Average nighttime F region disturbance neutral winds measured by WINDI UARS: Initial results

J. T. Emmert
Bela G. Fejer, Utah State University
G. G. Shepard
B. H. Solheim

Available at: https://works.bepress.com/bela_fejer/139/
Average nighttime F region disturbance neutral winds measured by UARS WINDII: Initial results

J. T. Emmert
School of Computational Sciences, George Mason University, Fairfax, Virginia, USA

B. G. Fejer
Center for Atmospheric and Space Science, Utah State University, Logan, Utah, USA

G. G. Shepherd and B. H. Solheim
Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada

Received 24 September 2004; revised 23 October 2004; accepted 1 November 2004; published 27 November 2004.

[1] We use low- and mid-latitude wind data from the Wind Imaging Interferometer (WINDII) on board the Upper Atmosphere Research Satellite (UARS) to study the average response of nighttime upper thermospheric winds to geomagnetic activity. We calculate perturbation winds in magnetic coordinates and analyze them as a function of magnetic local time, latitude, geomagnetic activity, and solar EUV flux. The nighttime zonal disturbance winds are predominately westward, with the strongest effects extending from dusk at 70° to midnight at 45°. Westward disturbance winds are also observed throughout most of the night at low latitudes, where they change to eastward at dawn. Eastward perturbations occur in the post-midnight sector above 40°. The meridional disturbance winds are primarily equatorward above 40° and after 0300 MLT. In the midnight sector during low and moderate solar flux conditions, poleward winds are observed below 40°; during solar maximum, the perturbations are largely equatorward throughout the night. INDEX TERMS: 0358 Atmospheric Composition and Structure: Thermosphere—energy deposition; 2427 Ionosphere: Ionosphere/earth interactions (0335); 3309 Meteorology and Atmospheric Dynamics: Climatol (1620); 3369 Meteorology and Atmospheric Dynamics: Thermospheric dynamics (0358). Citation: Emmert, J. T., B. G. Fejer, G. G. Shepherd, and B. H. Solheim (2004), Average nighttime F region disturbance neutral winds measured by UARS WINDII: Initial results, Geophys. Res. Lett., 31, L22807, doi:10.1029/2004GL021611.

1. Introduction

[2] Neutral winds are an important component of the coupled thermosphere-ionosphere system, and understanding their response to geospace storms is necessary to predict changes in the distribution of plasma and other constituents during disturbed conditions. The thermospheric and ionospheric response to magnetic activity has been the subject of numerous case studies [e.g., Emery et al., 1999; Zhang and Shepherd, 2002] and numerical simulations [e.g., Fuller-Rowell et al., 2002; Burns et al., 1995]. Relatively few studies, mostly of high-latitude regions, have examined the climatology of storm-time winds [e.g., Duboin and Lafeuille, 1992; Richmond et al., 2003]. Recently, data from the Wind Imaging Interferometer (WINDII) on board the Upper Atmosphere Research Satellite (UARS) have been used to study the average response of daytime low- and mid-latitude winds to increased geomagnetic activity [Fejer et al., 2000; Emmert et al., 2001, 2002]. Fejer et al. [2002] performed a similar analysis of nighttime winds over the mid-latitude station of Millstone Hill (43°N, 72°W), but the average response of nighttime winds at lower latitudes, or at other longitudes, has not been studied. In this paper, we analyze WINDII data to determine, for the first time, nighttime disturbance neutral wind patterns in the F region of the ionosphere at all geomagnetic latitudes below 70°. In the following sections, we describe the WINDII data and outline our procedure for obtaining perturbation winds. Then we present climatological averages of the disturbance winds as a function of magnetic local time and latitude, geomagnetic activity, and solar flux.

2. Data and Methodology

[3] We used upper thermospheric horizontal wind measurements from UARS WINDII. UARS is in a circular, 57° inclination orbit at a height of 585 km; the orbit precesses at a rate of 5° per day. WINDII is a Michelson interferometer that measures Doppler shifts (and hence neutral winds) of the green line (557.7 nm) and red line (630.0 nm) airglow emissions at the Earth’s limb, covering latitudes up to 72°. Details of the WINDII instrument, observing geometry, and data sampling characteristics can be found in Shepherd et al. [1993] and Fejer et al. [2000].

[4] Our previous analyses of WINDII winds utilized the version 4.98 data set, which covered the period November 1991–August 1996. For this study, we used the more extensive version 5.11 data set, which spans November 1991–August 1997 and includes a substantial number of additional data from the 1991–1996 time period. Our present study is focused on nighttime data in the 225–275 km height range (for which only red line data are available), but we also include daytime green and red line data for continuity. Table 1 summarizes the number of wind data contained in the v4.98 and v5.11 data sets. As shown below, the nighttime red line data give results that are consistent with those of the daytime data.

[5] Following the methodology outlined by Fejer et al. [2000] and Emmert et al. [2001, 2002], we first obtained

Copyright 2004 by the American Geophysical Union. 0094-8226/04/2004GL021611
quiet-time reference winds by selecting data for which $Kp < 3$ and averaging in bins of two orbital coordinates: the local time of the ascending node (northward equator crossing), and the argument of latitude (angle from the ascending node). Note that these coordinates have a one-to-one correspondence with geographic local time and latitude. We averaged the data in 1-hour by 10^7 bins, separating north-looking and south-looking data (the orientation of UARS is reversed every 36 days), red and green line data, and three seasonal bins (Nov–Feb; May–Aug; and Mar, Apr, Sep, Oct). For the daytime red line data, we also treated the 1991–1993 and 1994–1997 observations separately, in order to account for a known offset between these two periods. We repeated this procedure for each height level between 225 and 275 km (the height resolution is 5 km), and then subtracted from each measurement the corresponding quiet-time reference average to obtain a set of residual winds. Quiet-time local time, latitudinal, and seasonal effects were thereby largely removed from the data.

[6] We rotated the residual vector winds into magnetic directions, using Quasi-Dipole (QD) magnetic coordinates and basis vectors [Richmond, 1995; Richmond et al., 2003]. To account for quiet-time solar flux effects and for differences between quiet-time patterns in geographic and geomagnetic coordinates, we binned and averaged the quiet-time residuals by emission line (red and green line), QD latitude (5° bins) and local time (1-hour bins), season (same bins as before), and the $F_{10.7}$ proxy for solar EUV flux (3 bins: <100, 100–150, >150). We then applied this new grid of reference averages as a correction to the first set of residuals. Finally, we averaged the residuals over the 225–275 km height range.

[7] The procedure described above is very similar to the one used by Emmert et al. [2002] except for the rotation of the residuals into magnetic directions, which allows for easier interpretation of the results in terms of ion-neutral coupling. We use the terms ‘perturbations’ and ‘disturbances’ interchangeably to refer to the subset of residuals that correspond to geomagnetically active periods ($Kp \geq 3$). The results described below represent longitudinally averaged conditions in QD coordinates, except that above about 60° some longitude sectors are not sampled. Our results are also seasonally averaged, but the data set is fairly heavily weighted towards December solstice conditions; by combining northern and southern hemispheres, seasonal effects should largely average out. Table 2 summarizes the number of observations and average values in each $F_{10.7}$ and disturbed Kp bin that we used, as well as the distribution of the data by season.

Table 2. Distribution of the v5.11 225–275 km Data Among Several Parameter Bins

<table>
<thead>
<tr>
<th>Solar Flux</th>
<th>No. of Profiles</th>
<th>Ave. Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>431,100</td>
<td>110</td>
</tr>
<tr>
<td>$F_{10.7} \leq 100$</td>
<td>226,800</td>
<td>80</td>
</tr>
<tr>
<td>100 < $F_{10.7} \leq 150$</td>
<td>141,600</td>
<td>123</td>
</tr>
<tr>
<td>$F_{10.7} \geq 150$</td>
<td>62,700</td>
<td>189</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geomagnetic Activity</th>
<th>No. of Profiles</th>
<th>Ave. Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Kp \geq 3$</td>
<td>165,700</td>
<td>4.0</td>
</tr>
<tr>
<td>3 < $Kp \leq 4.3$</td>
<td>122,000</td>
<td>3.5</td>
</tr>
<tr>
<td>4 < $Kp \leq 6$</td>
<td>71,000</td>
<td>4.6</td>
</tr>
<tr>
<td>$Kp \geq 6$</td>
<td>29,500</td>
<td>5.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Season</th>
<th>No. of Profiles</th>
<th>Ave. Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec–Feb</td>
<td>209,500</td>
<td>N/A</td>
</tr>
<tr>
<td>Mar, Apr, Sep, Oct</td>
<td>156,200</td>
<td>N/A</td>
</tr>
<tr>
<td>May–Aug</td>
<td>65,500</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Results and Discussion

[8] The WINDII measurements indicate that nighttime mid-latitude zonal disturbance winds are predominately westward, as shown in Figure 1, except above 50°, where there are strong eastward perturbations after 0200 magnetic local time (MLT). Peak westward disturbances occur around 1800 MLT at 60°, but at later times with decreasing latitude; at 20°, the peak occurs near 0300 MLT. The disturbances increase roughly linearly with Kp, as evidenced by the equal spacing of the three curves for different Kp levels. However, above 40° the peak of the westward perturbation shifts to earlier local times with increasing Kp. At 60°, peak westward values range from 120 m/s for $Kp \sim 3.5$ to 240 m/s for $Kp \sim 5.6$, whereas post-midnight eastward disturbances...
have peak values of 20–120 m/s. The nighttime zonal disturbance winds at 50°/C176 and 60°/C176 are in good agreement with disturbance winds derived from Millstone Hill (52° magnetic latitude) Fabry-Perot interferometer (FPI) measurements [Fejer et al., 2002]. At 20°, peak westward values range from about 15 to 50 m/s.

[9] The meridional disturbance winds shown in Figure 1 are generally small in the pre-midnight sector and equatorward in the post-midnight sector, with equatorward perturbations appearing at earlier local times with increasing latitude. The largest equatorward values range from 40 m/s for Kp ~ 3.5 to 120 m/s for Kp ~ 5.6. Poleward disturbances are observed before 1930 MLT at 60° and also around midnight below 50°. In the latter case, the peak values are up to 30 m/s. The meridional perturbations at 50° are in good agreement with the Millstone Hill results of Fejer et al. [2002] for high solar EUV conditions, but the WINDII results represent relatively low solar EUV. On the other hand, poleward disturbances are observed in the low-flux Millstone Hill data, but are only seen at lower latitudes in the WINDII data. This apparent discrepancy could be unique to the location of Millstone Hill.

[10] Figure 2 (top) shows that the midnight sector poleward disturbances occur below 40° and peak at 20°–30° with values of 10 m/s (weakly disturbed) to 30 m/s (strongly disturbed). Results are fairly similar in each hemisphere, even though the seasonal distribution is quite different. Figure 2 (bottom) shows results from different F10,7 levels. The poleward perturbation is strongest during solar minimum; at solar maximum, this feature disappears almost entirely and the disturbance winds become equatorward at essentially all latitudes. This behavior is consistent with the F10,7 dependence of the Millstone Hill FPI disturbance winds [Fejer et al., 2002].

[11] The low-latitude nighttime zonal disturbance winds (Figure 3) are characterized by a westward peak near 0300 MLT and a less distinct, but consistent, westward peak near 1930 MLT. Quiet-time low-latitude winds are predominately eastward at night, so the westward perturbations represent a reduction in wind speed. As Kp increases, the post-midnight peak becomes stronger and broadens toward earlier local times. At 10° and below, a west-to-east transition occurs at 0600 MLT. The theoretical simulations of Fuller-Rowell et al. [2002] suggest that the westward perturbations in the nighttime equatorial region are due to the inhibition of eastward wind development, caused by a damped pre-reversal enhancement that would otherwise lift the ionosphere and reduce drag on the neutrals. Other possible westward wind sources include Coriolis forcing on the equatorward disturbances [e.g., Blanc and Richmond, 1980], coupling with the storm-induced westward ion drifts suggested by the mechanism of Blanc and Richmond [1980], and the dusk-midnight westward pressure gradients predicted by Burns et al. [1995].

[12] Figure 4 summarizes the behavior of the nighttime and daytime WINDII disturbance winds for Kp ≥ 3, and shows that results from the northern and southern hemispheres are very similar. To generate these figures, binned averages (2-hour MLT bins at 1-hour intervals and 10° latitude bins at 5° intervals up to 75°) were smoothed via a least squares fit to vector spherical harmonics [e.g., Hedin et al., 1988]. The expansion included terms up to orders 12 in latitude and 3 in local time.
The upper mid-latitude zonal disturbance winds are westward with peak values that extend from 70° to 0300 MLT. The location of the peak westward perturbations shifts to lower latitudes with increasing local time. Near the equator, they are predominately westward, shifting to eastward at 0600 MLT. Nighttime meridional disturbances are largely equatorward, except for a region of poleward perturbations observed around midnight below 40° under low and moderate solar activity conditions.

[13] Figure 4 (top) suggests that the largest equatorward disturbance winds originate at high latitudes (probably as a result of heating-induced pressure gradients) near 0300 MLT and turn westward and then poleward at mid latitudes, possibly as a result of Coriolis forcing. Figure 4 (middle) shows the strong westward perturbations in the dusk sector, which become centered on midnight and dominate the pattern.

[14] In summary, the WINDII measurements show that the upper mid-latitude zonal disturbance winds are westward in the dusk sector and change from west to east around 0200 MLT. The location of the peak westward perturbations shifts to lower latitudes with increasing local time. Near the equator, they are predominately westward, shifting to eastward at 0600 MLT. Nighttime meridional disturbances are largely equatorward, except for a region of poleward perturbations observed around midnight below 40° under low and moderate solar activity conditions.

References

J. T. Emmert, School of Computational Sciences, George Mason University, 4400 University Drive, MS SC3, Fairfax, VA 22030, USA. (jemmert@gmu.edu)

B. G. Fejer, Center for Atmospheric and Space Science, Utah State University, 4405 Old Main Building, Logan, UT 84322–4405, USA.

G. G. Shepherd and B. H. Solheim, Centre for Research in Earth and Space Science, York University, Toronto, ON, Canada M3J 1P3.