Skip to main content
Article
Medusae Fossae Formation: New perspectives from Mars Global Surveyor
Journal of Geophysical Research (2002)
  • Bethany Bradley, University of Massachusetts - Amherst
  • S. E.H Sakimoto
  • H. Frey
  • J. R Zimbelman
Abstract
The nature and origin of the Medusae Fossae Formation (MFF) on Mars has been debated since the return of the first Viking images. The MFF's young age, distinctive surface texture, and lack of obvious source have prompted multiple hypotheses for its origin. This study uses data from the Mars Global Surveyor (MGS) mission to examine the MFF at all available scales. We discuss and quantify observations from Mars Orbiter Laser Altimeter (MOLA) topography and Mars Orbiter Camera (MOC) images to better constrain the origin of the MFF. Topographic grid estimates yield a present extent of 2.1 × 106 km2 and a volume of 1.4 × 106 km3; however, remnant yardang deposits observed far from the thicker lobes of MFF material suggest that it may have once covered up to 5 × 106 km2. We do not find compelling evidence for extensive fluvial reworking of the MFF; however, in several regions, buried channels are apparent in the MFF because the formation is draped over underlying topography. Layering is apparent at all scales, from submeter to hundreds of meters, with variable resistance to weathering. Continuity of layers appears to be local to regional, but not likely formation-wide. Yardangs form both parallel and bidirectional patterns, with resistant layers and jointing probably influencing their orientations. A comparative study of MFF regional topography and surface expression indicates that the MFF is quantitatively dissimilar to Martian polar layered deposits. The material is most likely a friable and irregularly consolidated air fall deposit of probable volcanic origin
Disciplines
Publication Date
August, 2002
DOI
DOI: 10.1029/2001JE001537
Citation Information
Bethany Bradley, S. E.H Sakimoto, H. Frey and J. R Zimbelman. "Medusae Fossae Formation: New perspectives from Mars Global Surveyor" Journal of Geophysical Research Vol. 107 Iss. E8 (2002)
Available at: http://works.bepress.com/bethany_bradley/4/