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Abstract

The interpolation supplemented lattice Boltzmann (ISLB) method was proposed

by He et. al. (J. Comput. Phys., 129, 357 (1996)) as a modification of the tra-

ditional lattice Boltzmann (LB) method for simulating incompressible flows. The

traditional LB method has been shown to be a highly parallel method (Computers

in Physics, 8, No. 6,705 (1994)). In this paper, the parallel performance of the

ISLB method, which has different computational requirements than the traditional

LB method, is investigated. The performance of the ISLB method on Cray X1, Cray

T3E-900 and SGI Origin 3000 is presented. The noteworthy feature of the present

implementation of the ISLB method is that it was able to achieve a sustained speed

of 353 Gflops on a 60 processor Cray X1.
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1 Introduction

The lattice Boltzmann method is a very promising method for simulating incompressible

fluid flows [1]. The method is appealing due to its simplicity - simplicity in the mesh

used (cartesian mesh) and simplicity in the operations performed (collision, advection

and boundary update). However, the simplicity of the uniform cartesian mesh is also

a liability for two reasons: one, complex, curved geometries cannot be handled without

losing boundary integrity and two, uniform mesh everywhere results in a large number

of mesh points, which in turn, increases the computational cost tremendously. The first
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issue has been addressed by Mei et al., [2, 3]. The second issue has been addressed by

He et al., [4], wherein they proposed the interpolation supplemented lattice Boltzmann

(ISLB) method. This allows non-uniform as well as curvilinear body-fitted meshes to

be used in the lattice Boltzmann calculations. An alternative approach for using non-

uniform meshes based on the concept of hierarchical grid refinement was proposed by

Filippova and Hanel[5, 6]. In the present work we have chosen to use the former approach

as it requires only a relatively straightforward modification of the traditional lattice-BGK

procedure for simulating incompressible flows and is thus quite easy to implement.

2 A Brief Review of the Lattice Boltzmann Method

In this work, the 2D LB method on a square lattice is considered. Some of the basic

features of the LB method alone are presented here. The details are available elsewhere

[4]. Each node of the lattice is populated by three kinds of particles - a rest particle that

resides in the node, particles that move in the coordinate directions and particles that

move in the diagonal directions. The total number of particles in each node in this model

(called the d2q9i) model is 9. The speed of the particles are such that they move from

one node to another during each time step. These speeds can be written as
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Here c = δx/δt, where δx and δt are the lattice spacing and the time step respectively.

In the traditional LB method the particles at each node undergo collision followed by

advection. In terms of distribution functions, this can be written as [4]

pi(x + eiδt, t + δt) − pi(x, t) = −
1

τ

[

pi(x, t) − p
(eq)
i (x, t)

]

, (2)

where τ is the dimensionless collisional relaxation time and is related to the kinematic

viscosity ν of the lattice fluid as [4]

ν =
(2τ − 1)

6

δ2
x

δt

(3)

Equation (2) above describes the evolution of the LB automaton. The equilibrium func-

tions that appear in the right hand side of this equation can be evaluated [4] as follows:

p
(eq)
i = wi

[

p + ρ0

(

(ei · u) +
3

2

(ei · u)2

2
−

1

2
u2

)]

, (4)
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where, p is the pressure and u is the velocity vector of the fluid and are given as

p =
8
∑

i=0

pi (5)

ρ0u =
1

c2
s

8
∑

i=1

eipi (6)

where cs is the speed of sound and is equal to c/
√

3 for the model under consideration.

The quantity ρ0 can be thought of as a reference density and has been taken to be equal

to 1.

In case of the ISLB method, the lattice Boltzmann automaton is assumed to reside on

a lattice with spacing exactly equal to the finest mesh spacing overlaid on the computa-

tional grid. During each time step, the particles on this lattice undergo collision followed

by advection as dictated by the lattice-BGK model[4]. The particle distribution function

at each node of the computational grid can then be determined by using second order

accurate Lagrangian interpolation [4] (this is not required in the finest mesh region as the

mesh spacing here equals the lattice spacing). The interpolation is done by using values

upwind (based on the direction of the particle velocity not the fluid velocity) of the node.

The particle distributions on the boundary nodes of the computational grid are modified

next according to the imposed boundary conditions. This way, although the automaton

resides on a fine mesh, the particle distribution functions are calculated and stored only
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on the nodes of the computational grid which can be tailored to the problem being solved

i.e., fine mesh in regions of strong gradients and coarse mesh everywhere else.

3 Parallel Implementation of the ISLB Method

3.1 Computational Issues

The computations of the ISLB method can be summarized as follows:

1. Start with an initially guessed fluid velocity field

2. Calculate the equilibrium particle distribution based on the velocity and pressure

field based on equation (4)

3. Perform the collision operation at each node (right hand side of equation (2))

4. Communicate the post collision distribution data from appropriate nodes to neigh-

boring processors that need the data.

5. Calculate particle distribution function at each node from the post collision distri-

bution using second order accurate interpolation

6. Update the particle distributions on physical boundaries based on the prescribed

boundary conditions

7. Calculate the fluid velocity and pressure at each node using equations (5,6)
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8. Repeat steps (2) through (7) until the flow field reaches a steady state or until

enough cycles of the unsteady flow field have been obtained.

From a computational perspective, steps (2), (3), (5) and (7) are the most important as

they account for nearly all the computations. In the actual implementation, steps (7), (2)

and (3) can be combined which results in considerable reuse of data already in the cache

thereby improving the computational speed. Mapping the arrays onto the L1 and L2

cache properly with pads between them and stripmining the loops also results in further

improvement of speed. All the computational kernels have been written in Fortran77 and

everything else in C. In the present case, the total number of floating points operations per

node per time step comes out to be 120 multiplications and 101 additions/subtractions.

This allows the computational speed to be calculated very accurately, once the execution

time is measured. In calculating the computational speed, both additions/ subtractions

and multiplications were treated equally. It should be noted that step (5) above is not

applicable in the traditional LB method, but in the ISLB method it accounts for about

45% of the total computations. This increase in computations is more than offset by the

decrease in the number of nodes in the computational grid for the ISLB method.

3.2 Communication Issues

The amount of data to be communicated to the neighboring processors in step (4) above

is more in the ISLB method than the traditional LB method. This is because the second
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order accurate interpolation procedure (step 5) at each node requires data from that

node plus the nearest as well the next nearest neighboring node in the upwind direction.

This means that, for particles with velocity in the directions i = 1, 2, 3, 4 in equation (1)

above, data from three nodes is required, while for particles with velocity in the directions

i = 5, 6, 7, 8 data from a total of 9 nodes is required. In the current implementation,

communication between processors has been done using SHMEM routines, which offer high

data transfer rates between processors on the Cray and the SGI machines. Porting to

MPI is currently in progress. Also, SHMEM PUT routines have been used throughout, as

they offer better performance than the SHMEM GET routines.

3.3 Load Balancing Issues

In the present work, all the parallel computations have been done by dividing the com-

putational domain into equal parts and then assigning each part to a processor. The

size of each part is determined based on considerations of surface-to-volume ratio [7].

The computations involved in steps (2),(3) and (7) require only local data and so these

steps can be parallelized trivially and they also do not pose any difficulties related to

load balancing. Step (4), namely communication of data has to be completed before the

computations in steps (5) and (6) can be done (it should be kept in mind that step (7)

has been merged with step (2)). This poses some load balancing problems as the pro-

cessors that have been assigned the interior of the computational domain communicate

more data than the others. Step (6), namely, implementation of the boundary conditions
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also presents difficulties in load balancing as the processors assigned the interior of the

domain do less computations (if any) in this step. However, good load balance can be

achieved without too much additional effort as will be shown in the next section.

4 Results and Discussion

4.1 Cray X1

Parallel performance of the code on a 16 node Cray X1 machine is shown in Figs. 1 and

2. The Cray X1 is a scalable vector MPP architecture with a peak flop rate of 12.8 Gflops

(64-bits) per MSP processor or 24 Gflops for 32 bit calculations. The latter number is

relevant in the present case as all the calculations have been done using 32 bit floating

point numbers. Each node of the machine contains 4 MSP processors. It is also possible

to run parallel applications in an SSP mode where each MSP processor behaves as though

it is a collection of 4 tightly coupled SSP processors. The Cray X1 is a shared memory

architecture within each node whereas the memory is logically shared but distributed

across the nodes. It is also possible to specify the number of processors to be used per

node for parallel applications. For example, an 8 processor run can be done by using 8

nodes with 1 MSP processor per node or by using 4 nodes with 2 MSP processor per

node or by using 2 nodes with 4 MSP processors (the maximum possible) per node. The

same concept can be used for execution in SSP mode also, except that, now, upto 16 SSP

processors are available per node.
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The performance curves in Fig.1 show the results for parallel runs with MSP proces-

sors. In these figures, speedup values are presented for the slowest execution times. Also,

the solid line in this figure (as well as the subsequent figures) indicates linear speedup.

The general trend in Fig. 1 is that the load balance is quite good when the number of

processors is less than 50 and it worsens somewhat afterwards (the difference in CPU time

between the processor finishing first and last in the worst case was about 3% of the average

CPU time). The maximum speed achieved in MSP mode was 10 Gflops per processor and

the minimum was 5 Gflops. In general, the performance deteriorated somewhat as the

number of processors per node was increased. This can be attributed to the fact that the

bandwidth available for each processor in a particular node decreases as more processors

in that node are used. The maximum speed achieved was 353 Gflops for a run with 60

MSP processors.

Performance curves for parallel calculations with SSP processors are shown in Fig. 2.

The speedup is very close to being linear for all the cases for number of processors upto

30 or so. Beyond that, as the number of SSPs per node is increased, the speedup falls off

considerably, as the available bandwidth per node has to be shared among more SSPs.

This trend is similar to what is seen with increasing number of MSP processors per node.

However, the load balance, even for the run with 260 processors is quite good as can

be seen from this figure. This clearly shows that as the problem size per processor is
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reduced, the increased communication cost more than offsets the performance gains due

to better positioning in the cache. The maximum speed achieved was 293 Gflops for a

run with 260 SSP processors. The overall performance of the MSP processors is better

because the parallelization is at the streaming level. In the case of SSP processors, more

parallelization is at the process level and the overheads associated with this are more than

those of the MSP processors.

4.2 Cray T3E

Parallel performance of the code on the distributed memory Cray T3E-900 architecture

is discussed next. This architecture utilizes 450 MHz DEC EV5 processors and on the

machines that were used for the timing studies, each processor has 256 MB of memory,

8 KB of primary cache and 96 KB of secondary cache. In this work, performance stud-

ies were carried out on two T3E machines, which are identical except for the number of

processors. All the calculations on the T3E were done with 64 bit numbers as it is not

possible to do 32 bit calculations.

The computational speed per processor for a 2 processor run came out to be 144 Mflops

(the size of the problem in each processor was too big for single processor runs). The

speed increased to 165±3 Mflops per processor for runs using larger number of proces-

sors, which indicates that the problem fits better in the cache as the number of processors

is increased. This is reflected in the super-linear speed-up seen in Fig. 3 right from the
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beginning. For the run with 260 processors, the difference in CPU time between the

processor finishing first and last was about 0.1% of the average CPU time, indicating

extremely good load balance. The speed-up is 14% super-linear for the run with 260

processors. The noteworthy trend from Fig. 3 for the T3E architecture is that the degree

of super-linearity continues to increase for number of processors upto 260. This is in

contrast to the usual trend on distributed memory machines where the speed-up tapers

off beyond a certain number of processors as applications become communication bound.

The maximum sustained speed achieved for this architecture was 43 Gflops for a run with

260 processors. It should be kept in mind that these speeds are for 64 bit calculations, so

when comparing with the speeds from the other architectures such as the Cray X1 above

or the SGI Origin (see below), these should be multiplied by a factor of two.

4.3 SGI Origin 3000

Parallel performance of the code on a shared memory SGI Origin 3000 machine running

500 MHz, R14000 processors is presented next. This machine has 64 processors, main

memory of 32 GB and primary and secondary caches of size 32 KB and 8 MB respectively.

Figure 4 shows the performance of the current implementation of the ISLB method on this

machine. The speed-up is slightly super-linear for number of processors upto 10. Beyond

this, as the problem size in each processor becomes small enough to fit in the secondary

cache, the speed-up is highly super-linear. The computational speed per processor also

increases to about 650 Mflops from 430 Mflops. For number of processors equal to 24, the
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speed-up is 75% super-linear, but for 63 processors, it is only 50% super-linear, indicating

that the application is becoming communication bound. The maximum speed achieved

on this architecture was 40 Gflops for a run with 63 processors.

Finally, the overall speeds achieved on the three architectures are shown in Fig. 5. Here,

the computational speed (calculated based on the CPU time of the processor finishing

last) is plotted against the number of processors using a log-log scale. The values plotted

in this figure for the case of the Cray T3E machine are actual speeds (for 64 bit calcula-

tions) multiplied by two. For a given number of processors, say, for example 60, the Cray

X1 in MSP mode gives speeds that are about 3.5 times better than the Cray X1 in SSP

mode, about 18 times better than the Cray T3E and about 9 times better than the SGI

Origin 3000

5 Conclusions

The parallel performance of the Interpolation Supplemented Lattice Boltzmann method

on different architectures has been investigated. Although the communication and com-

putational requirements per node per time step of the ISLB method are higher than the

traditional LB method, the parallel performance is, nevertheless, quite good, particularly

on cache based machines. Some further improvement in the single processor performance

of the implementation appear to be possible and these are currently being explored. Per-

13



formance of the method when using MPI is of considerable interest as the data transfer

rates between processors is lesser in the MPI environment than with SHMEM routines. This

is very likely to introduce some load imbalance and thus affect the parallel performance.
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