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Abstract
Summary—The ‘birthweight paradox’ describes the phenomenon whereby birthweight-specific
mortality curves cross when stratified on other exposures, most notably cigarette smoking. The
paradox has been noted widely in the literature and numerous explanations and corrections have been
suggested. Recently, causal diagrams have been used to illustrate the possibility for collider-
stratification bias in models adjusting for birthweight. When two variables share a common effect,
stratification on the variable representing that effect induces a statistical relation between otherwise
independent factors. This bias has been proposed to explain the birthweight paradox.

Causal diagrams may illustrate sources of bias, but are limited to describing qualitative effects. In
this paper, we provide causal diagrams that illustrate the birthweight paradox and use a simulation
study to quantify the collider-stratification bias under a range of circumstances. Considered
circumstances include exposures with and without direct effects on neonatal mortality, as well as
with and without indirect effects acting through birthweight on neonatal mortality. The results of
these simulations illustrate that when the birthweight-mortality relation is subject to substantial
uncontrolled confounding, the bias on estimates of effect adjusted for birthweight may be sufficient
to yield opposite causal conclusions, i.e. a factor that poses increased risk appears protective. Effects
on stratum-specific birthweight-mortality curves were considered to illustrate the connection
between collider-stratification bias and the crossing of the curves. The simulations demonstrate the
conditions necessary to give rise to empirical evidence of the paradox.
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Introduction
The birthweight paradox refers to a counter-intuitive observation related to birthweight,
neonatal mortality and factors associated with both birthweight and mortality, such as maternal
smoking, parity and race, among others; babies that would seem to be at the highest risk (e.g.
those of low birthweight and with smoking mothers) appear to do better than those at lower
risk (e.g. low birthweight and non-smoking mothers).1-8 Graphically, this is represented as the
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crossing of birthweight stratum-specific mortality curves, the hallmark of the birthweight
paradox.9,10

The interpretation of this observation has long been a subject of debate in the literature.7,8,
11-13 In the context of smoking, it has been proposed previously that maternal smoking might
somehow modify the risk of low birthweight, although many theories seeking to explain the
paradox focus on artifactual, modelling-induced origins.10,14,15 Some have suggested that
there is no direct link between birthweight and mortality whatsoever; rather, birthweight has
been implied as amarker for some other true link between these factors.16 Recently, directed
acyclic graphs (DAG) have been used to illustrate the role of birthweight in the relationship
between neonatal mortality and risk factors such as smoking.10 These causal graphs suggest
birthweight to be a collider - a variable in a causal system that is a shared effect of more than
one cause. In the case of birthweight, one may easily consider it to be affected by multiple
factors including genetic, environmental and behavioural factors.17 Well-established rules
show that stratification (via adjustment, restriction, or other approach) on a collider can
introduce bias to estimates akin to selection bias.10,14 In the context of birthweight, the result
of this collider-stratification bias would be to induce an association between factors affecting
birthweight that are unconditionally independent, making them appear correlated within strata
of the collider. As a result, neonatal mortality risk estimates may be biased (see Rothman et
al. for an extended discussion of DAGs and colliders).18

Causal diagrams are useful for identifying sources of bias but provide no quantitative
information regarding effects.19-21 In order for collider-stratification bias to provide
explanation for empirical evidence, the magnitude of causal effects must be considered. While
much has been written about confounding bias, there is limited research evaluating collider-
stratification bias in applied research, particularly in the context of perinatal epidemiology.
Greenland evaluated collider stratification bias and its magnitude, as well as comparing
collider-stratification bias with confounding bias when a variable fits both definitions, as in a
‘bowtie’ causal diagram.22 It was shown theoretically that collider-stratification bias tends to
be a less substantial source of bias than confounding, with formulas demonstrating how the
bias is influenced by the causal associations of factors in the causal system.22 Importantly, the
bias induced by adjustment for a collider can result in estimates with opposite direction from
true effects under certain circumstances thereby altering conclusions, not just strength of
evidence.

As illustrated in Fig. 1, various causal scenarios can be considered where the issue of the
birthweight paradox may serve for evaluation of collider-stratification bias; biologically
plausible causal models include birthweight as a collider. Many factors are known to affect
birthweight, such as maternal smoking, altitude and infant sex. Other determinants of
birthweight include processes with specific risk factors as yet unknown. Given assumptions,
collider-stratification bias can be quantified and compared against available data used to
demonstrate the paradoxical ‘crossing of the curves’.

In this paper, we first consider causal diagrams to describe the role of birthweight in assessment
of the relation between risk factors like smoking and neonatal mortality, to formalise the
question of interest and to introduce the counterfactual notions of total, direct and indirect
effects. Subsequently, we describe a simulation study to quantify collider-stratification bias
using smoking as the risk factor of interest along with birthweight, and neonatal mortality.
Finally, we describe the conditions necessary to give rise to the crossing of curves in the
birthweight paradox when stratifying on birthweight.
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Causal diagrams and framing the question of interest
Directed acyclic graphs are a type of causal diagram that can be used to represent hypothetical
causal networks linking risk factors of interest like smoking, birthweight, and outcomes such
as infant mortality. DAGs link variables (nodes) by arrows that represent direct causal effects
of one variable on another. They are acyclic because the arrows never point from a given
variable to any other variable in its past (i.e. causes precede their effects). An extensive
literature has been developed providing rules for drawing inference from causal diagrams.23,
24 With arrows signifying causal effects, the absence of an arrow between two variables
indicates the absence of a direct effect (i.e. a causal effect not mediated through other variables
in the causal diagram) of one variable on the other. DAGs are also useful for illustration of the
notions of total, direct and indirect effects, and to consider the effect of these factors on
inference.10

For example, diagrams in Fig. 1 display related causal scenarios including a risk factor (RF),
birthweight (BWT), neonatal mortality (NM) and unmeasured factors (U), genotypes for
example. Here we specify the risk factor as smoking status for illustration. In Fig. 1a smoking
affects birthweight but not neonatal mortality, either directly or through birthweight, while U
(e.g. proteins involved in placental development) directly affects both birthweight and neonatal
mortality. In this scenario birthweight does not directly affect mortality; rather it only appears
to do so through its relation with U. Figure 1b retains all the direct effects of 1a (arrows
a,b,e) while adding relations between both smoking and birthweight with neonatal mortality
(arrows c,d). Birthweight has now become an intermediary for both smoking and U, and each
can now be thought of as having an indirect effect that works through birthweight, as well as
a direct effect on neonatal mortality.

These diagrams are useful to illustrate the notion of collider-stratification bias that results from
conditioning on birthweight. In Fig. 1a-b, low birthweight may be the result of processes related
to the risk factor and/or those related to unspecified factors U. Given that an infant is of low
birthweight, different causes of that low birthweight have different implications for risk of
neonatal death. Those infants with low birthweight resulting from maternal smoking may have
a lower risk of mortality than those with low birthweight due to other causes that are also
associated with high mortality.

The notion of effect decomposition arises when investigators seek to analytically separate the
direct effects of a factor from those acting through intermediates (indirect effect). The
limitations of analytical approaches to identify mediators of effect have been described in the
literature;25-28 the limitations include questionable required assumptions of monotonicity and
consistency of effect. Additionally, the potential exists for analytical biases to arise through
adjustment for mediating factors under complex, but common, causal situations. We consider
this scenario as applied to questions of risk factors, birthweight and neonatal mortality. When
either of the causal diagrams in Fig. 1 hold true, birthweight is not a confounding variable and
its inclusion in statistical models has been demonstrated to create collider-stratification bias,
the magnitude of which is a function of the strength of relations among each of the factors in
the causal diagram.

Simulation study
In order to evaluate the magnitude of the bias that results from collider-stratification, a
simulation study was conducted based upon the causal network depicted in Fig. 1b. For
simplicity, we consider the diagram to represent a sufficient set (i.e. there is no residual
confounding), and all variables to be measured without error. For each scenario, 5000 datasets
were generated with 10 000 observations each.
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In the simulations, birthweight was modelled as

and neonatal mortality risk as

where the coefficients a, b, c, d and e represent direct effects of one variable on another. Various
scenarios were evaluated with a = (0, -200, -400, -600, -1000), b = (0.4, 1.0, 1.6), c = (0, 0.2,0.4),
d = (0.0, -0.0005) and e = (0.0, -200, -400); values for a, the effects of U, were chosen to reflect
the large potential number of unmeasured confounders of the birthweight-neonatal mortality
relation. Values representing effects of the risk factor, e, include estimates seen in prior
research17 in a range meant to represent various possible risk factors, including smoking, and
relations with birthweight and outcomes. For example, multiple births and infant sex are risk
factors with effects on birthweight of different magnitudes that may be considered.

Thus, for each scenario, the true direct effect of the risk factor is equal to ΘD = c, the true
indirect effect is ΘI = d*e, and therefore the true total effect is ΘT = c + d*e. A log linear model
was used to estimate the direct effects of the risk factor of interest:

Estimates of total effects were taken from the unadjusted log linear model:

Summary statistics were calculated for each scenario and effect estimate: the mean was
calculated as the average estimate across all simulations; bias as the difference between the
mean and the true parameter value, and mean squared error (MSE) as the sum of the variance
and the squared bias of the estimator.

These parameters correspond to three overarching scenarios: a risk factor with no true effects
on mortality (c = 0, e and/or d = 0), a risk factor with only direct effects on neonatal mortality
(c ≠ 0, e and/or d = 0), and a risk factor with indirect effects on neonatal mortality through
birthweight (c unconstrained, e and d ≠ 0). These scenarios cover the roles that risk factors
may have in relation to birthweight and neonatal mortality.

In all cases, the effect of adjustment for birthweight on estimates in the presence of unmeasured
factors was assessed by comparison of estimates from adjusted and unadjusted models.
Additionally, data from these simulations were used to generate birthweight-specific mortality
curves stratified on a binary risk factor of interest to illustrate the potential effects of collider-
stratifications under the conditions considered.

Results
Quantifying collider-stratification bias

Table 1 shows direct effect estimates, bias and MSE for the circumstance where no indirect
effect is present, so that total effects are equal to the direct effect of the risk factor on neonatal
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mortality. Under this circumstance, birthweight is not a collider in causal diagrams, and
adjustment for it does not represent a source of collider-stratification bias. A small bias (0-2%)
was present regardless of whether the risk factor affected birthweight, and varied slightly with
the effect of U on neonatal mortality. This bias was present in estimates of the direct effect
(adjusted model) as well as those of the total effect (unadjusted model).

In Table 2, the importance of the effect of the risk factor on birthweight to bias is illustrated.
Estimates under the circumstance of a true direct effect of the risk factor on neonatal mortality
while varying the components of the indirect effect (i.e. the relationship between risk factor
and birthweight, and that of birthweight and neonatal mortality) are shown. As previously, an
unmeasured confounder of the birthweight-mortality relation, U, is present as well. When the
risk factor affects birthweights (i.e. parameter e has non-zero value), birthweight is a collider,
andestimates from birthweight-adjusted models are accordingly affected by collider-
stratification bias. Even when birthweight had no impact on neonatal mortality (d =-0.0005,
top half of table), bias was observed in the adjusted model in the circumstance where
birthweight was a collider; however, bias to birthweight-adjusted estimates was much greater
when increasing birthweight resulted in decreased risk of mortality (d = 0, bottom half of table).
For a binary risk factor that has no effect on birthweight (e = 0) with true relative risk (RR) of
1.22, birthweight is not a collider and the RR was estimated as 1.21 by both the birthweight-
adjusted and unadjusted models. When the risk factor has an effect on birthweight, collider-
stratification bias occurs. When an average decrease in birthweight of 200 g, (e =-200) is added
to the risk factors with true RR of 1.22, models adjusting for birthweight yielded an estimate
of 1.03, a bias of -87%. Under these same settings, the RR estimate from the unadjusted model
was 1.34 - nearly equal to the true total effect of 1.35 and a bias of less than 1%.

Table 3 shows the factors that influence bias when birthweight is a collider, and includes the
estimated coefficients, bias and MSE. These results provide further emphasis on the importance
of the relationship between risk factor and birthweight, in combination with the degree of
confounding of the birthweight-mortality relation. For the results shown in Table 3, effects of
factor U on mean birthweight were fixed to be a decrease of 600 g, and risk factor as a decrease
in mean birthweight of 200 g. In this setting, even when the risk factor has no direct (c = 0) or
even indirect (d = 0) effect on neonatal mortality, bias was observed to the direct effects (i.e.
birthweight-adjusted) estimates that was in some cases quite substantial. Under conditions of
the strongest confounding of the birthweight-mortality by U, a null direct effect was estimated
to be as low as a 27% reduction in risk(RR = 0.73). With birthweight as a collider, bias was
observed to vary little within levels of parameter b, the effect of U on risk of neonatal mortality;
bias was most influenced by the effect of U on birthweight (parameter a), the effect of U on
neonatal mortality (parameter b) and the effect of the risk factor on birthweight (parameter
e). Conversely, estimates of the total effect (i.e. unadjusted) were minimally biased.

Effect of collider-stratification on mortality curves and the birthweight paradox
Figure 2 illustrates the manifestation of collider-stratification bias on mortality curves, and
represents an explanation for the crossing of the curves. In each of the four panels, the
relationships among a risk factor of interest, birthweight, factor U and neonatal mortality were
varied to show their impact on the curves. In panel A, parameters were set as follows: presence
of U reduces birthweight by 1000 g and directly increases risk of neonatal mortality with RR
= 1.5; the risk factor reduces birthweight by 400 g and directly increases risk of neonatal
mortality with RR = 1.8; increasing birthweight decreases risk of neonatal mortality by 5% per
100 g change from a baseline of 3000 g (parameter e =-0.0005). In panel A, infants of mothers
with the risk factor have higher mortality than those of mothers without the risk factor at all
birthweights.
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In panel B, the mortality curves are seen to completely overlap; this results when the risk factor
reduces birthweight by 600 g and directly increases risk of neonatal mortality with RR = 1.2;
U causes a decrease in birthweight of 500 g and increases risk of neonatal mortality with RR
= 2.2. The curves for those with and without the risk factor are observed to cross in panel C;
in this panel, U causes an average decrease in birthweight of 500 g, the risk factor causes a
decrease in birthweight of 400 g, and other parameters were unchanged from those of panel
B. Panel D illustrates a reversal of the circumstance in panel A. When U causes a decrease in
birthweight by 500 g and a RR for neonatal death of 3.3, the risk factor causes a decrease in
birthweight of 600 g and a RR for neonatal death of 1.2, and birthweight itself has no direct
effect on neonatal mortality; infants of mothers with the risk factor have lower mortality at all
birthweights compared with infants of mothers without the risk factor.

Conclusions
The ‘birthweight paradox’ has perplexed epidemiologists for some time and numerous
investigators have discussed explanations and solutions to the issue.7,8,11-13 The paradox has
raised questions regarding the significance of birthweight in questions of perinatal outcomes,
and the proper handling of birthweight in statistical models. In this paper, we have
demonstrated that adjustment for birthweight in the presence of unmeasured factors that affect
both birthweight and neonatal mortality not only results in bias, but that bias can change the
direction of estimates and may be of sufficient magnitude to result in the crossing of the
birthweight mortality curves - the hallmark of the birthweight paradox.

The notion of bias introduced through statistical adjustment for a collider - known as collider-
stratification bias - has been discussed generally in the literature as well as in the context of
perinatal epidemiology.22 Causal diagrams and the well-developed rules for their use have
been shown to have particular utility for illustrating this source of bias.29 For risk factors that
have a direct effect on perinatal outcomes as well as those mediated through an effect on
birthweight, inclusion of birthweight in regression models will lead to bias due to other factors
that affect birthweight and perinatal outcomes. Adjustment for birthweight, the mediating
factor, causes a statistical association between the factor of interest and any unmeasured factor
also causal of birthweight - factors that are marginally independent. This situation has been
shown to apply to the scenario of the birthweight paradox.10 Beyond issues with monotonicity
and consistency of effect, this scenario has been discussed as one of the potential shortcomings
of adjusting for mediating variables for effect decomposition.25-28

Nevertheless, the question of the potential magnitude of collider-stratification bias has received
limited attention. Previous work suggests that collider-stratification bias tends not to be large,
except in the presence of strong confounding factors.22 In our study, we observed small biases
when the unmeasured confounder of the birthweight-mortality was weakly confounding.
Conversely, we observed large biases to regression parameter estimates when adjusting for
birthweight when strong confounding of the relation between birthweight and neonatal
mortality exists; in some settings, protective effects were observed for risk factors with a true
relative risk of 1.5. Our results demonstrate that the largest determinants of bias that occurs
due to adjustment for birthweight are the relationships of the unmeasured factors with
birthweight and outcomes, so long as the risk factor has any affect on birthweight making it a
collider. This remains true regardless of the strength of the effect of the risk factor on outcomes.
We focused on smoking as the risk factor and a 200 g decrease in birthweight, but simulated
a range of effects on birthweight to reflect other possible risk factors with varying effects. Thus,
these findings are relevant to investigation of other risk factors. The effect on mortality curves
shown here apply to other risk factors for which birthweight is a collider.
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Controversy exists as to the causal role of birthweight in neonatal mortality;2 however, it is
likely to be subject to substantial confounding.15,30 A wide array of factors has been postulated
that may affect both birthweight and, independent of birthweight, neonatal mortality, including
genetic, environmental, or other exposures. Taken together, the net confounding effect may be
substantial. In order to address the possible range of confounding that may exist, our
simulations included factors with varying effects on birthweight and on outcomes. We note
that similar results may be found when gestational age at delivery is used in a similar fashion
to birthweight as described herein. To some extent, this will occur due to the correlation
between gestational age at delivery and birthweight. This may also be manifest when risk
factors act on the timing of birth directly rather than on birthweight.31 Regardless, these results
will apply whenever variables fit the DAGs used for this evaluation.

The observation of substantial analytical bias resulting from adjustment for birthweight
suggests a caution to investigators. As shown here, the bias from collider-stratification can be
substantial. Other reasons for caution are relevant as well. As previously mentioned, strong
assumptions regarding monotonicity of effect and absence of effect modification are necessary
to use adjustment for effect decomposition.25-28 Even when these assumptions are met and
there are no uncontrolled confounders of the birthweight-neonatal mortality relationship,
birthweight adjustment may be problematic. If birthweight is only a proxy for other variables
causally related (e.g. fetal development or timing issues like gestational age at delivery),
inclusion in regression models of neonatal mortality comprises overadjustment.32

It is not uncommon practice to adjust for an intermediate variable (e.g. birthweight) when
estimating the effect of a risk factor on an outcome (e.g. smoking on neonatal mortality). In
this paper, we have used the example of the birthweight paradox to evaluate the bias that may
result from such adjustment. This bias has the potential to substantially affect findings and
conclusions, such as for the crossing curves of the birthweight paradox. With this
understanding, we have attempted to show the effects of statistical adjustment-induced bias
when stratifying or standardising on an intermediate variable and through this logic, unravel
the birthweight paradox.
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Figure 1.
(a-b) Directed acyclic graphs representing possible causal relations among a risk factor (RF),
birthweight (BWT), neonatal mortality and potentially unmeasured factor(s) U.
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Figure 2.
Effect of a risk factor on mortality as a function of birthweight. Mortality curves as a function
of: the effects of an unknown factor U on birthweight (parameter a) and neonatal mortality risk
(parameter b); the effects of a risk factor of interest on birthweight (parameter e) and neonatal
mortality (parameter c); and the effect of birthweight on neonatal mortality (parameter d).
Panel A: a =-1000, b = 0.4, c = 0.6, d =-0.0005, e =-400. Panel B: a =-500, b = 0.8, c = 0.2, d
=-0.0005, e =-600. PanelC:a =-500, b = 1.2, c = 0.4, d =-0.0005, e =-400. Panel D: a =-500, b
= 1.6, c = 0.2, d = 0, e =-600. Control of the magnitude of the collider-stratification bias through
these parameters allows for reversal of effect (higher risk for those with the risk factor in Panel
A, higher risk for those without the risk factor in Panel D) or for the crossing of the curves at
2000 g in Panel C.
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