Geospatial Thinking of Information Professionals

Bradley Wade Bishop, University of Tennessee, Knoxville
Melissa P. Johnston, University of Alabama - Tuscaloosa

Available at: https://works.bepress.com/bradley_bishop/26/
Geospatial Thinking of Information Professionals

Dr. Bradley Wade Bishop
Assistant Professor
School of Library and Information Science
University of Kentucky
331 Little Library Building
Lexington, KY 40506-0224
Telephone 859.257.3970
Fax: 859.257.4205
E-mail: wade.bishop@uky.edu

Dr. Melissa P. Johnston
Assistant Professor
School of Library and Information Studies
University of Alabama
513 Gorgas Library
Box 870252
Tuscaloosa, AL 35487-0252
Telephone: 205.348.4610
Fax: 205.348.3746
E-mail: mjohnston@slis.ua.edu
Communication about the manuscript should be directed to:

Bradley Wade Bishop
Assistant Professor
School of Library and Information Science
University of Kentucky
331 Little Library Building
Lexington, KY 40506-0224
Telephone 859.257.3970
Fax: 859.257.4205
E-mail: wade.bishop@uky.edu
Geospatial Thinking of Information Professionals

Abstract

Geospatial thinking skills inform a host of library decisions including planning and managing facilities, analyzing service area populations, facility site location, library outlet and service point closures, as well as assisting users with their own geospatial needs. Geospatial thinking includes spatial cognition, spatial reasoning, and knowledge discovery. A lack of understanding of librarians’ geospatial thinking called for some preliminary investigation into the geospatial thinking skills of information professionals. Findings from this pilot study’s performance task indicate geospatial thinking skills improved for ten information professionals tested after some training with geospatial technologies. A summary provides recommendations on how to both improve future study of geospatial thinking and suggestions on ways to incorporate geospatial thinking into library and information science curricula.

Keywords: geospatial thinking, information literacy, geographic information systems, global positioning systems, performance task
Geospatial Thinking of Information Professionals

Learning to Think Geospatially

In the 2010, the ALISE Statistical reported that 38 programs reviewed specific curriculum areas and a variety of courses were added (Wallace & Naidoo, 2010). Over a dozen courses related to literacy were either added or experimental. Geoliteracy, or spatial literacy, has emerged as a type of information literacy that librarians of all types need to understand in that geospatial data are sources of information and according to ACRL (2000) users need to be taught how to determine, access, evaluate, incorporate, and use this type of information. Therefore, many librarians in their role as educator that need to teach these critical literacies would benefit from some training.

The skills necessary to navigate today’s world of information have indeed changed, resulting in the new critical literacies, which includes spatial literacy as a vital skill for 21st century learners (AASL, 2007; Jenkins, 2006; Jewitt, 2008; Partnership for 21st Century Skills, 2009). Geospatial thinking and spatial literacy education has been infused in the K-12 curriculum in the United States due the importance for future knowledge workers to better understand geography and how geography relates to environmental and economic issues (National Academies Press, 2006; de Blij, 2005; Pullen & Cole, 2010). Additionally, spatial thinking as a part of the STEM discipline (science, technology, engineering, mathematics) initiatives prominent in education, promotes spatial reasoning as a way for students to learn critical thinking and decision-making skills to apply to real-world problems (de Blij, 2005; National Science Board, 2010; Pullen & Cole, 2010; Wai, Lubinski, & Benbow, 2009). As this same movement to infuse geospatial thinking expands to higher education (Jo, Klein, Bednarz, &
Bednarz, 2012; Lloyd, 2001; Sinton, 2011, 2010, 2009), there are implications for multiple types of librarians, not just those serving the k-12 community, as information professionals to understand the concepts of geospatial thinking and spatial literacy. Therefore, demonstrating the need for incorporating geographic competencies into trainings and courses to foster geospatial thinking across the LIS curriculum, in order to enable librarians to assist and teach users how to use information effectively.

The increasing presence of technology and digital information in our society has mandated that LIS curriculum adapt to address the need of today’s information professional. LIS is an ever-changing field and the curriculum to prepare future information professional is also constantly evolving in order to address these changes. In recent years there have been many movements implemented in the LIS curriculum to integrate new concepts into coursework across to provide a relevant curriculum. Some of these efforts include topics such as Web 2.0, leadership, digital libraries, archival studies, cultural heritage, museum informatics, and information architecture (Bawden et al., 2007; Choquette, 2009; Everhart & Dresang, 2006; Latham, 2000; Long, 2011; Marty, 2011; Marty & Twidale, 2011; Spinks & Cool, 1999).

The purpose of professional education is to prepare individuals who are competent to practice in that profession and in the case of LIS this means to meet the demands of a digital society and the needs of 21st century learners. As we revisit and revise curricula to ensure that our graduates our equipped to succeed, geospatial thinking and spatial literacy mark a new need of this digital society and the topic is one that needs to be addressed within the LIS curriculum.

In 1992, Koontz addressed a need to train public librarians to think geospatially about library facility locations and discontinue the long practice of simplistic, convenient, and haphazard site selection (Koontz, 1992). Although public library openings and closures and
analysis of community demographics are good examples of situations when librarians need geospatial thinking skills, there are other instances as well, such as the management of library facilities and helping users locate, retrieve, analyze, and use geospatial data. Geospatial thinking is a cognitive skill that can be used in everyday life, the workplace, and as science to structure problems, find answers, and express solutions using the properties of space. Geospatial thinking is not something innate or a genetic trait, but a skill that can be learned and taught formally to students using appropriately designed tools, technologies, and curricula (Baker & Bednarz, 2003).

Future librarians will need to analyze geographic market areas, manage library facilities, and assist and teach users (Bishop & Mandel, 2010; Johnston & Bishop, 2011). In 2006, this journal published a call to LIS education to meet the needs of future information professionals (Weimer & Reehling, 2006). However, no studies have attempted to actually measure librarians' geospatial thinking or discuss ways to incorporate related instruction into LIS curricula. This paper presented preliminary findings on some information professionals' geospatial thinking, suggestions for future study, and exploring some options on how to incorporate geospatial thinking into LIS curricula.

**Gratz Park Tour: Evaluating Information Professionals' Geospatial Thinking**

To begin exploration of information professionals' geospatial thinking, librarians and library science students were recruited to participation in a study involving a pretest/posttest of a scenario that included the typical variables of geospatial thinking, including perspective, dimensions, measurement, locations, relationship, and time period. The results of responses to the scenario would provide preliminary findings on some information professionals' geospatial
thinking. The pretest/posttest was administered prior to and immediately after librarian and library and information science students completed training on the use of geospatial technologies during a tour.

After the study's protocols were reviewed and approved by an Institutional Review Board, participants for this pilot study were recruited from postings of the tour on state-wide academic, public, and school librarian listservs, as well as library science student listservs. This posting asked for participants who would like to attend a tour of Gratz Park, learn history and how to use a GPS, and participate in research. The tour was open to any student and librarian interested. As a result of recruitment, twelve potential participants responded with interest in taking part in the tour. Twelve practicing librarians and library science students participated in the tour, but only ten, five librarians and five students, signed a consent agreement and completed both the pretest and posttest.

Gratz Park is a historic neighborhood in downtown Lexington, Kentucky. Local historians developed a tour that included stops at Henry Clay's law office, a slave auction market, a stop on the underground railroad, the home of famous Civil War raider John Hunt Morgan, and the homes of many free blacks during the Civil War, including the childhood home of National Association for the Advancement of Colored People (NAACP) co-founder, Julia Britton Hooks. The local historians created a lengthy brochure with citations for our group, but our participants were learning about the use of geospatial technologies in addition to a great deal of history.

The training-in-action included a history of geospatial technologies, terminology, and hands-on training on how to use a global positioning system (GPS) to mark waypoints along the tour route conducted by Geographic Information System Professionals (GISPs) from the Tracy Famer Institute for Sustainability and the Environment at the University of Kentucky. The
training-in-action, discussion of geospatial thinking terminology, and act of using geospatial technologies to map the historic points of their tour provided the study's participants with active exposure to learning new technologies and thinking geospatially.

A pretest/posttest design was chosen for this research since the goal was to assess the geospatial thinking abilities of librarians and library science students, both prior to and after the use of geospatial technologies (Creswell, 2008). The pretest/posttests included a scenario involving a public library opening and the participants responded to structured questions to address some of the variables of geospatial thinking, including perspective, dimensions, measurement, locations, relationship, and time period. Definitions and examples of these terms were discussed during the training-in-action. The pretest was completed directly before the tour began, but participants were given as much time as needed to complete the pretest. The posttest was provided to each participant and returned to the researchers within one week of the tour.

The scenario of both the pretest/posttest is provided as follows:

A local public library system has received a generous donation to open a new library branch. There are several possible locations for the new branch, but the donation specified that the branch should serve children in low socio-economic areas of the county. Also, you want to avoid locations prone to flooding. What data about the space do you need to describe the situation and begin to solve the facility location problem? Describe the perspectives, dimensions, measurements, locations, relationships and time period you would need and why.

The pretests and posttests provided participants with several closed questions related to each variable of geospatial thinking and one open-ended question for suggestions on how librarians might utilize geospatial thinking in their profession. After submitting their signed consent
agreement and completing the pretest, each participant was given a GPS unit and received the training-in-action from the Tracy Farmer Institute's *Information Technology through Community–Based Natural Resources Program for Students and Teachers* Project Team.

After the tour, participants were sent a follow up email thanking them for their participation along with the posttest to complete. Although the convenience sample of five librarians and five library science students does not allow for generalizability, the study provides some baseline results and methodological considerations for future studies. In order to code the data, a rubric from the Tracy Farmer Institute's *Information Technology through Community Based Natural Resources Program for Students and Teachers* was adapted.

In order to increase the reliability of the coding, intercoder reliability testing was conducted. The data was coded by two coders after receiving training on the topic area and rubric. It is recommended to utilize 10% of the dataset for intercoder reliability testing; in this case 30% (n=6) of the viable twenty pretests and posttests were utilized (Neuendorf, 2002). The completed coding was compared and utilized the percent agreement formula (Neuendorf, 2002). The researchers found an acceptable agreement of 80.5% in the coding of the participant responses by the two coders.

The entire set of pretest and posttests were then coded according to the rubric. Scoring in the rubric included a scale from one to five for each variable. One point was awarded for every mention of an example for each geospatial thinking variable and two points were awarded for every mention of an example for a geospatial thinking variable and why it was important. For example, one pretest question was "describe the locations you would need to know and why?" An answer that listed a location without a reason received only one point (e.g., *other libraries in the area*). Then, an answer that mentioned one location with a reason (e.g., *other libraries in the area*).
area, to avoid overlap in service areas) or an answer that listed two locations received two points (e.g., other libraries in the area, nearby parking). Few librarians or students received more than three points on any variable.

The participant responses for each variable were aggregated to produce pretest and posttest student totals, librarian totals, and also a measure of change in response to variables between pretest and posttest for all. Table 1 provides the student and librarian totals scores by variable.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Student Totals</th>
<th>Librarian Totals</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td>perspective</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>dimensions</td>
<td>6</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>measurement</td>
<td>11</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>locations</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>relationship</td>
<td>5</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>time period</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 1: Pretest and posttest variable totals.
Both librarians and library science students were able to list measurements and locations required to solve the library scenario problem. These geospatial thinking variables were likely learned in quantitative portions of K-12 and undergraduate coursework. Both also identified the time period variable as valuable to solving the scenario, but librarians mentioned it twice as much as library science students. Time may be a more important variable for the librarians seasoned with experience and know the value of historical data. However, there were obvious difficulties amongst all participants to define and provide examples of perspectives, dimensions, and relationships in a geographic context. Part of geospatial thinking includes spatial reasoning and the perspectives (e.g., inside, outside, close-up, bird's eye), dimensions (e.g., 2D length, 3D depth, motion, time), and relationships (e.g., overlay, union, intersection of places, people, and things). These spatial reasoning topics may not be covered in LIS curricula.

In comparing the pretest/posttest responses after the training, the change may indicate similar fieldwork with geospatial technologies may improve a few of the geospatial thinking variables for information professionals. The data show that perhaps by marking waypoints and active hands-on learning librarians and students alike list more locations on average (0.6) and measurements (0.3) needed to address the questionnaire scenario. Also, an increase occurred on the variable perspective (0.6). This may relate to the repeated mention of perspectives being key in both the use of the GPS (e.g., orientation determined the direction arrow on the tour) and in stories from the tour (e.g., the homes had very high doorways to accommodate residents getting in and out of carriages). Table 2 provides the student and librarian average change by variable.
<table>
<thead>
<tr>
<th>Variables</th>
<th>Average Student's Change (Students' Total Change)</th>
<th>Average Librarian's Change (Librarians' Total Change)</th>
<th>Average Participant's Change (Total Change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>perspective</td>
<td>0.8 (4)</td>
<td>0.4 (2)</td>
<td>0.6 (6)</td>
</tr>
<tr>
<td>dimensions</td>
<td>0.0 (0)</td>
<td>0.2 (1)</td>
<td>0.1 (1)</td>
</tr>
<tr>
<td>measurement</td>
<td>-0.6 (-3)</td>
<td>1.2 (6)</td>
<td>0.3 (3)</td>
</tr>
<tr>
<td>locations</td>
<td>0.4 (2)</td>
<td>0.6 (3)</td>
<td>0.5 (5)</td>
</tr>
<tr>
<td>relationship</td>
<td>-0.6 (-3)</td>
<td>0.4 (2)</td>
<td>-0.1 (-1)</td>
</tr>
<tr>
<td>time period</td>
<td>0.0 (0)</td>
<td>0.4 (2)</td>
<td>0.2 (2)</td>
</tr>
</tbody>
</table>

Table 2: Pretest and posttest average change by variable.

Summary of Recommendations for Future Study and LIS Curriculum

In examining the results in relation to the pre and posttest instruments, several issues emerged for both research and teaching. First, more research should be done beyond this preliminary pilot test. Certainly, greater numbers of participants and the use of qualitative
methods would benefit further study. However, there are some lessons learned from this exploratory research.

GIS related terminology (i.e. dimension, perspective, measurement) needs to be thoroughly defined for the participants. Although the terms were discussed and examples were given, perhaps participants would benefit from even more formal training. One of the most interesting findings in this aspect of the research was the extreme lack of knowledge of even the most basic concepts of geospatial thinking. As a result, many participants left some geospatial thinking variables blank. Also, it was found that several librarians addressed internal measurements, such as linear feet of books for shelf space, and although this counted, there may need to be two questions to capture both the internal and external measurements that would relate to planning a new library facility. Future studies may also wish to select a different scenario that does not relate to such a complex task.

The lack of change that emerged in responses from the pretest to the posttest may indicate that a tour or any geospatial technologies fieldwork may not equate to a measurable change in geospatial thinking. Future research in this area would need to develop other instruction to relate directly to applicable geospatial thinking skills for information professionals. This pilot study will serve as the foundation for future studies as the researchers seek to expand this investigation in order to provide data to inform LIS education as programs develop curricula to meet the ever-changing needs of LIS students and the users they will be helping in the 21st Century.

Pilot study participants provided several ideas to incorporate geospatial thinking into their everyday jobs. From reconsidering signage placement with fresh eyes to creating interactive maps, librarians and students alike had fresh ideas after the training-in-action and the tour.
Planning for facilities, planning for collections, placement of displays and furniture, helping answer users' questions concerning geospatial data, are all some issues mentioned by participants that require geospatial thinking skills to solve. Some mentioned using GPS as a tool in an outreach program to reach kids in the community as a hook to support other library services and resources. One ambitious librarian even thought to develop a mobile app to provide a historic tour of the university similar to the North Carolina State University Libraries' WolfWalk (http://www.lib.ncsu.edu/wolfwalk/) and a library student thought to overlay maps of campus overtime to show changes in buildings and landscape and linking oral histories to locations.

After limited exposure to geospatial thinking and geospatial technologies librarians and students provided some understanding of why they need to have these skills, but how to implement geospatial thinking across library and information science curricula? It is possible as suggested by others in the literature to introduce special topics into existing courses. For example, strategic planning in a management class may also include a facility site location scenario. The increased importance of understanding the demographics of service areas as well as the relationship between facilities, community, and environment, should ensure geospatial thinking variables are taught in the curricula. Also, any specialized reference course may devote a week to finding and locating geospatial data. It remains unknown what geospatial thinking skills most librarians have, but increased focus in LIS curricula on the perspective, dimensions, and relationships of space may lead to more information professionals thinking spatially and making more informed decisions regarding both the worlds within and outside library walls.
References


**Acknowledgments**

The authors would like to thank the anonymous participants in the study and tour as well as the Information Technology through Community–Based Natural Resources Program for Students and Teachers Project is a National Science Foundation program to teach geospatial thinking to K-12 teachers and students awarded to the Tracy Famer Institute for Sustainability and the Environment at the University of Kentucky.