Skip to main content
Article
Ocean acidification and warming impacts the nutritional properties of the predatory whelk, Dicathais orbita
Journal of Experimental Marine Biology and Ecology
  • Rick D Tate, Southern Cross University
  • Kirsten Benkendorff, Dr, Southern Cross University
  • Roslizawati Ab lah, Southern Cross University
  • Brendan P Kelaher, Southern Cross University
Document Type
Article
Publication Date
1-1-2017
Peer Reviewed
Peer-Reviewed
Abstract

Ocean warming and acidification have the potential to impact the quality of seafood with flow on effects for future food security and ecosystem stability. Here, we used a 35-day experiment to evaluate how ocean warming and acidification may impact the nutritional qualities and physiological health of Dicathais orbita, a predatory muricid whelk common on the east coast of Australia, and discuss the broader ecological implications. Using an orthogonal experimental design with four treatments (current conditions [~ 23 °C and ~ 380 ppm of pCO2], ocean warming treatment [~ 25 and ~ 380 ppm of pCO2], ocean acidification treatment [CO2 ~ 23 °C and ~ 750 ppm of pCO2], and ocean warming and acidification treatment [CO2, ~ 25 °C and ~ 750 ppm of pCO2]), we showed that changes in moisture and protein content were driven by significant interactions between ocean warming and acidification. Elevated ocean temperature significantly decreased protein in the whelk flesh and resulted in concurrent increases in moisture. Lipid, glycogen, potassium, sulfur, and phosphorus content also decreased under elevated temperature conditions, whereas sodium, boron and copper increased. Furthermore, elevated pCO2 significantly decreased lipid, protein and lead content. Whelks from control conditions had levels of lead in excess of that considered safe for human consumption, although lead uptake appears to be lowered under future ocean conditions and will be site specific. In conclusion, while D. orbita has received research attention as a potential food product with nutritious value, ocean climate change may compromise its nutritional qualities and reduce sustainable harvests in the future. Furthermore, ocean climate change may have deleterious impacts on the longevity and reproductive potential of this important rocky shore predator.

Citation Information

Tate RD, Benkendorff, K, Ab Lah, R, & Kelaher BP 2017, 'Ocean acidification and warming impacts the nutritional properties of the predatory whelk, Dicathais orbita', Journal of Experimental Marine Biology and Ecology, vol. 493, pp. 7-13.

Published version available from:

https://doi.org/10.1016/j.jembe.2017.03.006