Skip to main content
Article
Integrating metabolomics and transcriptomics data to discover a biocatalyst that can generate the amine precursors for alkamide biosynthesis
The Plant Journal
  • Ludmila Rizhsky, Iowa State University
  • Huanan Jin, Iowa State University
  • Michael R. Shepard, Indiana University-Purdue University
  • Harry W. Scott, Indiana University-Purdue University
  • Alicen M. Teitgen, Indiana University-Purdue University
  • M. Ann Perera, Iowa State University
  • Vandana Mhaske, Iowa State University
  • Adarsh Jose, Iowa State University
  • Xiaobin Zheng, Iowa State University
  • Matt Crispin, Iowa State University
  • Eve S. Wurtele, Iowa State University
  • Dallas Jones, Iowa State University
  • Manhoi Hur, Iowa State University
  • Elsa Góngora-Castillo, Michigan State University
  • C. Robin Buell, Michigan State University
  • Robert E. Minto, Indiana University-Purdue University
  • Basil J. Nikolau, Iowa State University
Document Type
Article
Publication Version
Accepted Manuscript
Publication Date
12-1-2016
DOI
10.1111/tpj.13295
Abstract

The Echinacea genus is exemplary of over 30 plant families that produce a set of bioactive amides, called alkamides. The Echinacea alkamides may be assembled from two distinct moieties, a branched-chain amine that is acylated with a novel polyunsaturated fatty acid. In this study we identified the potential enzymological source of the amine moiety as a pyridoxal phosphate dependent decarboxylating enzyme that uses branched chain amino acids as substrate. This identification was based on a correlative analysis of the transcriptomes and metabolomes of 36 different E. purpurea tissues and organs, which expressed distinct alkamide profiles. Although no correlation was found between the accumulation patterns of the alkamides and their putative metabolic precursors (i.e., fatty acids and branched chain amino acids), isotope-labeling analyses supported the transformation of valine and isoleucine to isobutylamine and 2-methylbutylamine as reactions of alkamide biosynthesis. Sequence homology identified the pyridoxal phosphate dependent decarboxylase-like proteins in the translated proteome of E. purpurea. These sequences were prioritized for direct characterization by correlating their transcript levels with alkamide accumulation patterns in different organs and tissues, and this multi-pronged approach led to the identification and characterization of a branched-chain amino acid decarboxylase, which would appear to be responsible for generating the amine moieties of naturally occurring alkamides.

Comments

This is a manuscript of an article published as Rizhsky, Ludmila, Huanan Jin, Michael R. Shepard, Harry W. Scott, Alicen M. Teitgen, M. Ann Perera, Vandana Mhaske et al. "Integrating metabolomics and transcriptomics data to discover a biocatalyst that can generate the amine precursors for alkamide biosynthesis." The Plant Journal 88, no. 5 (2016): 775-793. doi: 10.1111/tpj.13295. Posted with permission.

Copyright Owner
© The Authors The Plant Journal © John Wiley & Sons Ltd
Language
en
File Format
application/pdf
Citation Information
Ludmila Rizhsky, Huanan Jin, Michael R. Shepard, Harry W. Scott, et al.. "Integrating metabolomics and transcriptomics data to discover a biocatalyst that can generate the amine precursors for alkamide biosynthesis" The Plant Journal Vol. 88 Iss. 5 (2016) p. 775 - 793
Available at: http://works.bepress.com/basil-nikolau/56/