
Bucknell University

From the SelectedWorks of Berhane Temelso

March 9, 2015

Importance and Reliability of Small Basis Set
CCSD(T) Corrections to MP2 Binding and
Relative Energies of Water Clusters
Berhane Temelso, Bucknell University
Carla R. Renner, Bucknell University
George C. Shields, Bucknell University

Available at: https://works.bepress.com/berhane_temelso/12/

http://www.bucknell.edu
https://works.bepress.com/berhane_temelso/
https://works.bepress.com/berhane_temelso/12/


Importance and Reliability of Small Basis Set CCSD(T) Corrections to
MP2 Binding and Relative Energies of Water Clusters
Berhane Temelso,*,† Carla R. Renner,† and George C. Shields*,†

†Dean’s Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837,
United States

*S Supporting Information

ABSTRACT: MP2 describes hydrogen-bonded systems well,
yet a higher-order electron correlation correction in the form
of a CCSD(T) calculation is usually necessary to achieve
benchmark quality energies. We evaluated the importance and
reliability of small basis set CCSD(T) corrections to MP2
(δMP2

CCSD(T)) both on the binding (ΔE) and relative (ΔΔE)
energies for a large number of systems including four water
dimer stationary points and 57 other clusters up to
undecamers, (H2O)11. By comparing the MP2 energies with
CCSD(T) and the explicitly correlated MP2-F12 energies with
variants of CCSD(T)-F12 using different basis sets, we were
able to establish that the correction to the binding energy (ΔE)
is sensitive to basis set size, especially for small double-ζ basis
sets. On the other hand, the basis set sensitivity of the correction to the relative energy (ΔΔE) within each cluster size is very
small. While the δMP2

CCSD(T) correction to the binding energy might vary in magnitude with basis set size, its effect on relative energy
(and hence the stability of isomers) is remarkably consistent. Therefore, we recommend the inclusion of this correction to obtain
the relative stability of closely spaced isomers using a double-ζ basis set with polarization and diffuse functions such as aug-cc-
pVDZ.

1. INTRODUCTION

Hydrogen-bonding forces that bind water monomers into
molecular clusters and dictate water’s bulk properties have been
the subject of many publications.1−6 Even though hydrogen-
bonding interactions mainly result from electrostatics,
induction and exchange repulsion, London dispersion forces
also play a non-negligible role. According to localized molecular
orbital energy decomposition analysis (LMO-EDA)7 of the
binding energy of water clusters, the dispersion component
amounts to as much as one-third of the total binding energy.8

Density functional theory (DFT) often fails to describe
noncovalent interactions sufficiently,9,10 but the inclusion of
empirical dispersion corrections (DFT-D)11 generally improves
its performance, even though some early implementations led
to worse performance.12 A quantitative description of water
clusters using wave function methods requires the inclusion of
electron correlation. Second-order Møller−Plesset theory
(MP2)13 is the most affordable wave function method that
includes electron correlation, and it has been shown to give
reliable geometries and energies for hydrogen-bonded
systems.14−19 Its cost scales as O(N5) with system size, and
that is further reduced with approaches such as density-fitting
(DF)20,21 and dual-basis (DB)22 without introducing large
errors.23 As a result, water clusters as large as (H2O)20

24 and
(H2O)24

25 have been characterized using MP2. However, MP2
is known to significantly overbind systems dominated by

dispersion interactions such as the sandwich/stacked benzene
dimer.26,27 Spin-component scaled MP2 (SCS-MP2)28 in
which the parallel- and antiparallel-spin components of the
MP2 correlation energy are scaled separately, improves on MP2
for most systems and properties, but it actually leads to poorer
results for hydrogen-bonded systems. Within hydrogen-bonded
systems, MP2’s performance varies based on the topology of
the hydrogen bonds being described.29 These deficiencies
prompted the practice of adding a higher-order electron
correlation correction to MP2 energies. Coupled-cluster theory
with single, double, and perturbative triple excitations [CCSD-
(T)]30 is a higher-level electron correlation method that
provides benchmark quality binding energies for noncovalently
bound systems. Much like MP2, it requires sufficiently large
basis sets to give reliable energies. Unfortunately, its formal
O(N7) scaling limits its use to small systems with large basis
sets or moderate size systems with small basis sets. For most
basis sets, the virtual (v) or unoccupied orbitals substantially
outnumber occupied (o) ones, and the o3v4 scaling becomes
difficult to overcome. As a result, a typical approach involves
first extrapolating the MP2 energy to its complete basis set
(CBS) limit and adding a CCSD(T) correction using a small
basis set.
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δ≈ +E ECCSD(T)
CBS

MP2
CBS

MP2
CCSD(T)

(1)

where the correction is defined as

δ = −_ _E EMP2
CCSD(T)

CCSD(T)
small basis

MP2
small basis

(2)

Combining CCSD(T) and MP2 is common for the study of
water clusters. In our previous work,19 we calculated the
binding energies of water clusters up to (H2O)10 using RI-
MP2/CBS and incorporated CCSD(T) corrections using the
aug-cc-pVDZ (aVDZ) basis set. We showed that this correction
had a small but non-negligible effect on the binding energies of
hydrogen-bonded systems and could significantly affect the
relative stability of isomers. Bates and Tschumper29 demon-
strated the importance of CCSD(T) corrections to obtain
accurate stabilities of water hexamers. The same correction has
proven to be important in establishing the relative energies of
(H2O)11

31 and (H2O)16.
32

Significant computational work has been devoted to
evaluating the CCSD(T) correction on various noncovalently
bonded systems, including hydrogen-bonded systems, dis-
persion bound systems, and others exhibiting mixed inter-
actions.33−38 The binding energies for both hydrogen-bonded
and dispersion bound systems33−38 are extremely sensitive to
the basis set used to include the CCSD(T) correction. It has
been concluded that using double-ζ basis sets such as 6-31G*,
6-31G*(0.25), 6-31G**(0.25,0.15), cc-pVDZ, and aug-cc-
pVDZ (aVDZ) yields inaccurate binding energies. That
conclusion holds for both counterpoise (CP) corrected and
uncorrected binding energies. In most cases, corrections
calculated using double-ζ basis sets are not close to the
extrapolated complete basis set (CBS) δMP2

CCSD(T) values, and two-
point extrapolations using a triple-ζ and larger basis sets would
be needed to get the correction to converge to the right CBS
limit. Marshall et al.34 studied the effects of CCSD(T)
correction on noncovalent interactions. Using a small basis
set for the δMP2

CCSD(T) correction to the binding energy of the S22
benchmark data set,39 they showed that the CCSD(T)
correction using double-ζ basis sets was unreliable and that
larger basis sets resulted in corrections that are close to the
extrapolated δMP2

CCSD(T) CBS limit. Studies on other databases
containing dimers yielded similar results when using double-ζ
basis sets. For instance, using the double-ζ basis set (6-31G*)
to correct formic acid dimer’s binding energy is not
recommended.36 Platts et al.40 examined the performance of
composite post-MP2 ab initio methods for noncovalent
interactions in the S6641 benchmark data set. For three
complexes including water dimer, they found that explicitly
correlated coupled cluster with scaled perturbative triples
approximation [CCSD(T*)-F12a] with aVDZ basis set gives a
root-mean-square error (RMSE) of 0.13 kcal mol−1 or 3%
relative to the benchmark binding energies. Including a
CCSD(T) correction with the small 6-31G*(0.25) basis set
gave surprisingly good interaction energies (RMSE = 0.15 kcal/
mol, or 4%). Employing spin component scaling (SCS) with
CCSD(T*)-F12a yielded an even better performance (RMSE =
0.08 kcal mol−1, or 2%) when the same- and opposite-spin
scaling factors are optimized for the S66 data set.
Boese assessed the reliability of the correction to accurately

define 16 different hydrogen-bonded systems.38 The data
reveals that the CCSD(T) correction does not improve the
MP2 binding energies relative to benchmark numbers when
double-ζ basis sets are used without diffuse functions. Including

diffuse functions to double- or triple-ζ basis sets improves the
resulting binding energies, especially for dispersion bound
systems.38 Carrell et al.37 found some basis set dependence in
the higher-order correlation corrections for pi-type interactions
on five dimers. For pi−pi systems such as the benzene dimer,
using small basis sets yielded inaccurate binding energies.34,35,37

These studies showed that a triple-ζ basis set is needed to
achieve benchmark binding energies and prompted the revision
of the reference interaction energies reported for a group of
databases of noncovalently bonded systems.34

While many have studied the CCSD(T) correction to MP2
binding energies (ΔE) for weakly bound systems, none have
focused on water clusters larger than the water dimer.
Systematic work on the CCSD(T) correction to the MP2
binding (ΔE) and relative energies (ΔΔE) for larger water
clusters has not been reported in the literature. In this article,
we assess the importance and reliability of small basis set
higher-order electron correlation correction (δMP2

CCSD(T)) to the
binding (ΔE) and relative energies (ΔΔE) of water clusters
(H2O)n=2−11. We examine the correlation between this
correction and the physical components of the binding energy
in an attempt to explain the physical origins of δMP2

CCSD(T).

2. METHODS
Sixty-one water clusters ranging from water dimer (H2O)2
stationary points to water undecamers (H2O)11 were analyzed.
These clusters included four water dimer stationary points,
namely, the global minimum (2-Cs) and three first-order
transition states (2-TS1, 2-TS2, 2-TS3), that were reported by
Tschumper et al.33 These previously reported structures were
reoptimized using MP2/aug-cc-pVDZ to converge into their
respective positions on the water dimer potential energy
surfaces. The other structures for (H2O)n=3−11 were RI-MP2/
aug-cc-pVDZ optimized geometries reported in our previous
papers.18,19,42,43 These were the RI-MP2/CBS low-energy
structures based on the extrapolation of the RI-MP2/aug-cc-
pVNZ (N = D, T, Q) basis sets44,45 with a 4−5 inverse
polynomial extrapolation scheme.46,47 The binding energy
(ΔEin) of isomer i was defined as the energy difference between
the cluster and n separated monomers:

Δ = − *E E n Ei
n

i
n 1

(3)

The relative energy (ΔΔEi
n) of cluster i was calculated using

the global minimum of N clusters of the same size as a
reference:

ΔΔ = −
=

E E Emin { }i
n

i
n

m N
m
n

1... (4)

For hydrogen-bonded systems, the higher-order electron
correlation correction (δMP2

CCSD(T)) to the energy is small in
magnitude, but it can affect the relative energies of isomers
significantly.

δ = −E EMP2
CCSD(T)

CCSD(T)
aVDZ

MP2
aVDZ

(5)

Recent literature suggests that including this correction using
a double-ζ basis set like aVDZ is not always reliable for
noncovalently bound systems, especially hydrogen-bonded
ones.34,37 One suggested alternative34 is to perform this
correction using explicitly correlated methods48 because they
improve the basis set convergence of energies by including
explicit dependence of the correlation energy on interelectronic
distances. Using MP2-F12 and CCSD(T)-F12 with a specially
designed double-ζ basis, cc-pVDZ-F12 (VDZ-F12),49 one can
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calculate the F12 analog of the conventional electron
correlation energy correction. There are many approximations
to the CCSD-F12 energy, and two of them, namely, CCSD-
F12a50 and CCSD-F12b,51 are explored here. Since implement-
ing an F12 analog of the triples correction is difficult, it is
estimated by scaling the conventional (T) correction by the
ratio of the MP2-F12 to MP2 correlation energies.

≈ ·‐
‐E E

E
E(T) F12 (T)
MP2 F12
corr

MP2
corr

(6)

To maintain the size consistency of the triples correction,
Marchetti et al.52 recommend scaling the (T) correction
uniformly with the dimer MP2-F12 to MP2 correlation energy
ratio.52 Brauer et al.53 scaled the (T) correction by the CCSD-
F12 to CCSD correlation energy ratio but found no significant
improvement. That approach will presumably work better in
cases where MP2 itself may perform poorly because of
substantial static correlation.53 This method is designated
with an asterisk next to the (T) as CCSD(T*)-F12, whereas
the independently scaled approach is denoted CCSD(T)-F12.

δ = −‐
‐

‐
‐

‐
‐E EMP2 F12

CCSD(T) F12
CCSD(T) F12
VDZ F12

MP2 F12
VDZ F12

(7)

δ = −‐
* ‐

* ‐
‐

‐
‐E EMP2 F12

CCSD(T ) F12
CCSD(T ) F12
VDZ F12

MP2 F12
VDZ F12

(8)

Therefore, we report higher-order correlation corrections
using conventional CCSD(T) with aVDZ basis as well as four
variants of CCSD(T)-F12 theory with VDZ-F12 orbital basis.
For each approach, we designate the correction to the binding
energies as ΔEX

Y and those to the relative energy as ΔΔEX
Y

Δ = Δ − ΔE E EX
Y

Y X (9)

ΔΔ = ΔΔ − ΔΔE E EX
Y

Y X (10)

where X = MP2 and Y = CCSD(T) for conventional methods,
and X = MP2-F12 and Y = CCSD(T)-F12a, CCSD(T)-F12b,
CCSD(T*)-F12a, or CCSD(T*)-F12b for explicitly correlated
methods. For example, ΔEMP2

CCSD(T) is the difference between the
binding energy calculated using CCSD(T)/aVNZ and MP2/
aVNZ, where N = D, T, or Q, at the RI-MP2/aVDZ geometry.
Likewise, ΔΔEMP2

CCSD(T) is the difference between the relative
energy of a cluster computed using CCSD(T)/aVNZ and
MP2/aVNZ, where N = D, T, or Q, at the RI-MP2/aVDZ
geometry. All explicitly correlated calculations were performed
using MOLPRO 201054 package, whereas conventional MP2
and CCSD(T) calculations utilized ORCA 3.0.2.55 All the
binding energies in this paper are not counterpoise corrected.
To understand what, exactly, δMP2

CCSD(T) is correcting, we
attempted to find correlations between this correction and
different components of the binding energy for each cluster.
These electrostatic, exchange, polarization/induction, and
dispersion components of the binding energy were calculated
with symmetry-adapted perturbation theory (SAPT)56 imple-
mented in PSI457 for water dimer and localized molecular
orbital energy decomposition analysis (LMO-EDA)7 of the
MP2 binding energy using GAMESS-US58 for larger clusters.
For each cluster i, the relative interaction energy component
(ΔΔEcomponent) and the CCSD(T) correction (ΔΔEMP2

CCSD(T))
were calculated as follows.

ΔΔ = −
=

E E E[ min { }]i i
m N

mcomponent, component,
1...

component, (11)

ΔΔ = −

− −
=

=

E E E

E E

[ min { }]

[ min { }]

i i
m N

m

i
m N

m

MP2,
CCSD(T) CCSD(T)

1...

CCSD(T)

MP2

1...

MP2
(12)

Because SAPT is generally limited to dimers, we apply it to
eight water dimer stationary points from Tschumper et al.’s
work33 that are reoptimized using MP2/aVDZ. This set of
dimers consists of the Cs global minimum, and seven transition
states: three first-order, three second-order, and one third-
order. Their optimized coordinates are reported in Table S6.
An efficient version of SAPT with up to third-order in
intramolecular and intermolecular expansion is implemented in
PSI4.57 The definition of levels of SAPT and their performance
for a large number of noncovalently bound systems is described
in detail by Parker et al.59 We chose the SAPT2+3 method,
which has three, three, eight, and nine terms contributing to
electrostatics, exchange, induction, and dispersion, respectively.

3. RESULTS
Hydrogen bonding results from attractive electrostatic,
induction, and dispersion interactions largely counterbalanced
by exchange-repulsion interactions. Because the dispersion
component is not predominant, MP2 has been able to model
hydrogen-bonded systems well. The CCSD(T) higher-order
electron correlation correction to the MP2 binding energy is
usually small in magnitude, but it can affect the relative energies
of isomers significantly. The correction rarely exceeds 1% of the
binding energy for any of the clusters investigated here. The
basis set dependence of the ΔEMP2

CCSD(T) of 23 water clusters
including three transition states of water dimer (shown in
Figure 1) are reported in Table 1, and the correction to the

relative energies (ΔΔEMP2
CCSD(T)) is shown in Table 2. As plotted

in Figure 2, the conventional correction using aVDZ and aVTZ
are very close for both the binding (top) and relative (bottom)
energies, but the aVQZ binding energies already show
substantial deviations from the aVDZ and aVTZ values. This
is the first sign that the higher-order electron correlation
corrections to binding and relative energies behave differently
with increasing basis set size. Looking at the explicitly

Figure 1. Three water dimer stationary points considered in this study.
The original labels given to these clusters in ref 33 are highlighted in
yellow, and the nomenclature used in the current study is shown in
red.
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Table 1. CCSD(T) Corrections to the MP2 Binding Energy (ΔE) for Water Clusters Using aVDZ, aVTZ, and aVQZ Basis Sets
and Explicitly Correlated CCSD(T)-F12 Variants with VDZ-F12 Orbital Basisa

ΔEMP2
CCSD(T) ΔEMP2‑F12

CCSD(T/*)‑F12[a/b] double-zeta statisticsb

aVDZ aVTZ aVQZ (T)-F12a (T)-F12b (T*)-F12a (T*)-F12b avg SD

2-Cs −0.03 −0.04 0.00 0.02 0.06 −0.05 −0.01 0.00 0.04
2-TS1 −0.01 −0.01 0.02 0.03 0.07 −0.04 0.00 0.01 0.04
2-TS2 −0.02 −0.05 −0.03 0.02 0.06 −0.04 0.00 0.00 0.04
2-TS3 −0.10 −0.11 −0.10 −0.06 −0.03 −0.10 −0.07 −0.07 0.03
3-UUD 0.04 0.02 0.09 0.19 0.34 −0.03 0.11 0.13 0.15
3-UUU 0.08 0.07 0.14 0.22 0.36 0.00 0.14 0.16 0.14
4-S4 0.21 0.16 0.42 0.66 0.03 0.27 0.32 0.23
4-Ci 0.22 0.18 0.42 0.66 0.04 0.28 0.32 0.23
5-CYC 0.37 0.30 0.60 0.90 0.10 0.41 0.48 0.30
5-CA-A −0.08 −0.14 0.23 0.55 −0.30 0.02 0.09 0.32
5-CA-B −0.17 −0.22 0.15 0.46 −0.38 −0.07 0.00 0.32
5-CA-C −0.10 −0.17 0.20 0.51 −0.34 −0.02 0.05 0.32
5-FR-A −0.02 −0.05 0.29 0.60 −0.22 0.08 0.15 0.31
5-FR-B 0.08 0.02 0.36 0.67 −0.15 0.16 0.22 0.31
5-FR-C −0.02 −0.06 0.28 0.58 −0.23 0.07 0.14 0.31
6-PR −0.13 −0.18 0.29 0.72 −0.42 0.00 0.09 0.43
6-CA 0.05 0.01 0.45 0.87 −0.26 0.16 0.25 0.43
6-BK-1 0.26 0.21 0.61 1.01 −0.05 0.35 0.44 0.40
6-CC 0.49 0.40 0.75 1.12 0.16 0.54 0.61 0.35
6-BAG 0.26 0.21 0.60 1.00 −0.07 0.33 0.42 0.40
6-BK-2 0.26 0.22 0.62 1.02 −0.05 0.35 0.44 0.40
6-CB-1 0.49 0.41 0.74 1.11 0.16 0.52 0.60 0.35
6-CB-2 0.48 0.39 0.73 1.09 0.15 0.51 0.59 0.35

aAll units are in kcal mol−1. The data for the larger clusters is available in Table S4. bThe average and standard deviation (SD) of ΔEMP2
CCSD(T) with

aVDZ basis set and four ΔEMP2‑F12
CCSD(T/*)‑F12[a/b] with VDZ-F12 orbital basis.

Table 2. CCSD(T) Corrections to the Relative Energy (ΔΔE) for Water Clusters using aVDZ, aVTZ, and aVQZ Basis Sets and
Explicitly Correlated CCSD(T)-F12 Variants with VDZ-F12 Orbital Basisa

ΔΔEMP2
CCSD(T) ΔΔEMP2‑F12

CCSD(T/*)‑F12[a/b] double-zeta statisticsb

aVDZ aVTZ aVQZ (T)-F12a (T)-F12b (T*)-F12a (T*)-F12b avg SD

2-Cs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2-TS1 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00
2-TS2 0.01 −0.02 −0.03 0.00 0.00 0.01 0.01 0.00 0.01
2-TS3 −0.07 −0.08 −0.09 −0.08 −0.09 −0.05 −0.06 −0.07 0.01
3-UUD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3-UUU 0.04 0.05 0.04 0.03 0.02 0.04 0.03 0.04 0.02
4-S4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4-Ci 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00
5-CYC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5-CA-A −0.45 −0.44 −0.36 −0.35 −0.40 −0.39 −0.39 0.04
5-CA-B −0.54 −0.52 −0.45 −0.45 −0.49 −0.48 −0.48 0.04
5-CA-C −0.47 −0.47 −0.40 −0.39 −0.44 −0.43 −0.43 0.03
5-FR-A −0.39 −0.36 −0.30 −0.30 −0.33 −0.33 −0.33 0.04
5-FR-B −0.29 −0.28 −0.24 −0.24 −0.25 −0.25 −0.25 0.02
5-FR-C −0.39 −0.36 −0.32 −0.32 −0.33 −0.34 −0.34 0.03
6-PR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6-CA 0.18 0.19 0.15 0.15 0.16 0.16 0.16 0.01
6-BK-1 0.39 0.40 0.31 0.29 0.37 0.35 0.34 0.04
6-CC 0.61 0.58 0.45 0.40 0.59 0.53 0.52 0.09
6-BAG 0.39 0.39 0.30 0.28 0.35 0.33 0.33 0.04
6-BK-2 0.39 0.40 0.32 0.30 0.37 0.35 0.35 0.04
6-CB-1 0.61 0.59 0.45 0.39 0.58 0.52 0.51 0.09
6-CB-2 0.60 0.57 0.43 0.37 0.57 0.51 0.50 0.10

aAll units are in kcal mol−1. The data for the larger clusters is available in Table S5. bThe average and standard deviation (SD) of ΔΔEMP2
CCSD(T) with

aVDZ basis set and four ΔΔEMP2‑F12
CCSD(T/*)‑F12[a/b] with VDZ-F12 orbital basis.
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correlated methods, the columns on the right side of Table 1
clearly differ from corrections from conventional methods
shown on the left side for binding energies. For relative
energies, however, the corrections from conventional and
explicitly correlated methods are much closer, as reported in
Table 2. Figure 3 further illustrates the disparity between
binding energy (ΔE) corrections using conventional methods
and explicitly correlated variants for (H2O)n=2−10 at the top and
(H2O)11 at the bottom. A similar comparison for relative
energies in Figure 4 indicates that the difference between
corrections performed using conventional and explicitly
correlated methods is small. It is not clear which variant of
CCSD(T)-F12 is the most accurate, although Marshall and
Sherrill34,60 have reported that the CCSD(T*)-F12a yields
excellent results for the binding energy of hydrogen-bonded
dimers. The basis set dependence that we see for the
corrections to the binding energy increase rather uniformly
with cluster size, suggesting that the error accumulates with
increasing system size. The corrections to the relative energies
are less predictable and smaller in magnitude. The average
(avg) and standard deviation (SD) of ΔEMP2

CCSD(T) and
ΔΔEMP2

CCSD(T) calculated using double-ζ basis for each cluster is
a good measure of the sensitivity of the two quantities. As
reported in the last two columns of Table 1 (ΔEMP2

CCSD(T)) and
Table 2 (ΔΔEMP2

CCSD(T)), the SD for ΔEMP2
CCSD(T) is as large or

larger than the avg, whereas the SD for ΔΔEMP2
CCSD(T) is much

smaller than the avg. These findings are also obvious from the

large divergence of ΔEMP2
CCSD(T) in Figure 3 and the tight

convergence of ΔΔEMP2
CCSD(T) in Figure 4.

We explained the effect of higher-order electron correlation
on the relative energy (ΔΔEMP2

CCSD(T)) of isomers by examining
its correlation with different binding energy components. For a
set of eight water dimer stationary points from Tschumper et
al.’s work,33 the relative SAPT2+3 binding energy components
(ΔΔEcomponent) are plotted against the CCSD(T) correction
(ΔΔEMP2

CCSD(T)) for aVDZ, aVTZ, and aVQZ basis sets in Figure
5. None of the four components show significant correlation
with ΔΔEMP2

CCSD(T) even though dispersion fares better than the
others. We investigated similar correlations between
ΔΔEMP2

CCSD(T) and energy components for larger clusters using
LMO-EDA decomposition of the MP2/aVDZ binding energy.
The correlation between ΔΔEMP2

CCSD(T) and relative LMO-EDA/
MP2/aVDZ binding energy components of isomers of the
water pentamer, hexamer, and heptamer is shown in Figure 6.
The dispersion component exhibits reasonable correlation with
ΔΔEMP2

CCSD(T) for all three cluster sizes, whereas the other
components do not show consistent correlation. The dispersion
component typically accounts for one-fifth to one-third of the
total interaction energy for water clusters based on SAPT as
well as other decomposition schemes such as LMO-EDA.
Clusters with a greater dispersion component are typically

Figure 2. CCSD(T) correction to the MP2 binding energy (a) and
relative energy (b) using aVDZ, aVTZ, and aVQZ basis sets at the RI-
MP2/aVDZ optimized geometry.

Figure 3. CCSD(T) corrections to MP2 binding energies (ΔE) using
conventional [CCSD(T)/aVDZ] and explicitly correlated [CCSD(T)-
F12/VDZ-F12] methods. The four variants of CCSD(T)-F12 depend
on the F12a and F12b ansatz used for CCSD-F12 calculation and the
individual scaling factor (T) or uniformly scaling (T*) of the triples
corrections with the water dimer factor.
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stabilized by higher-order electron correlation corrections,
whereas those with a lower dispersion contribution are
destabilized by this correction in relative terms. In other
words, there is a consistently positive correlation between
ΔΔEDisp and ΔΔEMP2

CCSD(T). The CCSD(T) correction to MP2
relative energies most likely corrects for dispersion interactions
that MP2 is not capturing fully, although its correction to other
components cannot be ruled out.

4. DISCUSSION
The basis set dependence of the higher-order electron
correlation on the binding (ΔEMP2

CCSD(T)) and relative
(ΔΔEMP2

CCSD(T)) energies of water clusters and physical
explanations for the observed patterns are discussed in detail
below.
4.1. Correction to Binding Energies (ΔEMP2

CCSD(T)). When
one performs an additive CCSD(T) correction to MP2
energies using a small basis set, the implicit assumption is
that the MP2 and CCSD(T) correlation energies converge to
their respective CBS limits in a similar fashion. However, basis
set incompleteness error (BSIE) and basis set superposition
error (BSSE) affect MP2 and CCSD(T) differently. Marshall et
al.34 reported that the CCSD(T) correction to interaction
energies of the S22 database can have different magnitudes and

signs depending on basis set as well as counterpoise correction.
Taking corrections at two consecutive basis sets and
extrapolating to the CBS limit can introduce errors if the
basis sets are not large enough. This is especially true for the
most relevant system in the S22 database, the water dimer.
Because basis set errors make these corrections unreliable,
explicitly correlated methods should be able to remove these
errors and yield more consistent corrections. Explicitly
correlated calculations using basis sets of cardinal number N
usually perform equivalently to conventional calculations with
basis set of cardinal number N + 1 or N + 2.61 Unfortunately, as
indicated in Figure 3, it is unclear if the ΔEMP2

CCSD(T) calculated
using the explicitly correlated corrections is converged because
it differs significantly from the conventional correction and

Figure 4. CCSD(T) corrections to MP2 relative energies (ΔΔE)
using conventional [CCSD(T)/aVDZ] and explicitly correlated
[CCSD(T)-F12/VDZ-F12] methods. The four variants of CCSD-
(T)-F12 depend on the F12a and F12b ansatz used for CCSD-F12
calculation and the individual scaling factor (T) or uniformly scaling
(T*) of the triples corrections with the water dimer factor.

Figure 5. Correlation between relative SAPT2+3/aVDZ (top),
SAPT2+3/aVTZ (middle), and SAPT2+3/aVQZ (bottom) binding
energy components and ΔΔEMP2

CCSD(T) for eight water dimer stationary
points. The correlations are generally poor, although dispersion
correlates better than the other components. See Table S8 for
coordinates of these eight water dimer stationary points.
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among the different variants of CCSD(T)-F12. Looking at
Figure 3, the magnitude of the conventional ΔEMP2

CCSD(T) for the
water clusters studied here is less than 0.5 kcal mol−1, which is
usually less than 1% of the total binding energy. Explicitly
correlated methods predict corrections spanning a much larger
range from −0.7 kcal mol−1 for CCSD(T*)-F12a of
undecamers to about 2 kcal mol−1 for CCSD(T)-F12b
correction for the same undecamers. For the water dimer,
Marshall et al.34 reported the CBS limit ΔEMP2

CCSD(T) to be
−0.039 kcal mol−1, which is closest to the corrections
computed using conventional methods with aVDZ (−0.03)
and aVTZ (−0.04) basis sets and explicitly correlated methods
with CCSD(T*)-F12a/VDZ-F12 (−0.05) in Table 1. It would
be unwise to make sweeping conclusions about the best
approach for correcting binding energies based on the water
dimer results alone. The clear takeaway message is that caution

should be used when correcting binding energies for higher-
order electron correlation effects. Of the double-zeta basis sets,
aVDZ performs the best for systems bound by dispersion and
mixed interactions while 6-31G*(0.25) and 6-31G*(0.25,0.15)
basis sets work best for hydrogen-bonded systems.34

4.2. Correction to Relative Energies (ΔΔEMP2
CCSD(T)). The

correction to relative energies is much less sensitive to basis sets
than the binding energy. This is evident in the small deviation
between the different corrections plotted in Figure 2 (bottom)
for the conventional (ΔΔEMP2

CCSD(T)) and in Figure 4 for the
explicitly correlated (ΔΔEMP2‑F12

CCSD(T)‑F12) methods. The different
basis set dependence of corrections to binding energies and
relative energies can largely be attributed to the fact that
binding energies factor in the energy of the constituent
monomers, whereas relative energies do not. Basis set
superposition error (BSSE) affects binding energies signifi-
cantly, but intramolecular BSSE in one cluster largely cancels
BSSE in another cluster, thereby having a minimal impact on
relative energies. This property enables us to calculate the effect
of higher-order electron correlation correction using a small
basis set. Because the number of hydrogen-bonding config-
urations increases exponentially with the number of waters in a
cluster,62 it is very important to sample many configurations
and determine their relative energies accurately. As displayed in
Figure 2a, the magnitude of the higher-order electron
correlation correction to the binding energy does not exceed
0.6 kcal mol−1 for any of these clusters. However, it can dictate
the relative stability of isomers when there are many nearly
degenerate isomers. A classic example of this is the water
hexamer, where the Prism (PR), Cage (CA), and Book-1 (BK-
1) isomers have relative energies of 0.00, 0.04, and 0.25 kcal
mol−1 at the RI-MP2/CBS level, respectively. Adding the
harmonic zero-point vibrational energy (ZPVE) changes the
relative energies of the Prism, Cage, and Book-1 to 0.35, 0.20,
and 0.00 kcal mol−1, respectively, at 0 K.19 Therefore, RI-MP2/
CBS predicts that the Book-1 isomer should be the global
minimum around 0 K, but we know from broadband rotational
spectroscopy experiments that the Prism, Cage, and Book-1
isomers are present in population ratios of 4:4:1 at low
temperatures.5 Adding a CCSD(T) correction using the aVDZ
basis set changes the relative electronic energy of the Prism,
Cage, and Book-1 to 0.00, 0.22, and 0.64 kcal mol−1 and the
ZPVE-corrected energy to 0.00, 0.02, and 0.04 kcal mol−1,
which is much more consistent with experimental observa-
tions.5,19 Other studies of the water hexamer using CCSD(T)
report similar results.29,63,64 Another example of the importance
of higher-order electron correlation is (H2O)11, the water
undecamer. As shown in Figure 7, the lowest energy members
of its four most stable isomer classes are 11-515A-1, 11-43′4A-
1, 11-55′1A-1, and 11-44′3′A-1, and their RI-MP2/CBS relative
energies are 0.00, 0.03, 0.04, and 0.28 kcal mol−1, respectively.
Adding a CCSD(T) correction using the aVDZ basis set
changes the relative energy of the four isomers to 0.22, 0.00,
0.27, and 0.17 kcal mol−1, respectively. Therefore, including a
CCSD(T) correction changes the predicted global minimum
from 11-515A-1 to 11-43′4A-1. Likewise, Yoo et al. found the
MP2/aVTZ global minimum of (H2O)16 is a fused pentagonal
prism called “boat-a”, whereas a CCSD(T) correction using
aVTZ basis predicts a stacked-tetramer structure denoted 4444-
a.32

One notable conclusion about ΔΔEMP2
CCSD(T) is that it is largely

dependent on the hydrogen-bonding topology of clusters. For
example, Figure 4 shows that the correction for planar

Figure 6. Correlation between ΔΔEMP2
CCSD(T) and relative LMO-EDA/

MP2/aVDZ binding energy components of isomers of the water
pentamer (top), hexamer (middle), and heptamer (bottom). The
dispersion component shows reasonable correlation across all three
clusters, whereas the other components are erratic.
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hexamers (6-CC, 6-CB-1, 6-CB-2) is distinctly different from
that for quasi-planar (6-BK-1, 6-BK-2, 6-BAG) and three-
dimensional (6-CA, 6-PR) hexamers. Similarly, the correction
for prism hexamers (7-PR1, 7-PR2, 7-PR3) is markedly
different from that for the other quasi-planar isomers.
Examining (H2O)11, the clusters made of stacks of tetramers
and trimers such as 11-43′4A-1 and 11-44′3′A-1 have
ΔΔEMP2

CCSD(T) values close to zero, whereas clusters based on
stacked pentamers like 11-515A-1 and 11-55′1A-1 have
corrections in the range of +0.15−0.30 kcal mol−1. The
dependence of the higher-order electron correlation correction
to the binding energy on the hydrogen-bonding topology of
clusters clearly suggests that MP2 and CCSD(T) capture
components of the interaction energy differently. The most
likely component is dispersion, and it is discussed in the next
subsection.
4.3. Correlation between the Binding Energy Compo-

nents and ΔΔEMP2
CCSD(T). The physical significance of higher-

order electron correlation on the relative energy (ΔΔEMP2
CCSD(T))

of isomers can be studied by examining its correlation with
physical components of the binding energy. We have used
SAPT to get components (see Table S6) of the binding energy
of eight water dimer (see Table S8 for coordinates) structures
and LMO-EDA components (see Table S7) for all larger
clusters up to water decamer, (H2O)n=3−10. These binding
energy components are named electrostatics, exchange (or
exchange-repulsion), induction (or polarization), and disper-
sion. SAPT gives the more robust energy components since it
computes them directly as a perturbation of isolated monomer
wave functions. However, its application to anything larger than
dimers has been reported only by Milet et al.,65 who computed
the pair- and three-body interaction energy components of
cyclic trimers, tetramers, and pentamers. Therefore, we use it to
study the water dimer structures exhaustively and also assess
LMO-EDA binding energy components for the same systems.
Much of that investigation is documented in Section 1 of the
Supporting Information.

The main conclusion is that clusters whose binding energy
has a larger dispersion component are typically stabilized by
higher-order electron correlation corrections, whereas those
with a lower dispersion contribution are destabilized by this
correction in relative terms. Even though the correlations are
weak, Figure 5 shows that the dispersion component is
positively correlated with ΔΔEMP2

CCSD(T) for eight dimers studied
using SAPT2+3/aVNZ, where N = D, T, Q. Likewise, Figure 6
demonstrates a similar correlation for water pentamers,
hexamers, and heptamers whose energies were decomposed
using LMO-EDA/MP2/aVDZ. Counterpoise (CP) corrected
LMO-EDA/MP2/aVDZ analogs of these correlations are
reported in Figure S4, and they lead to similar conclusions.
In general, the more compact structures have a greater
dispersion contribution, and they are stabilized by a CCSD(T)
correction relative to more planar structures. For the water
dimer, the contribution of dispersion has been shown through
SAPT calculations to be strongly dependent on orientation.66

The improved correlation between the dispersion component
and ΔΔEMP2

CCSD(T) for systems studied with LMO-EDA
compared to that with SAPT can be attributed to the definition
of dispersion in each case. In LMO-EDA, the electrostatic,
exchange, and repulsion terms are derived at the Hartree−Fock
(HF) level, whereas the polarization or induction term arises
from HF orbital relaxation upon going from isolated monomers
to supermolecules. All post-HF contributions to the binding
energy are attributed to dispersion.67 In contrast, SAPT’s
dispersion component is calculated directly from many
contributing terms based on the monomer (intramolecular)
wave function and perturbation (intermolecular) order. The
definition of levels of SAPT and their performance for a large
number of noncovalently bound systems is described in detail
by Parker et al.59 As shown in Table S1 (Supporting
Information), some of these are cross-terms that are somewhat
arbitrarily assigned to one of the four physically motivated
interaction energy components. Therefore, comparing inter-
action energy components from SAPT and LMO-EDA is
difficult.
The good correlation between the importance of dispersion

and the size of the CCSD(T) correction suggests that
CCSD(T) is partly correcting for MP2’s incomplete account
of dispersion interactions. Decompositions of the interaction
energy at higher orders of the SAPT perturbation theory show
that the electrostatic, induction, and exchange components are
mostly converged at the MP3 level.59,68 All corrections in the
perturbation order past that using MP4 or CCD or other
higher-order correlation methods are attributed to dispersion.
Our SAPT2+3/aVDZ calculations on the water dimer potential
energy surface along the hydrogen-bond distance and angle
(see Figure S6) suggest that a combination of higher-order
dispersion terms combine to give the ΔΔEMP2

CCSD(T) surface.
These results are included in the Supporting Information.
Presumably, approaches like dispersion-corrected MP2

(MP2+ΔvdW)69 can improve on MP2’s performance and
remove the need for expensive CCSD(T) corrections.
However, Tkatchenko’s results for water dimer and ammonia
dimer show that while MP2+ΔvdW is better for dispersion
bound systems it actually performs worse than MP2 for
hydrogen-bonded systems.69 Cybulski and Lytle attributed
MP2’s success in describing hydrogen-bonded nucleic acid
bases and failure in modeling stacked configurations of the
same complex to the uncoupled Hartree−Fock dispersion
energy component and suggested a modification to reproduce

Figure 7. Lowest energy members of the water undecamer based on
CCSD(T)/CBS calculations.
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CCSD(T) interaction energies.70 Hesselmann71 suggested
improving interaction energies computed using MP2 by
replacing the uncoupled second-order dispersion contribution
in the interaction energy with coupled dispersion energy from
time-dependent density functional theory (TD-DFT). Appa-
rently, MP2 is so delicately balanced that all of these empirical
methods to correct it do not yield a universal improvement for
all systems and properties.
Despite concerns about the basis set dependence of the

CCSD(T) correction to MP2 binding energies, QM:QM
methods combining MP2 and CCSD(T)72 have been quite
successful for water clusters. In this approach, the two- and
three-body interactions are calculated using CCSD(T), and the
larger many-body interactions are computed using MP2. The
binding energies from this approach reproduce CCSD(T)
interaction energies within 0.07 kcal mol−1 for (H2O)n, n = 3−
10.6,73 Szalewicz and co-workers64 “stratified approximation”
many-body approach (SAMBA) has similarly been successful in
combining high-level methods for two- and three-body
interaction energies with lower level methods for larger N-
body interactions to yield CCSD(T)/CBS quality interaction
energies for (H2O)n, n = 6, 16, 24.
Ultimately, even CCSD(T) relies on some error cancellation

to reach chemical (1 kcal mol−1) or subchemical accuracy. To
achieve more accurate binding energies rigorously, post-
CCSD(T) corrections are necessary. As recently demonstrated
by Smith et al.,74 the same basis set dependence problems
reported for CCSD(T) corrections to MP2 binding energies
persist for CCSDT corrections to CCSD(T) and CCSDT(Q)
corrections to CCSDT. In each case, the convergence of these
corrections to their respective CBS limits was slow. Also,
smaller basis sets like 6-31G*(0.25) and 6-31G**(0.25,0.15)
that performed sufficiently in some cases75,76 proved to be
unsuitable for these post-CCSD(T) corrections. Using larger
aug-cc-pVDZ and aug-cc-pVTZ basis sets yields marked
improvement, but the cost is prohibitive due to the steep
scaling of these methods.

5. CONCLUSIONS
We evaluated the validity of including a small basis set higher-
order electron correlation correction (δMP2

CCSD(T)) to the binding
(ΔE) and relative (ΔΔE) energies of water clusters by
comparing CCSD(T) and variants of CCSD(T)-F12 with
MP2 and MP2-F12, respectively. The results indicate that the
correction to the binding (ΔE) and relative (ΔΔE) energies for
(H2O)n=2−11 have different sensitivities. While this correction to
the binding energy varies substantially with basis set size, its
affect on relative energy (and hence stability of isomers) is
remarkably consistent. Therefore, we recommend including this
correction to estimate the relative stabilities of isomers of water
clusters. Even using a double-ζ basis set such as aug-cc-pVDZ
(aVDZ) for a δMP2

CCSD(T) correction to the MP2 CBS energies has
real value in correctly identifying the ordering of water cluster
isomers. The good correlation between the importance of
dispersion and the size of the CCSD(T) correction suggests
that CCSD(T) is largely correcting for MP2’s incomplete
account of dispersion interactions.
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