illness and contain a variety of ritually charged materials such as minerals, plants, and miniatures (Burman, 2010, pp. 466–467).

Mesas can be quite varied, but generally entail the assemblage of various items on a textile cloth used by a ritual specialist (Sharon, 2006; Tschopik, 1951; Zorn, 1986). Among indigenous peoples of the highlands, mesas are contained in their textile wrappings when not in use. Ceremonies that employ mesas can be aimed at many things, but often they are used to ensure the health of the community. Importantly, they can be multifunctional in that they address multiple community concerns (Bolton & Bolton, 1976).

Generally much ethnographic literature provides evidence that war is embodied as illness. In the Andes such illnesses have been recognized among contemporary groups of people who have experienced political violence. While susto, male aire, or nervios are not exclusive war-related illnesses, war and violent events would create the circumstances for such afflictions to take hold of people’s bodies. Ethnohistorical documents indicate similar conditions of suffering, including collective suffering known as ñakary, existed in the early colonial period and may have pre-Hispanic roots. Collective cohesion, health, and survival would depend greatly on coping with the emotions and illnesses that infiltrate groups. Coping and healing strategies, then, can be assessed when seeking to understand the social and emotional experiences of war in the late pre-Hispanic period.

Archaeology and Emotions in Times of War

From an archaeological perspective, there are a number of different ways in which we may identify emotion in material remains. Activities related to physical and spiritual defense should be enmeshed in the recognition of, and coping with, expression of heightened emotion. I discuss emotions and preparations for war and a variety of coping strategies for dealing with emotions and illnesses that are set in motion by the social milieu of war.

Fortifications and Fear in Times of War

The construction of fortifications is a collective task. The building of defenses, and in particular fortifications, is thought to be prompted by fear (Vencl, 1999, pp. 67–68).
Fortifications are above all the materialized expression of the human fear of being attacked, and of losing life, freedom or property…. Feeling safe is a basic and permanent human need, and fortifications are the manifestation of one possible answer to that need…. (Vencl, 1999, p. 67)

How fortifications are constructed speaks to the emotional states related to safety. The rapid building of walls and other defenses may signal a sense of urgency. The kinds of materials used, the quantity, and how the materials are assembled can inform on how fast defenses needed to be erected. Certainly such construction efforts require the mobilization of adequate people to build large architecture. In contexts where such mobilization mechanisms do not exist prior to construction efforts, one might suggest that the threat of war and sense of urgency was sufficient to prompt new social relationships and new forms of cooperation. We would expect group rituals to arise in such contexts.

In addition to the construction of formal defensive architecture, preparations for war entail the making and amassing of weaponry. Details on weaponry will depend on the specific cultural and historical contexts of the case being considered. But the stockpiling of weapons and ammunitions signals a heightened degree of urgency and greater certainty that violence and war is in fact imminent. A particular atmosphere emerges during the construction of a fortified place, which includes provisioning for armed defense.

Whether there is an outbreak of war is not the point I want to make here. Rather the indirect evidence for a perception of certain danger is key when considering emotions such as fear and anxiety archaeologically. What we seek to identify are the emotions wrapped up in war or the threat of war. Urgency relates to stress, anxiety, fear, and a suite of heightened emotions that are revealed among those who experienced them in the act of making defenses. These emotional expressions were perceived and dealt with using specific strategies. An overall climate of fear and mistrust may be created that permeates all aspects of life (Ember & Ember, 1992; McCartney, 2006).

Ritualized Coping and War

The interrelationship between ritual and war is recognized ethnographically (Saunders, 2003; Weiner, 1985, p. 220; Wiessner & Tumu, 1998) and archaeologically (Dye, 2009, pp. 2–3; Ghezzi, 2006, 2007; Schaafsma, 2007, pp. 118–128), despite continuing tendencies to oppose the two (see discussion in Arkush & Stanish, 2005, p. 10). Rituals are carried out to ensure success in battle, in the midst of battle, and following battle (Redmond, 1994), and during times of peace when war or conflict is actively being suppressed (Dye, 2009). In times of crisis, which would include experiences of war or the threat of it, people carry out rituals to address fears (Turner, 1974, p. 33) or mask them (Wolf, 1999, p. 32). While the emotions of fear and anxiety may not leave direct material correlates, the materiality of rituals related to fear and anxiety means that there is indirect evidence for their expression. Because healing and curing practices are not always discussed apart
from ritual, I do not separate them here. Rather, it should become apparent that these practices are very much interrelated, and embedded in a larger social matrix of conflict and daily life.

Within the historical archaeology of well-studied areas such as the Southwestern United States there has been some attention to the archaeology of healing and curing practices (Samford, 1996, pp. 107–110; VanPool, 2009, p. 188). Evidence for shamans or healers can be found in iconography and artifacts that represent the toolkits of these individuals (Samford, 1996; VanPool, 2009). When such items or curing assemblages are encountered, archaeologists should recognize not just the ritual aspect of these practices, but also the explicit healing of illness. Disease diagnosis and healing is a form of coping with emotions such as anxiety and stress that are embodied as illness (see also Loren this volume).

There are a number of sources of stress and anxiety. During times of war people may be physically stressed because of food and water shortages. In the Southwest environmental degradation is considered by some to be a major factor in the emergence of conflict and would have contributed to stress due to drought and crop failures (LeBlanc, 1999, pp. 295–296, 2001, pp. 45–46). These shortages may play a role in the emergence of war, and certainly safe access to water sources and agricultural fields when war has already broken out is a major issue for daily life. Physical stress can be compounded by physiological stress, such that illness results from either or both. Anxiety can be just as damaging to health as hunger and malnourishment. Coping with war, thus, entails much more than just making preparations for battle. It would involve coping with illness embodied from an overall climate of fear.

Scalar Stress and War

Rituals have long been considered in functional terms: as a way to ameliorate or resolve tension (Turner, 1974). They are carried out in myriad contexts of social life, in sacred and seemingly secular contexts. Because rituals can serve to make new collective identities and shared histories (Kelly & Kaplan, 1990, p. 141), groups or communities emerge as ritual activities are enacted. Thus, as people congregate to strengthen social bonds, even as they may converge to attack other groups, ritual plays a role in group cohesion. Conflict against other groups can solidify group identity (Murphy, 1957; Turney-High, 1971, p. 141). Rituals of group building may be particularly important in contexts of war where collective tasks of executing defense are crucial. Rituals serve to integrate new collectives where there are no pre-existing structures to accommodate larger group size (Johnson, 1982, pp. 405–407). As larger groups emerge in stressful times, there is additional group-size stress that can challenge the necessary solidarity for collective defense.

In the North American Southwest, beginning circa AD 1200, there was intense warfare, arguably related to climate change-induced subsistence problems (LeBlanc, 1999, p. 302). It is during this time that people appear to embrace the Kachina cult (also Katsina, or Southwestern cult) as, some argue, a response to this crisis...
(LeBlanc, 1999). In these times of war there was a need for alliances, and the need to deal with organization problems resulting from population aggregation into large defensive settlements (LeBlanc, 1999). Group rituals aimed at alliance making were also an integral part of life for many Late Woodland and Mississippian period (ca. AD 800 and beyond) people of eastern North America (Dye, 2009).

In summary, the building and provisioning of fortifications, the congregations necessary for collective defense (on the one hand), and the threat of conflict (on the other hand) converge to reveal/create social crises. In such social contexts, humans are motivated to cope. This entails an intensification of ritual aimed at dealing with, and healing, uncertainty and social suffering. With these expectations in mind, I outline evidence for coping encountered in excavations at the Fortress of Acaray.

Case Study: The Fortress of Acaray

The Fortress of Acaray is one of several fortifications in use in the Huaura Valley during the Late Intermediate Period (LIP, ca. AD 1000–1470) (Fig. 8.2). During the LIP much of the Central Andes witnessed the emergence of fragmented polities, and many areas were characterized by conflict and the construction of fortifications (Arkush, 2006, 2011; Brown Vega, 2010; Julien, 1993; Parsons & Hastings, 1988). Acaray is one of five forts located along a roughly 7 km stretch of the lower valley, along the north side of the Huaura River. Two more forts were located on the south side of the river. Thus, within an immediate 10 km radius there are seven

![Fig. 8.2 Map of the LIP hilltop sites in the Huaura Valley. Note Acaray’s location](image)
fortifications. Further up valley there are other hilltop sites and fortifications that show signs of use in the LIP (Brown Vega, Craig, & Asencios Lindo, 2011).

Acaray was initially constructed and used more than a millennium prior, during the Early Horizon (ca. 900–200 BC) (Brown Vega, 2009). Current evidence indicates the site lay in ruins until the Chancay people living in the Huaura Valley began rebuilding the fort roughly AD 1100–1300. I have argued that Acaray was rebuilt in response to an outside threat, most likely from the Chimú Empire (Brown Vega, 2009, p. 264). The Chimú expanded their territory southward from their capital in the Moche Valley, Chan Chan, during the LIP. At around 1350 AD the Chimú had incorporated the Casma polity of the Casma Valley, establishing an administrative center at the site of Manchan (Moore & Mackey, 2008). A viewshed analysis of the probable orientation of defensive architecture at Acaray indicates that the areas to the north of the site were of likely concern for the inhabitants who used the fortress; the threat was from northern Chimú armies (Brown Vega, 2008, p. 135). Given their imperial forays south as far as the Chillón Valley, the Chimú represented the most likely threat to those who rebuilt Acaray.

There is at least one incidence of violence exacted against local groups by the Chimú in the southern frontier of their empire. Interpreted as a reprisal killing, the remains of a massacre that took place AD 1250–1300 were uncovered at the site of Punta Lobos in the Huarmey Valley (Verano, 2007, p. 113). This example, while only one, serves to illustrate the Chimú capacity for violence against those it sought to conquer and underscores that they were a threat. Within this context of regional imperial expansion many fortifications in the region were (re)built and used in the LIP (Brown Vega et al., 2011). The climate of war during this period, then, appears to have been widespread. The people who lived in this region were concerned with threats to their security, and they took measures for their own defense by building fortifications. At the regional, valley, and more local scales there is preliminary evidence to indicate that LIP populations were sufficiently threatened by conflict to mobilize and build formal defenses over a large expanse of territory.

Architecture and Preparedness for Attack

The LIP fort at Acaray was much larger than the earlier fort, which consisted of two walled hilltops (Fig. 8.3). During the LIP two partially standing walls around each of the two summits were rebuilt, and a new, massive third defensive wall was added to one summit (Sector B, 790 ± 70, or ca. AD 1160–1330). Additional defensive walls were built that encompassed an entire third hilltop 480 ± 70 (Sector C, ca. AD 1400–1630). The defensive walls incorporated military features such as parapets, bastions, and baffled entries. These features are clear indicators of fortifications

1 Date for sample ISGS 5974 to 2 sigma, .84 probability
2 Date for sample ISGS 5965 to 2 sigma, 1.0 probability
built with defense in mind (Arkush & Stanish, 2005; Keeley, Fontana, & Quick, 2007; Topic & Topic, 1987) and would not be merely symbolic. Four of the other nearby LIP forts were built upon the ruins of earlier fortifications.

The materials used to rebuild Acaray, and the manner in which walls were built, provide greater insight into the intensity of motivations behind the reconstruction. Acaray was rebuilt in the LIP using an expedient construction method. Chancay peoples used materials conveniently located on the surface of Acaray from prior times and the remaining foundations of the Early Horizon fort. Groundstone, specifically *manos* (handstones), that had been abandoned at the site in the Early Horizon were reused not as tools, but as construction material for defensive wall façades and retaining walls. In contrast to the well-made, quarried
block masonry walls of the Early Horizon, Chancay peoples built up Acaray’s late walls using layers of trash, rock, and maize stalks or other non-edible plant parts and creating facades that seem to connote expediency. The more rapid method of fort construction coupled with the expansion of the site supports an interpretation of a sense of urgency felt by those who rebuilt Acaray for protection. Part of what permitted a temporal characterization of the other LIP forts is that the construction technique is similar to that of Acaray—I argue that they were also built expediently.

In addition to building defensive walls, parapets, bastions, and baffled entries, the people who rebuilt Acaray amassed massive amounts of slingstones within the walls. The sling is argued to be the most common ranged weapon used in pre-Hispanic times in the region (Brown Vega & Craig, 2009; Ghezzi, 2007; Topic & Topic, 1987). Slingstones are common at coastal fortifications and for the most part do not occur naturally atop hills (Topic & Topic, 1987, p. 18). At Acaray, the closest source of slingstones would be the Huaura River to the south, which is about 1 km away. Given that Acaray is rebuilt expeditiously, it is reasonable to suggest that the piles of slingstones that remain at Acaray were also assembled in short order. Slingstone piles are located along parapets inside defensive walls. In one excavated context 104 slingstones were found piled beside a small retaining wall on the interior of the lowest major defensive wall in Sector B. Slingstones are also encountered dispersed both inside and outside of the walls. The spent projectiles at Acaray are evidence that people not only anticipated attack, but likely suffered attack. Slingstones are associated with many of the other LIP forts in the Huaura Valley.

Despite the evidence for attack at Acaray, excavations showed little indication that people lived daily within the walls of Acaray. The people who used Acaray did so periodically, probably using it as a refuge. There is little evidence for domestic activities within the fort. Excavations revealed only one formal hearth at Acaray. However, there were numerous low-intensity burnt features that I interpret as one-time burning events. These features are characteristic of informal hearths used by mobile groups or tertiary hearths associated with low-intensity activities probably unrelated to cooking (Bartram, Kroll, & Bunn, 1991, p. 97, 108). Based on the lack of evidence for formal domestic spaces, it seems likely that the people who sought refuge in Acaray lived elsewhere. They maintained residences away from the fort, but presumably within close proximity of Acaray. This suggests that people probably had enough warning to retreat to the safety of the defensive walls and that they lived in anticipation of those warnings.

Defensive architecture and measures, as well as indications of the speed with which such measures were taken, are the material constructions of a concern for safety. These are collective constructions that help make an atmosphere of concern, and collective memory, that structures the emergence of new community perceptions and identities (see Green, 1994a; Winer, 2001). At Acaray, in the Huaura Valley, and in the broader region, it is reasonable to assert that a climate of fear existed.
Ritual Activities and Artifacts of Healing

The remains of the ephemeral burning events mentioned above, and associated pit and offering features, are common within the summit structure on one hilltop in the fort (see Table 8.1) and suggest something about the activities that took place within that space. One must ascend 50 m up steep slopes and pass through two major defensive walls to access this structure (see inset in Fig. 8.4). It is one of the well-defended parts of the entire fort. This Early Horizon structure was rebuilt, using an expedient technique similar to the defensive wall construction, 850 ± 70\(^3\) (ca. AD 1100–1300), overlapping with the time when the third defensive wall of Sector B was built (see above). Assuming that people were gathered there for defense, it is reasonable to assert that the activities were framed by a larger concern for safety and security.

Three units were excavated in different rooms in the summit structure: Blocks 1A, 1B, and 1C (see Fig. 8.4). One burning event seemed to entail the burning of marine shell, and shell fragments were encountered associated with other burning events (Table 8.1, Block 1C, lot 154). Burned shell can be used when chewing coca (Erythroxylum coca) leaves, which require a basic substance, like lime, to activate certain alkaloids in the leaves (Mortimer 1901, [2000], p. 209). There has been much ethnographic work on the chewing of coca in the Andes, a pervasive activity among indigenous peoples that probably has deep roots in the history of the region (Dillehay et al., 2010; Indriati & Buikstra, 2001; Rivera, Aufderheide, Cartmell, Torres, & Langsjoen, 2005). Allen highlights the use of coca leaves as a “balm for the pain of living,” chewed to “alleviate grief and pain” (Allen, 1981, p. 158). An adjacent small pit was filled with botanical remains, including a coca plant seed and a fragment of the plant Huperzia crassa, also known as cóndor (lot 151). In a neighboring room of the structure (Block 1A), excavators encountered two other pits that contained abundant botanical remains, including coca seeds (lots 56 and 57) and cóndor. Cóndor is used by contemporary healers to ensure good luck, success in travel, and to cure mal aire (Bussmann, Glenn, & Sharon, 2010, p. 615).

Thus, there is evidence that suggests people were preparing substances for chewing with coca leaves. We have indirect evidence of coca leaves from the presence of seeds. Unless leaves were made as an offering, which is a common documented practice, we would not expect to find intact leaves. Coca leaves, when chewed, might essentially be consumed. Coca quids might be encountered, but no such remains were recovered in excavations. These remains were found with parts of the cóndor plant, whose only known use is in curing. This suggests that the chewing of coca leaves in this instance was related to healing rituals.

Additional botanical remains from the pits within the summit structure may have been used in healing. Some items have ethnographically documented uses for treating reproductive problems, fright, or other psychosomatic illnesses (see Table 8.2). Some of the remains have other uses as well, such as for food or industrial purposes.

\(^3\)Sample ISGS 5964 to 2 sigma, .91 probability
<table>
<thead>
<tr>
<th>Unit</th>
<th>Loc</th>
<th>Lot</th>
<th>L (cm)</th>
<th>W (cm)</th>
<th>D (cm)</th>
<th>Context</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>26</td>
<td>56</td>
<td>44</td>
<td>24</td>
<td>30</td>
<td>Circular pit filled with refuse</td>
<td>Botanics: peanut, friar’s plum, squash, horsetail, coca, cotton, caña brava, pacae, common bean, carrizo, lúcuma, molle, pájaro bobo, maize Others: pottery sherds, cotton strings, feathers</td>
</tr>
<tr>
<td>1A</td>
<td>27</td>
<td>57</td>
<td>250</td>
<td>40</td>
<td>21</td>
<td>Long pit along exterior base of bench filled with refuse</td>
<td>Botanics: peanut, friar’s plum, achira, chili pepper, cadillo, hierba santa, horsetail, coca, Euphorbia heterophylla (wild poinsettia), cotton, caña brava, cóndor, pacae, gourd, jíquima, lima bean, common bean, carrizo, lúcuma, pájaro bobo, tillandsia, maize Others: alum, líticos, shell, bone, pottery sherds, burned plaster</td>
</tr>
<tr>
<td>1A</td>
<td>28</td>
<td>58/65</td>
<td>125</td>
<td>67</td>
<td>15</td>
<td>Long pit along interior of room wall filled with refuse</td>
<td>Botanics: peanut, friar’s plum, cadillo, hierba santa, chili pepper, cotton, caña brava, cóndor, pacae, gourd, carrizo, jíquima, common bean, lúcuma, maize Others: pottery sherds, shell, líticos, bone, textile, feather, coprolites, wood artifact, ash</td>
</tr>
<tr>
<td>1A</td>
<td>35</td>
<td>72</td>
<td>5</td>
<td>20</td>
<td>15</td>
<td>Burning event, southeast corner of unit below bench</td>
<td>Botanics Others: carbon, ash, burned earth, hair, feather, rope fragment, líticos, pottery sherds, shell</td>
</tr>
<tr>
<td>1A</td>
<td>36</td>
<td>73</td>
<td>21</td>
<td>19</td>
<td>6</td>
<td>Burning event, along south wall of block</td>
<td>Botanics Others: ash, burned rock, shell, pottery sherds, ball of cotton thread</td>
</tr>
<tr>
<td>1A</td>
<td>37</td>
<td>74</td>
<td>23</td>
<td>15</td>
<td>6</td>
<td>Burning event, southwest corner of unit</td>
<td>Botanics Others: ash, burned earth, carbon, pottery sherds, líticos</td>
</tr>
<tr>
<td>1A</td>
<td>42</td>
<td>83</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Bundle offerings placed in construction fill of bench</td>
<td>Two composite textile bundles: ishpingo seed necklace, cóndor, jíquima seed necklaces, q’olpa, chuspa</td>
</tr>
</tbody>
</table>

(continued)
Table 8.1 (continued)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Loc</th>
<th>Lot</th>
<th>L (cm)</th>
<th>W (cm)</th>
<th>D (cm)</th>
<th>Context</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>31</td>
<td>63</td>
<td>125</td>
<td>55</td>
<td>10</td>
<td>Burning event, along bottom edge of bench</td>
<td>Botanics (maize, burned seeds, cotton) Others: ash, carbon, burned earth, bone (camelid, fish, some burned), animal coprolites, shell, lithics, bead, hair, feather, pottery sherds</td>
</tr>
<tr>
<td>1B</td>
<td>41</td>
<td>80</td>
<td>20</td>
<td>20</td>
<td>4</td>
<td>Refuse pit along eastern edge of block</td>
<td>Botanics: chili pepper, cotton, paca, lúcuma, maize Others: pottery sherds, shell, bone</td>
</tr>
<tr>
<td>1C</td>
<td>45</td>
<td>109</td>
<td>45</td>
<td>35</td>
<td>6</td>
<td>Burning event, northeast corner of bench</td>
<td>Botanics Others: ash, carbon, burned earth, shell, pottery sherds</td>
</tr>
<tr>
<td>1C</td>
<td>52</td>
<td>113</td>
<td>60</td>
<td>30</td>
<td>11</td>
<td>Refuse pit, southeast corner of bench</td>
<td>Botanics: peanut, friar’s plum, achira, cotton, Caña brava, paca, manioc, lima bean, carrizo, lúcuma, maize Others: fish bone, pottery sherds, burned plaster fragments, adobe fragments</td>
</tr>
<tr>
<td>1C</td>
<td>52</td>
<td>116</td>
<td>60</td>
<td>30</td>
<td>6</td>
<td>Burning event, in pit on southeast corner of bench</td>
<td>Botanics: achira, chili pepper, cotton, paca, lima bean, carrizo, lúcuma, maize Others: burned earth, ash, carbon, pottery sherds</td>
</tr>
<tr>
<td>1C</td>
<td>46</td>
<td>144</td>
<td>40</td>
<td>23</td>
<td>3</td>
<td>Burning event, northwest corner of block</td>
<td>Burned earth, carbon, pottery sherds</td>
</tr>
<tr>
<td>1C</td>
<td>58</td>
<td>146</td>
<td>60</td>
<td>25</td>
<td>–</td>
<td>Concentration of botanical remains</td>
<td>Botanics: chili pepper, cadillo, cotton, paca, carrizo, lúcuma, maize</td>
</tr>
</tbody>
</table>

(continued)
Table 8.1 (continued)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Loc</th>
<th>Lot</th>
<th>L (cm)</th>
<th>W (cm)</th>
<th>D (cm)</th>
<th>Context</th>
<th>Contents</th>
</tr>
</thead>
</table>
Others: pottery sherds, bone, lithics, shell |
| 1C | 60 | 154/157 | 40 | 30 | 3 | Burning event, northwest corner of block | White ash, carbon, burned shell, burned earth, burned rock |

Features are burning events, offerings, and deposition of refuse related to ritual and healing activities.

Fig. 8.4 Detail of summit structure with location of excavation units
Table 8.2 Table showing some of the plant remains recovered from Acaray, with possible uses

<table>
<thead>
<tr>
<th>Species name</th>
<th>Common name</th>
<th>Part in sample</th>
<th>Food</th>
<th>Fuel, industrial use</th>
<th>Ritual</th>
<th>Medicine</th>
<th>Parts used in medicine</th>
<th>Possible ailments treated</th>
<th>Reference for medical uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenchrus echinatus</td>
<td>Cadillo</td>
<td>Flower</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Fresh whole plant</td>
<td>Inflammation, skin, intestine, liver disease, tumors, gallbladder and urinary disease</td>
<td>Bussmann et al. (2010)</td>
</tr>
<tr>
<td>Cestrum auriculatum</td>
<td>Hierba santa</td>
<td>Fruit</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td>Fresh or dried leaves</td>
<td>Wounds, fever, relaxant, fright, pain of the body, high blood pressure, typhoid, cough, bronchitis, colic of stomach, diabetes, liver, cholesterol, bad air, colds, sending away bad shadows, protecting from spasms after giving birth, warming women</td>
<td>Bussmann et al. (2010); Bussmann and Sharon (2006)</td>
</tr>
<tr>
<td>Cucurbita maxima</td>
<td>Squash</td>
<td>Seed</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Fresh or dried flowers, joints of stems, dried seeds, fresh leaves</td>
<td>Preventing miscarriage, inflammation, anxiety, heart disease</td>
<td>Bussmann and Sharon (2006)</td>
</tr>
<tr>
<td>Species name</td>
<td>Common name</td>
<td>Part in sample</td>
<td>Food</td>
<td>Fuel, industrial use</td>
<td>Ritual</td>
<td>Medicine</td>
<td>Parts used in medicine</td>
<td>Possible ailments treated</td>
<td>Reference for medical uses</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>--------</td>
<td>----------</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Equisetum giganteum</td>
<td>Horsetail (Cola de Caballo)</td>
<td>Stalk</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Fresh whole plant</td>
<td>Arthritis, kidneys, hemorrhages, menstrual inflammation, internal and external inflammation, prostate, kidney stones, cleansing wounds</td>
<td>Bussmann and Sharon (2006)</td>
</tr>
<tr>
<td>Erythroxylon coca</td>
<td>Coca</td>
<td>Seeds</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td>Dried leaves</td>
<td>Cold, cough, inflammation of throat, induce childbirth, strength for woman during childbirth, helping delivery of newborn, alertness, ritual practices</td>
<td>Bussmann et al. (2010); Bussmann and Sharon (2006)</td>
</tr>
<tr>
<td>Gossypium barbadense</td>
<td>Cotton</td>
<td>Stalk, fruit, seed</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dried seed hairs, fresh seeds</td>
<td>Evil eye in children; external wounds</td>
<td>Bussmann and Sharon (2006)</td>
</tr>
<tr>
<td>Huperzia crassa</td>
<td>Cóndor</td>
<td>Stalk</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td>Fresh leaves and stems</td>
<td>Good luck and success in travels, fragrance, bad air</td>
<td>Bussmann and Sharon (2006)</td>
</tr>
<tr>
<td>Inga feuillei</td>
<td>Pacae</td>
<td>Stalk, fruit, flower, seed, leaf</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Fresh or dried seeds; fresh flowers</td>
<td>Rehabilitation of drug addicts or alcoholics, laxative; hair growth</td>
<td>Bussmann and Sharon (2006)</td>
</tr>
<tr>
<td>Manihot esculenta</td>
<td>Manioc</td>
<td>Stalk</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>Fresh tuber</td>
<td>Vaginal infection, allergies, rashes</td>
<td>Bussmann et al. (2010)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>-------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Pachyrhizus tuberosus</td>
<td>jíquima</td>
<td>Seed, fruit, root</td>
<td>Only root</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td>Seeds</td>
<td>To cause abortion</td>
<td>Berlin (1985)</td>
</tr>
<tr>
<td>Pouteria lucuma</td>
<td>Lúcuma</td>
<td>Fruit, seed, stalk, leaf</td>
<td>Yes</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td>Fresh fruit</td>
<td>Promoting lactation in women after giving birth</td>
<td>Bussmann and Sharon (2006)</td>
</tr>
<tr>
<td>Schinus molle L.</td>
<td>Molle</td>
<td>Fruit</td>
<td>Yes</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td>Fresh flowers, leaves, stems</td>
<td>Bronchitis, cough, cold, chills, inflammation of the body, cancer, tuberculosis, vaginal infection, pain relief, fright</td>
<td>Bussmann et al. (2010), (2009)</td>
</tr>
<tr>
<td>Tessaria integrifolia</td>
<td>Pájaro bobo</td>
<td>Leaf, stalk</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fresh flowers, leaves</td>
<td>Liver, kidneys, gallbladder, inflammation, fever</td>
<td>Bussmann et al. (2010)</td>
</tr>
<tr>
<td>Zea mays</td>
<td>Maize</td>
<td>Stalk, fruit, flower, seed, leaf</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Fresh flowers, dried seeds, fresh leaves</td>
<td>Kidneys, inflammation, chills, pain in the lungs, relaxation for angry people, bad digestion, heartburn, stomach acid</td>
<td>Bussmann and Sharon (2006)</td>
</tr>
</tbody>
</table>

Details on medical uses are provided, with the references.
but their use in healing illness must be considered, particularly in light of what has emerged of the context in which people were likely living.

In addition to plant remains, some of features contained non-plant items that may be related to healing. A clear mineral, possibly *alumbre*, was found in Block 1A (lot 57). Small pieces of salt were also recovered from other contexts within Blocks 1A, 1B, and 1C. Salt and *alumbre* both have uses in healing ceremonies in the Andes, particularly in curing rituals for treating fright. Cotton threads, hair, and feathers are also items that might have been used in magical or healing ceremonies (Greenway, 1998b).

Excavations revealed offerings placed within architectural fill, which were deposited during reconstruction of the fort. Three dedicatory offerings were placed in the construction fill of benches in two rooms in the summit structure. One offering (Table 8.1, B1C, lot 135) was a broken necked pottery vessel that was filled with food remains (*Canavalia sp.*, *Capsicum sp.*, *Inga feuillei*, *Phaseolus lunatus*, *Phaseolus vulgaris*, *Pouteria lucuma*, and *Zea mays*). Among the food remains were also a coca seed and a cotton seed. The food-filled vessel was placed inside a bench and topped with a handstone that showed signs of use.

The two offerings from Block 1A were excavated from within the same bench. One was a “nest” of botanical material and rope fragments. Most of the botanical materials could be considered waste from food plants. Aside from one chili pepper, the majority of the remains were all stalks, leaves, or flowers from plants with edible fruit (*Inga feuillei*, *Canna indica*, *Zea mays*, *Lippia sp.*, and *Cucurbita sp.*). The second offering excavated from the bench has some singular items that I will discuss in greater detail below.

Textile Bundles

Two textile bags placed on top of each other were deposited in the construction fill during the building of a bench in Block 1A. I assert that these objects were interred during the rebuilding of the fort in preparation for its use as a refuge. Each textile bag contained a variety of items and is rather complex in structure. I call attention to the contained items and their qualities that are most relevant to the discussion here, but I describe the bundle in much greater detail elsewhere (Brown Vega, in press).

The first bundle contained seed necklaces (*Pachyrhizus tuberosus*, or jíquima), undyed cotton skeins, *Furcraea andina* (common name is Andean maguey, or *cabuya*) fibers, whole lúcuma fruits, weaving loom holders, and a small cotton bag containing a white mineral (Fig. 8.5). The cotton skeins, cabuya fibers, and loom holders appear to reference weaving and may be female-gendered items. Lúcuma is a fruit commonly found in ritual contexts, and in some late pre-Hispanic myths it specifically references fertility. In the Huarochirí Manuscript, a recounting of pre-Hispanic histories from the central highlands, a female sacred being is inseminated by a lúcuma fruit while she is weaving under a lúcuma tree (Salomon, Urioste, & de Avila, 1991, pp. 46–47). As indicated in Table 8.2 lúcuma fruits are used in medicinal ways to promote lactation in women after childbirth (Bussmann & Sharon, 2006, supplemental file).
The second bundle contained many smaller bundles (Fig. 8.6). Some of the bound items include *cabuya* and hair fibers, a dyed blue yarn ball, a decorated *chuspa* (bag used to hold coca leaves), a weaving loom holder, two seed necklaces, a bundle with white mineral in it, and a net bag that contained miniature versions of the *jíquima* necklaces and loom holders found in the first bundle, along with more white mineral. One of the seed necklaces has been identified as *Nectandra sp.*, commonly known as *ishpingo* (Bertone Pietra, 2011). *Ishpingo* is used today to cure *mal aire*, *susto*, epilepsy, or enchantment (Bussmann et al., 2010, p. 614).

A small cotton bag at the core of the second bundle contained *cóndor* stems, tied together. There were seven groups of these plant stems; four were tied with a yellow-colored fiber, two with a dark-colored fiber, and one with a mixture of yellow and dark fibers (see detail in Fig. 8.6). As mentioned above, *cóndor*, found in some of the pit features, is used today for good luck, for success in travel, and to combat *mal aire* (Bussmann et al., 2010, p. 615). The manner in which *cóndor* is currently employed in healing is reminiscent of that encountered in the bundle. *Cóndor* stems are used in making *seguros*, in which bundles of three plant stems are placed in a container of perfume and other items, blessed, and either placed at home or carried around by the individual (Bussmann et al., 2010, p. 629).
It is also worth noting that both *ishpingo* and *cóndor* come from the jungle or the mountains above 3500 m.a.s.l., respectively—from very far away. On the north coast of Perú scholars have documented that “plant species used for ‘magical/ritual’ disorders come mostly from the high Andes” (Bussmann & Sharon, 2006). Perhaps more than the other possible plants used for healing, *ishpingo* and *cóndor* are explicitly used for healing purposes and must be acquired from far away.

The white mineral found in both bundles is similar to earths and minerals used for medicinal and ritual purposes (Browman & Gunderson, 1993, p. 416). Among the Aymara from Chucuito there is documented use of a mineral called *q'olpa* in diagnosing illness (Tschopik, 1951, p. 247). *Q'olpa* absorbed the illness from the individual and then would be burned to reveal the illness. In this context, the minerals were bound inside small cotton textile bags, sealed, and placed at the core of the two larger bundles.
The *jiquima* necklaces may not be related necessarily to healing, but may have served another purpose. While the *jiquima* root is edible, the seeds are not and are toxic. Toxic beans are known to be used by shamans and sometimes worn as necklaces (Schultes, 1998). Women among the Aguaruna Jívaro of Perú use *jiquima* seeds in a mixture to cause abortion (Berlin, 1985, p. 135).

Textile analysis also demonstrated that 9 of 22 total textiles employed in the bundles were made of s-spun yarn. In this context, s-spun materials are not the norm (z-spun) and are believed to be counterspun. Counterspinning has been linked to magical practices among Chancay peoples (Kula, 1991). At Acaray, it is reasonable to suggest that counterspun cloth would have been employed by shamans or healers. Bundling the varied assemblage of ritually charged items in magical cloth would have enhanced the potency of the offering.

Artifacts and remains relating to health and magic indicate that other strategies were used to cope with concerns for group safety and to alleviate group suffering (perhaps an affliction similar to *ñakary*). The bundles in particular are very similar to ethnographically documented *mesas* (see above) used to cure illness. *Mesa* ceremonies are accompanied by a variety of food and burnt offerings made to appease spirits and the chewing of *coca* leaves. Given the association of the dedicatory offerings to burning events and the deposition of remains of healing plants (including *coca* seeds), it is reasonable to assert that *mesa*-like rituals took place in the summit structure at Acaray.

Discussion

At Acaray there is evidence for defense, ritual coping, and scalar stress. These three processes are interrelated and were embodied by those who lived around and used the fort. Generally, we can summarize the evidence for congregation and conflict, which are the stage for the emotional experiences people embodied as illness:

1. Widespread fort construction in the Huaura Valley and region in response to an external threat
2. The rapid construction of Huaura Valley forts suggesting a sense of urgency
3. Preparations for battle by stockpiling of arms in Huaura Valley forts
4. Nonpermanent settlement at Acaray suggesting communities lived with an awareness of imminent threat and converged periodically in the face of attacks
5. The deposition of ritual and healing items within walls and in defensive architecture at Acaray
6. The qualities of ritual items and their contexts that are indirect evidence for confrontation of illness

The sources of “idioms of suffering” (i.e., fear, anxiety, and stress) at Acaray are the threat of war and conflict that could have made the mundane tasks of daily life difficult. There is currently no direct evidence for physical stress on people’s bodies given the lack of skeletal studies. I can only suggest that it is likely that the acquisition
of the basic necessities of life, such as food and water, was made more difficult. There is indirect evidence of a heightened state of alertness, worry, and anxiety over attack indicated by the rapid reconstruction of the fort at Acaray. It is apparent that people perceived this expression in others and embodied it themselves. Efforts were made to not only build defenses, but to collect and stockpile river cobble projectiles to be used in defense.

As people rebuilt Acaray and prepared it for attack, there is evidence that rituals took place at the well-defended summit structure. These rituals suggest a concern with healing in a broad sense. Perceived threats to well-being created new affective fields in which people expressed concern over their relation to their new circumstances and to new people. Increased cooperation and contact between groups would have necessitated new alliances, which would have been brokered in part through rituals of solidarity. These rituals were likely taking place not only at Acaray, but in the larger region, at the numerous other fortifications constructed at this time. Creating solidarity must have been a concern as groups of people congregated in stressful and dangerous times to work toward their collective safety. The bundles are composite artifacts that may have been assembled by representatives of different groups of people, on behalf of those groups. The bundles and associated residues are not dissimilar to the remains of ethnographically documented mesa ceremonies, some of which are employed for the benefit of the community. Thus the healing, I would argue, was for the newly emerging “emotional community” of people at Acaray. Whether every member of the community benefitted from such healing practices, or were fully included, is a question that arises, but one in which I do not have data in hand to address.

The indirect evidence for healers at Acaray suggests that curing ceremonies took place during reconstruction efforts. During the sealing of ancient architecture on the summit with newly built rooms and benches, food offerings were made, and the remains of food consumption and healing rites were interred in the architecture. Many of the plant remains found in these deposits have documented medicinal uses among contemporary Andean peoples. Seed necklaces, magical cloths, and healing plants carefully assembled and deposited in “singular” ways (Walker, 1995, pp. 73–74) were employed in an atmosphere of simultaneous defensive construction. In this state of heightened alert, illness had to be overcome. Because the activities of war are aimed at groups, healing would have been necessary for not just individuals, but groups of people who collectively defined emotional expressions of fear and who were needed for defensive mobilization efforts. People living in this atmosphere would have been attuned to others around them. The motivations for healing have everything to do with a complex array of emotions that reference relationships among individuals and between individuals and powerful spirits.

I interpret the items in the bundle as referencing women and reproduction. The health of any group can be linked to control over fertility and reproduction. Emotional distress arising in a time of war, and in the circumstances that appear to have existed in the Huaura Valley in the LIP, may have been related to a concern for women’s and children’s health. The community of the Fortress of Acaray, perhaps, was explicitly seeking to aid their survival in a very real reproductive sense, carrying out
healing rites that emphasized fertility and fertility regulation. In parts of the Andes, people hold the belief that women pass on their distress to their children, causing multi-generational illness (Tapias, 2006, p. 404). Such social illness would be damaging to the group and would have repercussions beyond immediate circumstances that could lead to greater uncertainty about the future. I mention these possibilities not as alternatives to understanding the curing items as related to fear, the amelioration of group tension and suffering, or requests of the divine, but as yet other, perhaps interrelated, emotional experiences that might have been embodied by some people at Acaray.

Conclusions

The construction of defensive architecture and ritual evidence at Acaray can be reasonably described as evidence of emotional expressions of anxiety and fear motivated by multiple circumstances. There was increased need for defense and security as people living near Acaray, and in the Huaura Valley, acted upon an external threat. In this context, the congregation of people under new circumstances contributed to an already stressful situation. Communities throughout the valley and the larger region constructed many large fortifications for collective defense. The details from Acaray provide insight into the emotional dimensions that accompanied these new developments. Group tension and suffering are suggested by the remains of ritual practices aimed at negotiating such emotional and bodily states. The embodiment of these emotions likely led to physical illness and suffering that may have been treated by traditional remedies. Though there are indications that people felt anxious and fearful to the point of being sick, there are also suggestions that they confronted these stressful times through healing rituals and the strengthening of group bonds to navigate the difficulties arising from times of war. At Acaray, then, we can infer that people engaged in defense and healing. The entanglement of community formation, war, ritual, and healing was embodied by people at Acaray.

The experiences of war in the past have often been characterized in an emotionally neutral way or in uncritical, taken-for-granted fashion by archaeologists. Ethnographic descriptions of war zones and the impact of conflict on contemporary people remind archaeologists that emotion can be central to understanding the making and unmaking of war. Concepts such as “affective field,” “attunement,” “atmosphere,” and “emotional communities” are useful for making emotion an explicit part of archaeological interpretations without assuming universal emotions or assigning feelings uncritically to people of the past. In this case study, the refuge at the Fortress of Acaray was the architectonic setting that emerged through the convergence of neighboring groups, an ancient fortification, and the materiality of physical and spiritual defense. By focusing on how war is entangled with other social relations, and embodied by those who live it, we can gain a fuller understanding of war as an array of practices and emotions out of which emerges social change.
Acknowledgments I would like to thank Jeffrey Fleisher and Neil Norman for inviting me to contribute to this volume. This paper benefited greatly from their critical feedback and comments, as well as from a thoughtful reading and review by Tim Pauketat. Fieldwork at Acaray was funded by grants from the University of Illinois at Urbana-Champaign Graduate College, Fulbright-Hays, and the Wenner-Gren Foundation. Additional survey work in the Huaura Valley was funded by a National Science Foundation Minority Postdoctoral Research Fellowship.

References

brownvm@ipfw.edu

