Skip to main content
Article
A finite element approach to self-consistent field theory calculations of multiblock polymers
Journal of Computational Physics
  • David M. Ackerman, Iowa State University
  • Kris Delaney, University of California, Santa Barbara
  • Glenn H. Fredrickson, University of California, Santa Barbara
  • Baskar Ganapathysubramanian, Iowa State University
Document Type
Article
Publication Version
Submitted Manuscript
Publication Date
2-15-2017
DOI
10.1016/j.jcp.2016.11.020
Abstract
Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.
Comments

This is a manuscript of an article is published as Ackerman, David M., Kris Delaney, Glenn H. Fredrickson, and Baskar Ganapathysubramanian. "A finite element approach to self-consistent field theory calculations of multiblock polymers." Journal of Computational Physics 331 (2017): 280-296. DOI:10.1016/j.jcp.2016.11.020. Posted with permission.

Creative Commons License
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
Copyright Owner
Elsevier Inc.
Language
en
File Format
application/pdf
Citation Information
David M. Ackerman, Kris Delaney, Glenn H. Fredrickson and Baskar Ganapathysubramanian. "A finite element approach to self-consistent field theory calculations of multiblock polymers" Journal of Computational Physics Vol. 331 (2017) p. 280 - 296
Available at: http://works.bepress.com/baskar-ganapathysubramanian/11/