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Long-term effects of estradiol replacement in the olfactory
system
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IL 61920
2Center for Alzheimer’s Disease and Related Disorders, P.O. Box 19628, Southern Illinois School
of Medicine, Springfield, IL 62794-9628

Abstract
Olfactory dysfunction often precedes other clinical symptoms in chronic neurodegenerative
diseases like Alzheimer’s and Parkinson’s disease. Estrogen deficiency and apoE genotype are
known risk factors in these diseases and these factors also affect olfaction. Therefore we examined
the effects of estradiol replacement following ovariectomy on expression of apoE and markers of
cell proliferation, neuronal maturation, synaptogenesis and reactive gliosis in the primary olfactory
pathway of wild-type (WT) and apoE knockout (KO) mice. Estradiol replacement increased apoE
staining in the olfactory nerve and glomerular layers. Estradiol increased astrocyte density and
olfactory epithelium (OE) thickness regardless of the genotype. In addition estradiol treatment
increased the number of mature neurons in the OE and glomerular synaptophysin in both
genotypes, but the magnitude of increase was greater in the WT than in the KO mice. These data
suggest that estrogen and apoE act synergistically to minimize the loss of mature sensory neurons
and synapses following ovariectomy.
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Introduction
Estrogen deficiency is a known risk factor for neurodegenerative diseases such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Henderson, 2006, Paganini-Hill
and Henderson, 1994, Tang, et al., 1996). Olfactory dysfunction often precedes clinical
symptoms in these diseases (Bacon, et al., 1998, Calhoun-Haney and Murphy, 2005, Gilbert
and Murphy, 2004, Murphy, et al., 1998, O'Hara, et al., 1998). Replacing estrogen lost
during menopause reduces disease risk and also improves olfactory function (Caruso, et al.,
2008, Deems, et al., 1991). These observations lead to the possible relation of estrogen loss
to the progression of these diseases. Olfactory sensitivity to common odors in post-
menopausal women was significantly better following estradiol treatment (Caruso, et al.,
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2008) and a retrospective study (Deems, et al., 1991) found that only four of the 99 post-
menopausal women taking estrogen showed deficits in olfactory function, which is
relatively low when compared to the prevalence of olfactory dysfunction in women in the
general population. In essence these studies suggest that estrogen may influence olfactory
function in humans. Part of these deficits may be mechanical since the inhalation and
exhalation rhinomanometric values were higher in post-menopausal women following
estradiol treatment (Caruso, et al., 2008). However, mechanical deficits appear inadequate to
explain all deficits.

Recent studies suggest that apolipoprotein E (apoE) genotype modifies the beneficial effects
of hormone therapy on olfactory and cognitive function (Bacon, et al., 1998, Calhoun-Haney
and Murphy, 2005, Gilbert and Murphy, 2004, Murphy, et al., 1998, O'Hara, et al., 1998).
Moreover, apoE genotype is a major risk factor for several neurological diseases including
AD (Corder, et al., 1993). ApoE is a protein component of lipoproteins and humans have
three major isoforms of apoE (apoE2, apoE3, and apoE4) that are produced by three alleles,
ε2, ε3, and ε4, at a single gene locus on chromosome 19 (Davignon, et al., 1988, Hallman,
et al., 1991, Menzel, et al., 1984, Weisgraber, 1994). The ε4 allele is linked to a higher risk
and also to an earlier age of onset of AD (Corder, et al., 1993, Saunders, et al., 1993). The
ε4 allele is also associated with impairment in olfactory function in the early stages of AD.
Non-demented ε4-carriers showed dramatic decline in olfactory functioning as compared to
individuals without ε4 allele (Sundermann, et al., 2007, Sundermann, et al., 2008). Decline
appears to be specific to inheritance of ε4 allele, as AD patients with ε4 allele showed
greater deficits in olfactory tests than siblings without ε4 allele (Handley, et al., 2006).
Results from longitudinal studies also suggest that inheritance of ε4 allele leads to poor
scores in olfactory tests (Calhoun-Haney and Murphy, 2005). In essence, these findings
show that apoE plays a key role in olfactory function.

Estrogen administration appears to ameliorate olfactory dysfunction in apoE4 individuals.
Sunderman et al showed that replacement of estrogen alone or combined with progesterone
in women who had undergone hysterectomy improved olfactory functioning only in apoE4
carriers, but not in apoE4-negative individuals (Sundermann, et al., 2008). Together these
studies suggest a role for estrogen in olfactory function, which is complexly modulated by
apoE genotype. The mechanism underlying the interaction of estradiol on olfactory function
is not clear.

We showed that treatment of estradiol in ovariectomized mice significantly increased apoE
production in the olfactory bulb (McAsey, et al., 2006). We also found that apoE levels
varied throughout the estrus cycle in the olfactory bulb of mice (Struble, et al., 2003).
Increase in apoE production during estrus followed the surge of estradiol during proestrus,
suggesting that estradiol increase may prime apoE production.

In the present study, we asked a simple but important question: What effect does estradiol
replacement have following ovariectomy on expression of apoE and markers for cell
proliferation, reactive gliosis, neuronal maturation, and synaptogenesis in the primary
olfactory pathway? We used wild-type (WT) and apoE knockout (KO) mice to understand
the impact of apoE deficiency on estradiol’s effect.

We found that estradiol treatment increased apoE staining in the olfactory nerve and
glomerular layers. Replacement was associated with a significant increase in process density
of astrocyte, the primary producers of apoE in the CNS. However, apoE was not necessary
for estradiol induced OE thickness. Estradiol increased the number of mature neurons in the
OE and the glomerular synaptophysin in both genotypes, and the presence of apoE amplified
the estrogen effect. These data suggest that estrogen and apoE act synergistically to
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minimize the loss of mature olfactory sensory neurons and their synapses following
ovariectomy.

Materials and Methods
Animals

Breeding pairs of WT C57BL/6 strain and homozygous apoE KO mice were purchased from
the Jackson Laboratories, Bar Harbor, ME. ApoE genotype of the litters were verified by
PCR and confirmed by immunoblotting using anti-apoE as described below. Four months
old mice were used in this study.

Ovariectomy
WT and KO littermate mice, four months of age at the start of this study, were used. Mice
were ovariectomized (OVX) by a dorsal, bilateral approach under ketamine (100 mg/kg) and
xylazine (50 mg/kg) (Sigma, St. Louis, MO) anesthesia and sterile operating conditions. The
animals recuperated for five days prior to estradiol/vehicle pellet placement. In previous
studies we have shown that at five days post-OVX, estradiol levels were undetectable in
mice (Cheng, et al., 2007, McAsey, et al., 2006). The animals were randomly assigned to
either replacement with a pellet containing estradiol (0.36 mg, 60 day release, Innovative
Research of America, Sarasota, FL) or a pellet containing only the binder (vehicle).
Estradiol- or vehicle-pellets were placed subcutaneously using a trochar at the mid-scapular
level. Preliminary results from our laboratory, and published results from several
laboratories, have demonstrated that the estradiol pellets maintain 17 β-estradiol at a
constant proestrus level for at least 60 days (Cheng, et al., 2007, Katovich and O'Meara,
1987, McAsey, et al., 2006, Rosenblum, et al., 1985).

Tissue preparation
Mice were sacrificed three days following implantation of estradiol- or vehicle-pellets. For
fluorescence immunohistochemistry, mice were anesthetized as described above and
transcardially perfused with cold saline (0.9% NaCl), followed by 4% paraformaldehyde in
0.1M PBS. Olfactory turbinates were removed and cryoprotected overnight in 30% sucrose
in 0.1 M PBS. After cryoprotection, the turbinates were frozen with dry ice and sections
were cut on a cryostat at 18 μm, and air dried for 2 h at room temperature.

CV Staining
Sections were rinsed in distilled water for 10 minutes and placed in the oven for 2 hours at
37°C. The sections were then defatted with xylene for 30 minutes. The sections were
hydrated in a series of ethanol (100%, 95%, and 70%) for 10 minutes each. Sections were
rinsed in water and stained in cresyl violet acetate solution (Sigma, St. Louis, MO) for 4
minutes. Sections were rinsed in water and in a series of ethanol (70, 95, and 100%).
Following incubation in xylene for 30 minutes, sections were coverslipped using permount
(Fisher Scientific, Fair Lawn, NJ).

Immunohistochemistry
Sections on slides were rinsed in 0.1 M PBS, and permeabilized with 0.2 % Triton X-100
(Sigma, St. Louis, MO) in PBS for 30 minutes at room temperature. The slides were rinsed
once with PBS and treated with 70, 90, 100, 90, and 70% ethanol for two minutes each
(Jang, et al., 2003). Non-specific immunoreactivity was attenuated by incubation in 2.25%
gelatin in 0.1 M PBS for 1 h, followed by overnight incubation with primary antisera
solution at 4°C (see Table 1 for source and dilution used). The sections were washed three
times in PBS, and incubated for 1 hour at room temperature with secondary antibody
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solution as listed in Table 1. The sections were washed three times in PBS, mounted in
Vectashield (Vector labs, Burlingame, CA).

We chose primary antibodies that are thoroughly characterized and are highly specific to
their respective antigen (Baker, et al., 1989, Buttini, et al., 2002, Castejon, et al., 2002,
Keller and Margolis, 1975, Morrison and Prayson, 2000, Wang, et al., 2006, Wiedenmann
and Franke, 1985). Moreover, for apoE staining, KO mice were also processed in parallel
with WT mice. As shown in Figs. 1 and 2, apoE immunostaining was absent in the olfactory
epithelium and olfactory bulb of apoE KO mice. In addition, specificity of all antibodies was
evaluated by incubation with normal serum in place of the primary antisera which resulted
in no staining.

Stained sections were examined using an Olympus BX-50 microscope. Images were
captured using a Pixera Digital Camera (Pixera, Los Gatos, CA) and saved as high
resolution TIF files. Figures from images were assembled using Photoshop (Adobe, San
Jose, CA). Image analysis was performed using Scion Image software (Scion Image,
Frederick, MD).

Quantification
Morphological thickness of the OE was determined from image calibration of a stage
micrometer in Scion Image. Thickness was repeatedly measured from the horizontal basal
cell layer to the head of the sustentacular cells. The number of OMP+ cells in ten 100 μm
segments of OE and BrdU+ cells in 1 mm of OE was counted utilizing Scion Image.

GFAP process density was calculated by a point count method of grid intersections (Struble,
et al., 2006). A 5 X 5 cell grid, 25 μm/cell side, was overlaid on the live image and each
immunostained process (but not cell body) intersecting the grid was marked (Fig. 3). At
least three nonoverlapping samples were obtained and averaged to give a single intersection
score for each area.

Statistical Analysis
All quantification procedures were performed using three mice per genotype (WT, KO) and
three mice per treatment (estrogen, vehicle). A total of 10 measurements were taken from
each animal. The data in individual experiments were presented as mean ± standard error
and statistical analysis (ANOVA, Repeated Measures ANOVA) was performed using
SYSTAT. Post-hoc testing at each day was performed with t-tests using p<0.001 as the
significant difference to protect against type I error. A blinded procedure was employed in
all experiments so the experimenter was unaware of the genotype (WT versus KO) and
treatment (estradiol versus vehicle) received by the animals.

Results
ApoE

ApoE immunostaining was comparable in estradiol- and vehicle-treated WT mice over the
time course of this study (Fig. 1). In both groups, apoE immunoreactive processes were
present between the olfactory sensory neuron (OSN) bundles and at the olfactory epithelial
surface where the cell bodies of the sustentacular cells reside. As noted in a previous study,
the immunoreactive processes in the estradiol-treated mice terminated on faintly stained
globular structures above the unstained basal lamina. We previously showed that these
globular structures expressed GBC-1, a marker for globose basal cells (Nathan, et al., 2007).
In the vehicle group, apoE immunostaining was concentrated on oblong cells that were
arranged on a plane parallel to the unstained basal lamina. Whether or not these oblong cells
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are horizontal basal cells was not determined (Holbrook, et al., 1995). ApoE staining in the
lamina propria was intense in the endothelial cells of blood vessels in both estradiol- and
vehicle-treated groups. Diffuse apoE staining was observed throughout the core of the nerve
bundles in estradiol-treated mice; whereas, only very faint apoE staining was observed in the
vehicle-treated mice.

In contrast to the OE, estradiol treatment increased apoE staining in the olfactory nerve and
glomerular layers in the OB throughout the duration of the study (Fig. 2). ApoE
immunostaining was weak throughout the OB in the vehicle-treated mice. ApoE staining in
estradiol-treated mice was observed in the olfactory nerve. Large olfactory nerve fascicles
consistently stained, and were demarcated from each other by densely stained cellular
processes. Glomeruli were clearly outlined by immunostained cells in the septae
surrounding the glomeruli as previously described (Nathan, et al., 2001, Struble, et al.,
1999). These studies suggest that estradiol treatment has major effect on apoE expression in
the OB, but not in the OE of ovariectomized mice.

Glial fibrillary acidic protein
To identify the source of apoE increase in the OB of estradiol-treated mice, we examined
astrocytes that are the primary producers of apoE in the CNS. Quantification of the glial
fibrillary acidic protein (GFAP, reactive astrocyte marker) process density revealed that
estradiol treatment significantly (F1,40 =122.92; p<0.001) increased process density in both
the WT and KO mice (Fig. 3). GFAP process density in WT mice appeared to be greater
than that in the KO mice, although this did not reach standard levels of significance
(F1,40=3.19; p<0.08).

OE thickness
The OE thickness was measured in CV stained sections. The OE was thicker at all time
points in the WT mice than the KO mice (F1,40=6.21; p<0.001) (Fig. 4). Estradiol treatment
increased OE thickness by about 28% (F1,40 =58.62; p<0.001) over the course of the study.
ApoE presence or absence did not modulate this estradiol effect.

Olfactory marker protein
Olfactory marker protein (OMP) labels mature OSN in the OE (Margolis, 1972). We found
a significant three-way interaction between genotype, day and estradiol treatment in the
OMP data (F5,40=6.90; p<0.001) raising a complex interpretation; therefore Bonferroni-
corrected post-hoc testing among groups was performed at each day (Fig. 5). Estradiol
replacement was associated with an increased density of OMP cells on day 3 in both
genotypes. Initial increase was followed by decline reaching a nadir on day seven. By day
21, the estradiol-replaced WT was significantly greater than the other three groups that were
statistically equivalent to each other. At 42 days the estradiol-treated WT was greater than
the estradiol-treated KO which was greater than both the vehicle-treated genotypes. Finally
at day 56, the estradiol-treated KO had caught up with the estradiol-treated WT, followed by
the vehicle-treated WT then the vehicle-treated KO. In essence, estradiol replacement was
associated with increased OMP density and this effect was facilitated by the presence of
apoE.

Synaptophysin
In general Syn staining in the glomeruli of the OB followed the density of mature olfactory
neurons in the OE as measured by OMP. At 21 days the WT estradiol treated mice were
greater than any of the groups (Fig. 6). The estradiol-treated KO mice recovered
approaching the WT estradiol levels by 42 days. In essence, the presence of estradiol and
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apoE acted synergistically to minimize the loss of synaptophysin seen following
ovariectomy

Discussion
It is important to consider the cellular dynamics of OE changes following OVX. Our study
started five days following OVX at which time we found no difference between genotypes
for CV, OMP or GFAP. Syn was less in the apoE KO as we and others have previously
reported (Masliah, et al., 1995, Nwosu, et al., 2008). We then implanted estradiol or vehicle
and started sampling treated groups at 3 days (eight days post OVX). For analysis, we
expressed our data as a percent of five days post-OVX. Our data suggest that the OE shows
significant changes 8 days following OVX. This change is not indicated by OE shrinkage,
which samples both mature and immature OSN. Estrogen replacement transiently increased
the density of OMP+ cells, which was followed by a decline. We hypothesize that this
transient increase represented immature OSN cells in situ promoted by estradiol to display a
mature phenotype (OMP+). However, this maturation is transient resulting in a nadir at
seven days. A similar pattern was seen for OB synaptophysin, with the nadir reached at 21
days and then followed by a progressive recovery. Hence we speculate that OVX results in
loss of mature OSN that begins to become apparent at 8 days post-OVX.

Several studies have shown that estradiol increases apoE expression in both neuronal and
non-neuronal tissues (Nathan, et al., 2004, Srivastava, et al., 2001, Srivastava, et al., 1996,
Srivastava, et al., 1997, Stone, et al., 1997, Wang, et al., 2006). In contrast to these studies
apoE expression levels in the OE were comparable in estradiol- and vehicle-treated mice at
all time points post-treatment. In the vehicle-treated mice, apoE staining was at low levels
and was diffusely located in the olfactory nerve and glomerular area. Estradiol treatment
increased apoE expression in the olfactory nerve and the glomerular layer of the OB. The
intensely stained cellular structure in the olfactory nerve layer resembles ensheathing glia
and their processes. The immunostained cells around the glomeruli appear to be astrocytes,
as previous studies have shown that astrocyte and its network of processes surrounds the
neuropil of the glomeruli. The estradiol induced increase of apoE in the OB and olfactory
nerve remained elevated throughout the entire course of the study, and no major intraday
variation in intensity and localization pattern was evident.

Astrocytes are the primary producers of apoE in the CNS (Boyles, et al., 1985). We found
that estradiol treatment significantly increased GFAP process density in the glomerular layer
in WT mice throughout the entire time course of this study regardless of genotype. It is
possible, therefore, that activation of astrocytes lead to increased production of
periglomerular apoE.

Estradiol treatment significantly increased OE thickness in both WT and KO mice. We and
others have shown that estradiol can increase basal cell proliferation (Barha, et al., 2009,
Beites, et al., 2005, Nathan, et al., 2010, Pawluski, et al., 2009). Basal cell proliferation and
subsequent differentiation to sensory neurons could potentially lead to an increase in OE
thickness. Alternatively, estradiol treatment may have also increased the number of mature
OSN in the OE by facilitating synapse formation. Our OMP data discussed below
correspond with this assumption.

The OMP is a marker for mature OSN that have established functional synapses with the OB
neurons (Graziadei, et al., 1980, Sydor, et al., 1986). Estradiol-treated mice of both
genotypes had significantly more OMP+ cells on the day 3 than vehicle-treated mice.
Estradiol could have protected mature neuronal death induced by loss of ovarian hormones.
Alternatively, estradiol treatment could also have pushed residual OSN into expressing an
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adult phenotype by promoting axonal growth and synapse formation of the immature OSN.
The increase of OMP cells at 21 days may represent this increased growth. The robust
neuroprotection by estradiol did not persist on treatment day seven as the number of OMP+

cells in the both groups reached the lowest level. Following this sharp decline estradiol
treatment promoted maturation of OSN in both genotypes, however, the recovery of OMP+

cells was faster and greater in the WT mice as compared to KO mice. This data is consistent
with previous studies showing a synergistic effect of apoE and estradiol in axonal growth
and maturation of neurons (Nathan, et al., 2004, Teter, et al., 1999).

Estradiol replacement was associated with increase in density of presynaptic marker,
synaptophysin, which is clearly evident in the WT mice. There are several possible
explanations for this increase. First, estradiol replacement could preserve Syn terminal from
degeneration as a consequence of ovariectomy which has been previously noted in other
parts of the brain (Masliah, et al., 1995, Nwosu, et al., 2008). Our studies extend these
findings to the olfactory bulb. Importantly, the Syn we measured sampled terminals both
intrinsic to the OB and extrinsic (OSN). The absence of apoE in KO mice appears to
diminish the protective function of estradiol on Syn. Second, estradiol replacement could
increase synaptogenesis. Previous studies have shown estradiol induced increase in synaptic
proteins, including Syn (Frick, et al., 2002, McAsey, et al., 2006, Rune, et al., 2002, Sharma,
et al., 2007). Third, estradiol treatment could potentially increase either the number of
synaptic vesicles per terminal or the number of Syn molecules per vesicle without altering
the number of synapses. In addition to these possibilities, our results could be explained by
proposing varying role for estradiol in synaptic structures during the course of the study.
Estradiol treatment could have protected synaptic structures in the glomeruli during the early
days after ovariectomy, but could have facilitated synaptogenesis in later days.

To our knowledge very few studies have looked at the effects of estradiol fluctuations
during estrus cycle on olfactory structure and function in animal models. Olfactory function
varied during estrus cycle in mice, with heightened olfactory sensitivity to detect a buried
food during the estrus stage of the cycle (Kumar and Archunan, 1999). One study has looked
at the effects of estradiol on the olfactory system repair, and the results showed that estradiol
replacement significantly improved recovery of olfactory discrimination performance post
OE injury in rats (Dhong, et al., 1999). The physiological basis underlying this latter finding
is not known.

The results from this present study suggest that estradiol deprivation by ovariectomy may
result in degeneration of the OE that could, in part and transiently, be inhibited by replacing
estradiol. Recovery to presumed adult levels (56 days) was facilitated by both estradiol and
apoE. Future studies need to be performed to dissect the molecular pathways behind the
interaction of estradiol with apoE in the olfactory system.

Given that estradiol replacement can result in both apoE dependent and independent
processes in the OB and OE, it is not surprising that human studies are complex. Moreover,
estrogen replacement in very elderly patients, where OE is substantially atrophic, may
complicate interpretations (Trojanowski, et al., 1991). ApoE3, which is similar to mouse
apoE, may promote basal cell proliferation, differentiation, and axonal growth and thereby
protects from olfactory decline in women. In contrast, if apoE4 is produced in the olfactory
system, estrogen use may not help repair the atrophic OE, which may explain the dramatic
decline in olfactory function in individuals with apoE4-allele (Calhoun-Haney and Murphy,
2005, Sundermann, et al., 2007, Sundermann, et al., 2008).
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Abbreviations

ApoE apolipoprotein E

OB olfactory bulb

OE olfactory epithelium

OSN olfactory sensory neuron

GBC globose basal cells

Sus Sustentacular cells

OMP olfactory marker protein

GFAP glial fibrillary acidic protein

Syn synaptophysin
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Highlights

• Estradiol treatment increases apoE expression in the olfactory system.

• Estradiol interacts with apoE to reduce olfactory neuronal loss post-
ovariectomy.

• Estradiol increases neuronal and synaptic density in the olfactory system.
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Fig. 1.
Effects of estradiol on apoE expression in the adult mouse olfactory epithelium. ApoE
immunoreactivity in ovariectomized wild-type mice implanted for 3 (A, B), 21 (C, D) and
56 (E, F) days with either a vehicle (A, C, E) or estradiol pellet (B, D, F). Sus, sustentacular
cells, OSN, olfactory sensory neuron, BC, basal cell zone, BV, blood vessel, OF olfactory
fascicle. Arrow indicates basal lamina. ApoE immunoreactivity in vehicle- and estradiol-
treated mice was intense in the perikarya of the sustentacular cells and was faint around the
OSN. Intense apoE staining above the basal lamina was present in oblong cells (arrow
heads) in the vehicle group, and in punctas surrounding globose cells in the estradiol treated
group (asterisks). Endothelial cells of the blood vessels in both treatment groups were
strongly stained. ApoE immunostaining was present throughout the core of the olfactory
fascicle in estradiol treated mice, and was very faint in the vehicle treated mice. Absence of
apoE staining in the olfactory epithelium of apoE knockout mice (G). Scale bars = 10 μm.
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Fig. 2.
ApoE immunostaining in the olfactory nerve and glomerular layer of the OB of
ovariectomized WT mice implanted with either vehicle (A) or estradiol (B, C, D) pellet.
ApoE immunostaining was weak throughout the OB in mice implanted for 3 days with a
vehicle pellet (A). In mice implanted with estradiol pellet for 3 (B), 21 (C), and 56 (D) days,
dense apoE immunoreactivity was observed in cellular processes (arrows) in the olfactory
nerve fascicles and in cells surrounding the glomeruli (arrow heads). Absence of apoE
staining in the olfactory bulb of apoE knockout mice (E). Scale bars = 10 μm.

Nathan et al. Page 14

Exp Neurol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
GFAP immunoreactivity in the glomerular layer of the olfactory bulb. (A) GFAP
immunoreactive processes density was calculated by superposition of a computer generated
grid over the microscopic section. Each intersection of a GFAP immunoreactive process is
marked with a circle. (B) Quantification of GFAP immunoreactive process density in
vehicle (Vh) and estradiol (Es) treated WT and KO mice (Mean and SE). (C) Collapsing the
genotype effects across the time points shows that estradiol treatment significantly (*
p<0.001) increased GFAP immunoreactive processes as compared to vehicle treatment.
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Fig. 4.
(A) Quantification of olfactory epithelium thickness in WT and KO mice treated with
estradiol (Es) or vehicle (Vh) (Mean and SE). (B) Pooling the genotype effects across the
time points shows that estradiol treatment significantly (*p<0.001) increased OE thickness
as compared to vehicle treatment. In addition, WT mice had thicker OE (*p<0.001) as
compared to apoE KO mice, irrespective of the treatment.
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Fig. 5.
OMP stained sections of olfactory epithelium from WT (A, C) and apoE KO (B, D) mice
implanted with an estradiol (C, D) or a vehicle (A, B) pellet for 21 days. Irrespective of the
genotype, estradiol treatment increased OMP+ cells; however, estradiol-treated WT mice
had significantly more OMP labeled cells than the estradiol-treated KO mice. Scale bars =
10 μm. (E) Quantification of OMP+ cells in WT and KO mice treated with estradiol (Es) or
vehicle (Vh) (Mean and SE). WT-Es versus all other groups (* p<0.001), WT-Es versus
vehicle groups (** p<0.001), KO-Es versus vehicle groups (# p<0.001).
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Fig. 6.
Syn stained sections of olfactory bulb from WT (A, C) and apoE KO (B, D) mice implanted
with an estradiol (C, D) or a vehicle (A, B) pellet for 21 days. The WT estradiol treated mice
were greater than any of the other groups. Scale bars = 10 μm.
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Table 1

List of primary and secondary antibodies used in this study

Antibodies Host Source Dilution

ApoE Goat Calbiochem, San Diego, CA

OMP Goat Wako, Richmond, VA 1:500

Syn Rabbit Cell Marque, Rocklin, CA 1:500

GFAP Mouse Accurate, Westbury, NY 1:500

FITC-anti goat Donkey Jackson, West Grove, PA 1:500

Cy3-anti goat Donkey Jackson, West Grove, PA 1:500

Alexa-anti rabbit Donkey Invitrogen, Eugene, OR 1:200
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