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We examine the problem of calculating higher order contributions to the Coulomb scattering
amplitude. To make contact with the well known result, it is necessary to modify the conventional
definition of the scattering amplitude. © 2007 American Association of Physics Teachers.
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I. INTRODUCTION

The calculation of the elastic potential scattering ampli-
tude for a particle of mass m is a staple of quantum mechan-
ics courses. The result of the traditional scattering theory
calculation yields the exact result1

d�

d� f
= �−

m

2�
T�Ei��2

, �1�

where

T�Ei� = �� f�V̂��i
�+�� �2�

is the transition amplitude. Here �� f� is a plane wave state
that satisfies the free Schrödinger equation

Ĥ0�� f� = Ei�� f� , �3�

and ��i
�+�� is a state with outgoing boundary conditions that

satisfies the full Schrödinger equation

�Ĥ0 + V̂���i
�+�� = Ei��i

�+�� . �4�

The relation

��i
�+�� = ��i� +

1

Ei − Ĥ0 + i�
V̂��i

�+�� , �5�

which connects the free and interacting states, allows a per-
turbative expression for the scattering amplitude known as
the Born series in powers of the potential:

fB�p0,�� = −
m

2�
	�� f�V̂��i� + 


n

�� f�V̂�n��n�V̂��i�
Ei − En + i�

+ . . . � .

�6�

The leading term in this expansion leads to the first Born
approximation for the cross section:

d�B,1

d� f
= �−

m

2�
�� f�V̂��i��2

. �7�

For the Coulomb interaction

VC�r� =
�

r
, �8�

the first Born approximation to the scattering amplitude is

fB,1
C �p0,�� = −

m

2�
� d3r eiq·r�

r
= −

2m�

q2 , �9�

where q=pi−p f is the momentum transfer. The correspond-
ing Born cross section,

d�B,1
C

d� f
= �fB,1

C �p0,���2 =
4m2�2

q4 =
m2�2

4p0
4 sin4 ��/2�

, �10�

agrees not only with its well-known classical value,2 but also
with the exact quantum mechanical solution. The latter
agreement occurs because the exact scattering amplitude, ob-
tained from the analytic solution to the Schrödinger equation,
differs from its Born value by a simple phase factor3

fexact
C �p0,�� = −

2m�

q2 exp 	− 2i arg 	�1 − i
� − i
 log
q2

4p0
2� ,

�11�

where 
=m� / p0 and Ei= p0
2 /2m.

We have demonstrated the identity of the exact solution
and the Born approximation for lowest order Coulomb scat-
tering

fexact,O���
C �p0,�� = fB,1

C �p0,�� = −
m

2�
�� f�V̂��i� . �12�

If we expand in powers of the fine structure constant �, we
might expect that the O��2� contribution to the exact scatter-
ing amplitude

fexact,O��2�
C �p0,�� = −

2m�

q2 	− 2i
� − i
 log
q2

4p0
2� , �13�

where �=0.5772. . . is Euler’s constant, should agree pre-
cisely with the second order term in the perturbative expan-
sion of the exact scattering amplitude

fexact,O��2�
C �p0,��=

?

fB,2
C �p0,�� = −

m

2�



n

�� f�V̂�n��n�V̂��i�
Ei − En + i�

.

�14�

In the next section we evaluate the second Born term and
find that Eq. �14� is not satisfied.

II. SECOND BORN APPROXIMATION

A. Paradise lost

In Sec. I we showed the identity of the leading order con-
tribution to the exact Coulomb scattering amplitude and the
lowest order Born approximation �see Eq. �12��. To check
our speculation, Eq. �14�, we need to evaluate the second
Born contribution to Coulomb scattering
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fB,2
C �p0,�� = −

m

2�



n

�� f�V̂�n��n�V̂��i�
Ei − En + i�

�15a�

=−
m

2�
� d3 �

�2��3

�
− 4��

�p f − � �2
1

p0
2

2m
−

�2

2m
+ i�

− 4��

� � − pi�2
. �15b�

The integration can be performed by combining the second
and third pieces via the Feynman parameter x:

1

p0
2

2m
−

�2

2m

1

� � − pi�2
= − 2m�

0

1

dx

�
1

���− pix�2 + pi
2x�1 − x� − p0

2�1 − x��2 .

�16�

Then, by changing variables to s= �−p f we find

fB,2
C �p0,�� =

2�2m2

�2 �
0

1

dx�
0



ds� d�
1

�s2 − 2s · u + K�2 ,

�17�

where u=p f −pi�1−x� and K=q2x− �p0
2− pf

2��1−x�. The inte-
gration over solid angle and s may now be performed di-
rectly, leaving only a one-dimensional integration4

fB,2
C �p0,�� = i8�m2p0�2

��
0

1

dy
1

4yp0
2q2 + �1 − y�2�p0

2 − pf
2��p0

2 − pi
2�

.

�18�

�It is important here that we keep p0
2�pf

2 , pi
2 because other-

wise the result diverges.� The remaining integration can now
be done directly, yielding, in the limit p0

2− pf
2 p0

2− pi
2� �q�2

fB,2
C �p0,�� = i

2m�


q2 log
4p0

2q2

�p0
2 − pf

2��p0
2 − pi

2�
. �19�

The problem is now clear: if the O��2� exact and second
Born expressions are subtracted, the result is nonzero!

fexact,O��2�
C �p0,�� − fB,2

C �p0,��

= −
2m�

q2 	− i2
� − i
 log
�p0

2 − pi
2��p0

2 − pf
2�

16p0
4 � � 0. �20�

B. Paradise regained

The resolution of the “mystery” presented in Eq. �20� is
associated with the definition of the scattering amplitude. For
ordinary scattering the full momentum space transition am-
plitude, which represents the change from initial momentum
pi to the final momentum p f, is given by5

− iKF�p f,pi� = DF
�0��p f,p0�	− iV�p f − pi� + �− i�2

�� d3�

�2��3V�p f − � �DF
�0��� ,p0�V��− pi�

+ . . . �DF�pi,p0� , �21�

where

DF
�0��p,p0� =

i

p0
2/2m − p2/2m + i�

�22�

is the free propagator. The scattering amplitude is then given
by

fBorn�p0,�� = −
m

2�

KF�p f,pi�
DF

�0��p f,p0�DF
�0��pi,p0�

. �23�

The free propagator has the Fourier transform

�r f� i

Ei − Ĥ0 + i�
�ri� = −

m

2�r
eip0r, �24�

which is associated with the asymptotic form of the outgoing
scattered wave

��r� →
r→1

r
eip0r. �25�

The problem is that in the Coulomb case the outgoing
wave is not spherical because of the long range nature of the
force. Instead the asymptotic form of the Coulomb wave-
function is3

�C�r� →
r→1

r
ei�p0r−
 log 2p0r�, �26�

whose Fourier transform yields the propagator6

DF
C�p,p0� = DF

�0��p,p0�	�1 − i
� exp 	− i
 log
p0

2 − p2

4p0
2 � .

�27�

Equation �27�, which generates the proper asymptotic depen-
dence of the wavefunction, should be used to define the Cou-
lomb scattering amplitude7

fexact
C �p0,�� = −

m

2�

KF�p f,pi�
DF

C�p f,p0�DF
C�pi,p0�

�28a�

=−
m

2�

KF�p f,pi�
DF

�0��p f,p0�DF
�0��pi,p0�

�
1

�	�1 − i
� exp �i
 log ��p0
2 − pf

2�/4p0
2����	�1 − i
� exp �i
 log ��p0

2 − pi
2�/4p0

2���
.

�28b�
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The Coulomb scattering amplitude thus differs from that given by the usual scattering series via

fexact
C �p0,�� =

fC
Born�p0,��

�	�1 − i
� exp �i
 log ��p0
2 − pf

2�/4p0
2���	�1 − i
� exp �i
 log ��p0

2 − pi
2�/4p0

2��
. �29�

To O��2� we find

fexact,O��2�
C �p0,�� − fB,2

C �p0,��

=
2m�2

q2 	− 2i
� − i
 log
�p0

2 − pi
2��p0

2 − pf
2�

16p0
4 � , �30�

which is in precise agreement with Eq. �20� found earlier—
the apparent paradox has been resolved.

III. CONCLUSIONS

If the conventional scattering series is used to calculate the
Coulomb scattering amplitude, then although the exact and
Born series results agree at lowest order, discrepancies be-
tween the two expressions arise for higher order Born terms.
We calculated the second Born term explicitly and showed
that this disagreement can be resolved by using the incoming
and outgoing propagators, which take into account the proper
asymptotic behavior of the Coulomb wavefunction. The
agreement at lowest order is due to the fact that the differ-
ence between the free and Coulomb propagators in Eq. �27�

begins at O���. This discussion could stimulate interest in
the context of an advanced quantum mechanics course.
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