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We analyze the electromagnetic scattering of massive particles with and without spin wherein one

particle (or both) is electrically neutral. Using the techniques of effective field theory, we isolate the

leading long distance effects, both classical and quantum mechanical. For spinless systems results are

identical to those obtained earlier via more elaborate dispersive methods. However, we also find new

results if either or both particles carry spin.

DOI: 10.1103/PhysRevD.78.013001 PACS numbers: 13.40.�f

I. INTRODUCTION

There has been a good deal of recent interest in higher
order corrections to electromagnetic scattering. In particu-
lar the one-photon-exchange approximation, which has
traditionally been used to analyze electron scattering has
been shown to be inadequate when applied to the problem
of isolating nucleon form factors via Rosenbluth separa-
tion—inclusion of two-photon-exchange contributions has
been found to be essential in resolving small discrepancies
with the values of these same form factors as obtained from
spin correlation measurements [1]. A second arena where
two-photon-exchange effects are needed is in the analysis
of transverse polarization asymmetry measurements in
electron scattering. Such quantities vanish in the one-pho-
ton-exchange approximation, meaning that the sizable ef-
fects found experimentally must arise from two-photon
effects [2].

Much has been written about such higher order photon
processes and a number of groups have undertaken preci-
sion calculation of such effects [3], which have shown, for
example, that the high energy enhancement of that trans-
verse asymmetry is associated with a logarithm containing
the electron mass. It is not our purpose here to attempt such
detailed calculations of charged particle interactions or to
confront experimental data. Rather our goal is to use the
methods of effective field theory (EFT) in order to analyze
the very longest range (smallest momentum transfer) con-
tributions to the electromagnetic scattering process when
one or both of the scattering particles are neutral. Note that
these long range components are associated with pieces of
the scattering amplitude which are nonanalytic (and sin-
gular) in the smallmomentum transfer limit. (They have no
relevance therefore to the high energy effects discussed
above.) Some of these corrections are classical

(@-independent) and behave as 1=
ffiffiffiffiffiffiffiffiffiffi�q2p

,
ffiffiffiffiffiffiffiffiffiffi�q2p

, etc., while
others are quantum mechanical (@-dependent) and behave
as log�q2, q2 log�q2, etc., where q2 is the momentum
transfer [4]. In the case of two spinless charged particles
the lowest order interaction, which arises from one-photon
exchange, is the simple Coulomb interaction, which be-
haves as �=r, where � ¼ e2=4� is the fine structure con-

stant. The contribution to this charged scattering process
from two-photon exchange is a problem addressed nearly
two decades ago by Feinberg and Sucher using dispersive
methods [5]. Even earlier Iwasaki had studied the classical
piece of this problem using standard noncovariant pertur-
bation theory [6]. Recently we reexamined this problem,
using the methods of EFT [7]. Results for spinless scatter-
ing were found to agree with those of [5,6], but the use of
EFT methods permitted the extraction of new and interest-
ing spin-dependent structure.
Our goal in the present article is to extend these consid-

erations to the case of the electromagnetic scattering of two
nonzero mass particles, at least one of which is neutral. In
this case there exists no lowest order Coulomb potential
and the leading contribution arises from two-photon ex-
change. The interaction of two spinless systems was con-
sidered long ago by Casimir and Polder [8] and by
Feinberg and Sucher [9] in the neutral-neutral case and
by Bernabeu and Tarrach [10] and by Feinberg and Sucher
in the case of the interaction of a neutral and a charged
particle [11]. The first of these calculations was performed
using noncovariant fourth-order perturbation theory, while
the latter evaluations were done using dispersive methods.
In the present paper we reanalyze these problem using EFT
techniques. The basic idea is to calculate the infrared
singular components of the two-photon-exchange dia-
grams, since such terms give rise to the longest order
interactions in coordinate space. In the case of spinless
scattering, we will reproduce the results of previous au-
thors [9–11]. However, the use of EFT methods allows the
straightforward extraction of the new and interesting struc-
ture which arises if either or both particles carry spin.
In the next section we study the interaction of two

neutral particles, while in the following section we look
at the situation when one of these particles is charged. We
present a brief summary in a concluding section.

II. NEUTRAL-NEUTRAL SCATTERING

The electromagnetic interaction of two neutral systems
having separation r, the so-called van der Waals force, was
considered long ago by London [12], who gave a simple
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form for the interaction potential in terms of the electric
polarizabilities of the two systems—

VvdWðrÞ � ��aE�
b
E!0

4�r6
; (1)

where !0 is a typical excitation energy. The form of the
van der Waals potential can be understood in terms of the
energy of the dipole moment of ‘‘atom’’ b (db ¼ �exb) in
the electric field created by the dipole moment of ‘‘atom’’
a—

H 1 ��dbEbðdaÞ ¼ exb ��exa
4�r3

¼ � e2xaxb
4�r3

: (2)

Of course, hxai ¼ hxbi ¼ 0, i.e., there exists no average
dipole moment, so this energy change vanishes in first-
order perturbation theory—

�E1 ¼ h 0jH 1j 0i ¼ 0:

However, there is a shift at second order since at any given
instant of time there exists an instantaneous dipole mo-
ment, say in atom a. The corresponding electric field from
atom a at the position of atom b— EaðRÞ—generates a
correlated electric dipole moment due to its electric polar-
izability:

db ¼ 4��bEEaðRÞ ¼ 4��bE
exa
4�r3

: (3)

The electric field generated by this electric dipole moment
then acts back on the original atom, yielding an energy

�Evdw ��daEbðrÞ ¼ � e2x2a�
b
E

4�r6
; (4)

which is the van der Waals interaction. What makes this
work, then, is the point that one can use the instantaneous
position of one atom to provide an action at a distance
correlation with a second atom in the vicinity. Finally, we
note that the electric polarizability itself can be extracted
by calculating the shift in energy of the atom in the
presence of an external electric field E0 in second-order
perturbation theory—

�Eð2Þ ¼ X
n�0

h0jeE0xajnihnjeE0xaj0i
E0 � En

� � 1

2
4��aEE

2
0:

(5)

We find then �aE � e2hx21i=!0 and

�Evdw � �aE�
b
E!0

4�r6
(6)

so that it is this self-interaction energywhich is responsible
for the London form.

Casimir and Polder generated a general form for the
interaction potential from quantum mechanics by using
two-photon exchange and fourth-order noncovariant per-
turbation theory [8]. Their result reproduces the simple
London form at short distance— r � 1

!0
—but at large

distances, when retardation is important, i.e., when a typi-
cal quantum mechanical excitation time Tqm � 1=!0 is

smaller than the time for light to travel between the two
particles T� � r, then the London potential, which depends

upon the correlation between the instantaneous positions of
the two systems, breaks down and the interaction evolves
into the long distance asymptotic form

VCasPolðrÞ !R!1�23ð�aE�bE þ �aM�
b
MÞ þ 7ð�aE�bM þ �bE�

a
MÞ

4�r7
:

(7)

That the very long distance asymptotic form must vary as
1=r7 is clear from simple scaling, as argued by Kaplan
[13]. The argument is elementary—since polarizabilities
have units of volume, and since the interparticle separation
is the only scale in the problem, the form of the potential
must be

V ���aE�
b
E

r7
:

The derivation of the Casimir-Polder form—Eq. (7)—
within modern quantum field theory was given by
Feinberg and Sucher using dispersive methods [9]. In an
impressive calculation using simple assumptions involving
analyticity they were able to obtain the Casimir-Polder
result.
In this section we shall show how the same form can be

obtained in a much simpler and more direct fashion using
the methods of effective field theory. The basic idea is to
calculate the diagram for two-photon exchange between
the two systems and then to retain only the leading non-
analytic—small momentum transfer—terms, since it is
these pieces which lead to the dominant—large r—behav-
ior of the potential. We first set the generic framework for
our study. We examine the electromagnetic scattering of
two particles—particle awith massma and incoming four-
momentum p1 and particle b with mass mb and incoming

FIG. 1. Basic kinematics of electromagnetic scattering.
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four-momentum p3. After undergoing scattering the final
four-momentum of particle a is p2 ¼ p1 � q and that of
particle b is p4 ¼ p3 þ q—cf. Fig. 1. Now we need to be
more specific.

A. Spinless neutral-spinless neutral scattering

First suppose that the two particles are both neutral and
spinless. Then the leading piece of the electromagnetic
amplitude is that for two-photon emission and can be
characterized in terms of the electric and magnetic polar-

izabilities— �E, �M—which are in turn defined via the
energies [14]

0�Eð1Þ ¼ �1
2ð4��E ~E2 þ 4��M ~B

2Þ: (8)

For a spinless neutral particle a of mass ma having four-
momentum p1, the amplitude to emit a photon with polar-
ization �a and four-momentum k together with a second
photon having polarization �b and four-momentum q� k
is then

���a �
��
b

0�a��ðp1; k; q� kÞ ¼ �i4��aE
1

m2
a

ð���a k � p1 � k���a � p1Þð��b�ðq� kÞ � p1 � ðq� kÞ���b � p1Þ

� i4��aM
1

m2
a

ð�������a�k�p1�Þð���	
���b ðq� kÞ	p
1 Þ: (9)

The two-photon-exchange diagram between spinless neutral particles is shown in Fig. 2 and is of the form

00M2�ðqÞ ¼ 1

2!

ð4�Þ2
m2
am

2
b

Z d4k

ð2�Þ4
�i���
k2

�i���
ðk� qÞ2

0�a��ðp1; k; q� kÞ0�bs��ðp3;�k; k� qÞ

¼ 1

2!

ð4�Þ2
m2
am

2
b

Z d4k

ð2�Þ4
1

k2ðk� qÞ2 ½�
b
Eð���p3 � kp3 � ðk� qÞ þ p�3p

�
3 k � ðk� qÞ � ðk� qÞ�p�3 p3 � k

� p�3 k
�p3 � ðk� qÞÞ þ �bMð�
���k�p3�Þð�
��ðk� qÞ�p3Þ�½�aEð���p1 � kp1 � ðk� qÞ

þ p1�p1�k � ðk� qÞ � ðk� qÞ�p1�p1 � k� p1�k�p1 � ðk� qÞÞ þ �bMð�
�	�k	p�1Þð�
��ðk� qÞ�p1 Þ�:
(10)

Performing the indicated contractions and integrating,
using the results in Appendix A, we find the result

00M2�ðqÞ ¼ �Lq4

240
½23ð�aE�bE þ �aM�

b
MÞ

� 7ð�aE�bM þ �bE�
a
MÞ�; (11)

where we have defined L ¼ log�q2. In order to determine
the potential, we Fourier transform and find, using the
results from Appendix B,

00V2�ðrÞ ¼ �
Z d3q

ð2�Þ3 M2�ðqÞe�i ~q� ~r

¼ �23ð�aE�bE þ �aM�
b
MÞ þ 7ð�aE�bM þ �bE�

a
MÞ

4�r7
;

(12)

which is the classic result of Casimir and Polder [8].

B. Nonzero spin neutral-spinless neutral scattering

If either neutral particle has spin, the potential becomes
more complex, but is still straightforward. We must now
characterize the system in terms both of its ordinary elec-
tric and magnetic polarizabilities but also in terms of so-
called spin polarizabilities. If the particle a has spin Sa,
then the leading order spin-dependent generalization of
Eq. (8) has the form [15]

Sa�Etot ¼ 0�Eð1ÞhSa;mafjSa;maii þ Sa�Eð2Þ; (13)

where

Sa�Eð2Þ ¼ �4�½�aE1 ~Sa � ~E� _~Eþ �aM1
~Sa � ~B� _~B

� 2�aE2ð ~E � ~r ~Sa � ~Bþ Ej ~Sa � ~rBjÞ
þ 2�aM2ð ~B � ~r ~Sa � ~Eþ Bj ~Sa � ~rEjÞ�: (14)

FIG. 2. Bubble diagram used to evaluate the electromagnetic
scattering of two neutral systems.

LONG RANGE ELECTROMAGNETIC EFFECTS INVOLVING . . . PHYSICAL REVIEW D 78, 013001 (2008)

013001-3



Here ~Sa ¼ hSa;mafj ~SjSa;maii and �aE1, �aM1, �
a
E2, �

a
M2 are the spin polarizabilities of the particle. The two-photon vertex

of particle a then has the form

���a �
��
b
Sa�a��ðp1; k; q� kÞ ¼ 4�

m2
a

½�aEð���a k � p1 � k���a � p1Þð��b�ðq� kÞ � p1 � ðq� kÞ���b � pÞ

þ �aMð�������a�k�p1�Þð���	
���b ðq� kÞ	p
1 Þ�hSa;mafjSa;maii
þ �aE1i�����S

�
a ½ð���b ðq� kÞ � p1 � ðq� kÞ���b � p1Þk�ð���a k � p1 � k���a � p1Þ

þ ð���a k � p1 � k���a � p1Þðq� kÞ�ð���b ðq� kÞ � p1 � ðq� kÞ���b � p1Þ�
þ �aM1i�����S

�
b ½���
����b ðq� kÞ
p1�k��

���	��a�k�p1	

þ ����	��a�k�p1	ðq� kÞ����
����b ðq� kÞ
p1�� þ 2�aE2½Sb � kð���b ðq� kÞ � p1

� ðq� kÞ���b � p1Þi����	���a k�p	1 þ Sb � ðq� kÞð���a k � p1 � k���a � p1Þi����	���b
� ðq� kÞ�p	1 þ ð��b � kðq� kÞ � p1 � ðq� kÞ � k��b � p1Þi����	S�a���a k�p	1
þ ð��a � ðq� kÞk � p1 � ðq� kÞ � k��a � p1Þi����	S�a���b ðq� kÞ�p	1 �
þ 2�aM2½Sa � kð���a k � p1 � k���a � p1Þi����	���b ðq� kÞ�p	1 þ Sa � ðq� kÞð���b ðq� kÞ � p1

� ðq� kÞ���b � p1Þi����	���a k�p	1 þ i����	k
����b ðq� kÞ�p	1 ð��a � Sak � p1 � k � Sa��a � p1Þ

þ i����	ðq� kÞ����a k�p	1 ð��b � Saðq� kÞ � p1 � ðq� kÞ � Sa��b � p1Þ� (15)

and the scattering amplitude becomes

Sa0M2�ðqÞ ¼
1

2!

ð4�Þ2
m2
am

2
b

Z d4k

ð2�Þ4
�i���
k2

�i���
ðk� qÞ2

Sa�a��ðp1; k; q� kÞ0�bs��ðp3;�k; k� qÞ: (16)

Performing the various contractions and integration, we find

Sa0Mtot
2�ðqÞ ¼ Sa0Ma

2�ðqÞ þ Sa0Mb
2�ðqÞ (17)

with

Sa0Ma
2�ðqÞ ¼ �Lq4

240
hSa;mafjSa;maii½23ð�aE�bE þ �aM�

b
MÞ � 7ð�aE�bM þ �bE�

a
MÞ� (18)

and

Sa0Mb
2�ðqÞ ¼ �Lq4

240

i

m2
a

�����p
�
1p

�
3 q

�S�a½4ð�bE þ �bMÞð�aE1 þ �aM1Þ þ 20ð�bE þ �bMÞð�aE2 þ �aM2Þ�: (19)

The first piece here is identical to the form found in the spinless case but is multiplied by the spin-independent factor
hSa;mafjSa;maii ¼ �mafmai

. The second component, however, is spin-dependent and more interesting. Working in the
center of mass frame with ~p3 ¼ � ~p1 � ~pCM and taking the nonrelativistic limit we find

Sa0Mb
2�ðqÞ ¼ i

Lq4ðma þmbÞ
240m2

a

~Sa � ~pCM � ~q½4ð�bE þ �bMÞð�aE1 þ �aM1Þ þ 20ð�bE þ �bMÞð�aE2 þ �aM2Þ�: (20)

Taking the Fourier transform, and noting that ~r� ~pCM ¼ ~L is the angular momentum, we obtain then
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Sa0VðrÞ ¼ �
Z d3q

ð2�Þ3 e
�i ~q� ~rSa0Mtot

2�ðqÞ

¼ hSa;mafjSa;maii�23ð�aE�bE þ �aM�
b
MÞ þ 7ð�aE�bM þ �bE�

a
MÞ

4�r7
þma þmb

m2
a

~Sa � ~pCM

� ~r 1

�r7
½ð�bE þ �bMÞð�aE1 þ �aM1Þ þ 5ð�bE þ �bMÞð�aE2 þ �aM2Þ� ¼ hSa;mafjSa;maii

� �23ð�aE�bE þ �aM�
b
MÞ þ 7ð�aE�bM þ �bE�

a
MÞ

4�r7
þma þmb

m2
a

~Sa

� ~L 7

�r9
½ð�bE þ �bMÞð�aE1 þ �aM1Þ þ 5ð�bE þ �bMÞð�aE2 þ �aM2Þ�: (21)

The potential has a spin-independent piece which is simply
the Casimir-Polder result, accompanied by a shorter range
spin-orbit component, which can be identified by its char-
acteristic spin dependence. Clearly, higher order polariz-
abilities will lead to new and shorter range interactions as
well as spin-spin correlations in the case of scattering of
two neutral particles, both of which carry spin. However,
we will end our discussion here for the neutral-neutral case
and move on to the situation where one of the particles
carries a charge.

III. SPINLESS NEUTRAL-CHARGED PARTICLE
INTERACTION

The long range interaction between a neutral and
charged system was known classically long before its first
quantum mechanical calculation. In this case the presence
of a charge e at the origin leads to an electric field at

location ~r of size ~Eð ~rÞ ¼ er̂=4�r2. If there exists a neutral
particle at this location there will be an induced electric

dipole moment ~dE ¼ 4��E ~E. The corresponding interac-
tion energy is

�E ¼ � 1

2
~dE � ~Eð ~rÞ ¼ � 1

2
4��E ~E

2ð ~rÞ ¼ ��E�

2r4
;

where � ¼ 4�e2 is the fine structure constant.
A full quantum mechanical calculation leads to quantum

corrections to this result and was first performed by
Bernabeu and Tarrach using dispersive methods [10]. The
problem was later reexamined dispersively by Feinberg
and Sucher [11]. The result found for the leading long
range potential between charged and neutral-spinless sys-
tems was

VðrÞ ¼ � 1

2

��E
r4

þ ð11�E þ 5�MÞ�@
4�mr5

þ . . . : (22)

We see that the leading term is classical (@-independent)
and agrees with the result found in the simple derivation
above— VclðrÞ � ���E=r4. However, there exist addi-
tional contributions to the potential which are quantum
mechanical in nature and have the form VqmðrÞ �
��E@=mr

5. Numerically these corrections are tiny.

However, such terms are intriguing in that their origin
appears to be associated with Zitterbewegung. That is,
classically we can define the potential by measuring the
energy when two objects are separated by distance r.
However, in the quantum mechanical case the distance
between two objects is uncertain by an amount of order
the Compton wavelength due to zero point motion— �r�
@=m. This leads to the replacement

VðrÞ � 1

r4
! 1

ðr	 �rÞ4 �
1

r4

 4

@

mr5
;

which is the form found in our calculations.

A. Spinless charged-spinless neutral particle

The EFT evaluation of the charge-neutral interaction
proceeds similarly to that done for two neutral particles,
except that the two-photon emission from the charged
particle is characterized by the usual vertices—for a spin-
less charged particle we have the one- and two-photon
vertices

0�ð1Þ ðp2; p1Þ ¼ �ieðp1 þ p2Þ;
0�ð2Þ�ðp2; p1Þ ¼ 2ie2��:

(23)

The relevant diagrams are shown in Fig. 3 and the asso-

FIG. 3. Triangle and bubble diagrams used to evaluate the
electromagnetic scattering of a charged and a neutral system.
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ciated amplitudes are

0Ma
2�ðqÞ ¼ e2

4�

m2
b

Z d4k

ð2�Þ4
������

k2ðk� qÞ2 ½�
b
Eð���p3 � kp3 � ðk� qÞ þ p�3p

�
3 k � ðk� qÞ � ðk� qÞ�p�3 p3 � k

� p�3 k
�p3 � ðk� qÞÞ þ �bMð�
��	k�p3	Þð�
��ðk� qÞ�p3Þ�ð2p1 � k� qÞ� 1

ðp1 � kÞ2 �m2
a

ð2p1 � kÞ�;

0Mb
2�ðqÞ ¼ 2e2

1

2!

4�

m2
b

Z d4k

ð2�Þ4
���

k2ðk� qÞ2 ½�
b
Eð���p3 � kp3 � ðk� qÞ þ p�3p

�
3 k � ðk� qÞ � ðk� qÞ�p�3 p3 � k� p�3 k

�p3

� ðk� qÞÞ þ �bMð�
���k�p3�Þð���
 ðk� qÞ�p3Þ�: (24)

Doing the indicated contractions and performing the
integration via the forms given in Appendix A, we find

0Ma
2�ðqÞ ¼ ��q2

4ma

�bEð5Lþ 2maSÞ;

0Mb
2�ðqÞ ¼ � �q2

12ma

ð�4�bE þ 5�bMÞL;
(25)

where we have defined S ¼ �2=
ffiffiffiffiffiffiffiffiffiffi�q2p

. Adding, we find

0Mtot
2�ðqÞ ¼ � �q2

12ma

½6maS�
b
E þ Lð11�bE þ 5�bMÞ�;

(26)

whose Fourier transform, using the results given in
Appendix B, is

0VðrÞ ¼ �
Z d3q

ð2�Þ3
0

Mtot
2�ðqÞe�i ~q� ~r

¼ � 1

2

��bE
r4

þ ð11�bE þ 5�bMÞ�@
4�mar

5
(27)

in complete agreement with Eq. (22). Now consider the
modifications which result if spin is introduced.

B. Charged spin 1=2-spinless neutral particle

In order to see what changes result if the charged particle
carries spin, suppose particle a has spin 1=2. Then the
calculation goes through as before except that we must
use the one- and two-photon vertices

1=2�ð1Þ ðp2; p1Þ ¼ �ie �uðp2Þ�uðp1Þ;
1=2�ð2Þ�ðp2; p1Þ ¼ 0;

(28)

and we find

1=2Ma
2�ðqÞ ¼ � �q2

12ma

�
�bE

�
�uðp2Þuðp1Þð7Lþ 3SmaÞ

þ 1

mb

�uðp2Þp6 3uðp1Þð4Lþ 3maSÞ
�

þ �bM

�
�uðp2Þuðp1ÞðL� 3SmaÞ

þ 1

mb

�uðp2Þp6 3uðp1Þð4Lþ 3SmaÞ
��
;

1=2Mb
2�ðqÞ ¼ 0: (29)

Using the identity

�uðp2Þ�uðp1Þ ¼
�

1

1� q2

4m2
a

��ðp1 þ p2Þ
2ma

�uðp2Þuðp1Þ

� i

m2
a

����q
�p�1S

�
a

�
; (30)

where

Sa ¼ 1
2
�uðp2Þ�5�

uðp1Þ
is the spin vector and reduces to

Sa!NRð0; ~SaÞ ¼
�
0; �ayf

1
2 ~	�

a
i

�

in the nonrelativistic limit, the full amplitude can be writ-
ten as

1=2Mtot
2�ðqÞ ¼ � �q2

12ma

�
�uðp2Þuðp1Þð�bEð11Lþ 6maSÞ

þ 5�bMÞ þ
i

m2
amb

�����p
�
3p

�
1 q

�S�a

� ð4Lþ 3maSÞð�bE þ �bMÞ
�
: (31)

Taking the nonrelativisitic limit via

�uðp2Þuðp1Þ!NR�ayf �ai �
i

2m2
a

~Sa � ~p2 � ~p1 (32)

we find the nonrelativistic amplitude in the center of mass
frame
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1=2Mtot
2�ðqÞ ’ � �q2

12ma

�
ð6maS�

b
E þ Lð11�bE þ 5�bMÞÞ�ayf �ai þ

i

2m2
a

~Sa � ~p2

� ~p1

�
3
ma

mb

Sðma�
b
E þ ðma þmbÞ�bMÞ þ

1

2mb

Lðð8ma � 3mbÞ�bE þ ð8ma þ 3mbÞ�bMÞ
��
: (33)

We observe that the resulting amplitude contains two components—a spin-independent piece whose form is identical to
that found in the spinless case accompanied by a new spin-dependent form. Taking the Fourier transform, we find the
effective potential

1=2VðrÞ ¼
Z d3q

ð2�Þ3
1=2

Mtot
2�ðqÞe�i ~q�~r ¼

�
� 1

2

��bE
r4

þ ð11�bE þ 5�bMÞ�@
4�mar

5

�
�ayf �

a
i �

1

2m2
a

~Sa � ~pCM

� ~r
�

�

4mbr
4
ðma�

b
E þ ðma þmbÞ�bMÞ �

�@

8�mbmbr
5
ðð8ma � 3mbÞ�bE þ ð8ma þ 3mbÞ�bMÞ

�

¼
�
� 1

2

��bE
r4

þ ð11�bE þ 5�bMÞ�@
4�mar

5

�
�ayf �

a
i �

1

2m2
amb

~Sa � ~L
�
�

r6
ðma�

b
E þ ðma þmbÞ�bMÞ

� 5@�

8�mar
7
ðð8ma � 3mbÞ�bE þ ð8ma þ 3mbÞ�bMÞ

�
: (34)

The potential then has a universal spin-independent form
accompanied by a spin-orbit component, which in turn will
be seen to have a universal structure. In order to verify this
assertion, we proceed to the case that particle a has unit
spin.

C. Charged spin 1-spinless neutral particle

In order to verify our conjecture that the spin-orbit piece
has a universal structure, we perform the scattering calcu-
lation for the case of a charged spin 1 particle, which we
take to be a Wþ boson. In order to determine the correct
interaction vertices we must recall that the electroweak
interaction is a gauge theory. This means that the spin
one Lagrangian which contains the charged W has the
Proca form

L ¼ � 1

4
ð ~U�Þ2 þm2

2
~U2
 (35)

but the SU(2) field tensor ~U� contains an additional term

on account of the required gauge invariance

~U � ¼ � ~U� � �� ~U � ik ~U � ~U�; (36)

where k is the SU(2) electroweak coupling constant. This
additional term in the field tensor is responsible for the
interactions involving three and four W bosons and for an
‘‘extra’’ interaction term which has the form of an anoma-
lous magnetic moment and, when added to the simple
Proca moment, increases the predicted gyromagnetic ratio
from its naive value— gnaive

W	 ¼ 1—to its standard model

value— gsm
W	 ¼ 2 [16]. The resulting one- and two-photon

vertices are then found to be

�ðp2; p1Þ ¼ �ie½ðp2 þ p1Þ�a�f � �ai � �a�f�
a
i � p2

� �ai�
a�
f � p1 þ �a�f�

a
i � ðp1 � p2Þ

� �ai�
a�
f � ðp1 � p2Þ�;

��ðp2; p1Þ ¼ ie2ð2g��a�f � �ai � �ai�
a�
f� � �a�f�

a
i�Þ; (37)

where we take the incoming spin 1 particle to have polar-
ization vector �ai satisfying �ai � p1 ¼ 0 and the outgoing
particle to have polarization vector �af satisfying �

a
f � p2 ¼

0. Evaluating the diagrams shown in Fig. 3 we find then

1Ma
2�ðqÞ ¼

�q2

48ma

�
�bE

�
2�a�f � �ai ð29Lþ 12maSÞ þ 1

m2
a

�a�f � q�ai � qð20Lþ 9maSÞ � 2

mam
2
b

�a�f � p3�
a
i � qðLðma � 8mbÞ

� 6mambSÞ � 8

m2
b

�a�f � p3�
a
i � p3L� 2

mam
2
b

�a�f � q�ai � p3ðLðma þ 8mbÞ þ 6mambSÞ
�

þ �bM

�
�a�f � �ai 8L� 1

m2
a

�a�f � q�ai � qð4Lþ 15maSÞ � 2

mam
2
b

�a�f � p3�
a
i � qðLðma � 8mbÞ � 6mambSÞ

� 8

m2
b

�a�f � p3�
a
i � p3L� 2

mam
2
b

�a�f � q�ai � p3ðLðma þ 8mbÞ þ 6mambSÞ
��
;

1Mb
2�ðqÞ ¼

�q2L

24ma

�
�bE

�
�7�a�f � �ai þ

4

m2
b

�a�f � p3�
a
i � p3 þ 1

m2
b

ð�a�f � q�ai � p3 þ �a�f � p3�
a
i � qÞ

�

þ �bM

�
6�a�f � �ai þ

4

m2
b

�a�f � p3�
a
i � p3 þ 1

m2
b

ð�a�f � q�ai � p3 þ �a�f � p3�
a
i � qÞ

��
: (38)
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Summing, we determine the total amplitude

1Mtot
2�ðqÞ ¼

�q2

48ma

�
�bE

�
�a�f � �ai 4ð11Lþ 6maSÞ þ 1

m2
a

�a�f � q�ai � qð20Lþ 9maSÞ

� 1

mamb

ð�a�f � q�ai � p3 � �a�f � p3�
a
i � qÞ4ð4Lþ 3maSÞ

�
þ �bM

�
�a�f � �ai 20L� 1

m2
a

�a�f � q�ai

� qð4Lþ 15maSÞ � 1

mamb

ð�a�f � q�ai � p3 � �a�f � p3�
a
i � qÞ4ð4Lþ 3maSÞ

��
: (39)

In order to make contact with our previous results, we use
the identity

�ai�
a�
f � q� �ai � q�a�f ¼

�
1

4m2
a � q2

�

�½�4ima����p
�
1 q

�S�a

þ 2ðp1 þ p2Þ�a�f � q�ai � q�;
(40)

where we have defined the spin vector

Sa ¼ �i
2ma

�����
a��
f �a�i ðp1 þ p2Þ�: (41)

The amplitude can then be written as

1Mtot
2�ðqÞ ¼

�q2

12ma

�
�a�f � �ai ð�bEð11Lþ 6maSÞ þ 5�bMLÞ

þ i

m2
amb

�����p
�
3p

�
1 q

�S�að4Lþ 3maSÞ

� ð�bE þ �bMÞ þ
1

m2
a

�a�f � q�ai

� qð�bEð4L� 3maSÞ � �bMð20Lþ 27maSÞÞ
�
:

(42)

Comparing with Eq. (31) we see that both the spin-
independent and dipole terms have a universal form.

There is an additional quadrupole contribution that pre-
sumably is itself universal if higher spin is considered.
In the nonrelativistic limit we have

�a0i ’ � 1

ma

�̂ai � ~p1; �a0f ’ � 1

ma

�̂af � ~p2; (43)

so that

�a�f � �ai ’ ��̂a�f � �̂ai þ
1

m2
a

�̂a�f � ~p2�̂
a
i � ~p1

¼ ��̂a�f � �̂ai þ
1

2m2
a

�̂a�f � �̂ai � ~p2 � ~p1

þ 1

2m2
a

ð�̂a�f � ~p2�̂
a
i � ~p1 þ �̂a�f � ~p1�̂

a
i � ~p2Þ (44)

Since

� i�̂a�f � �̂ai ¼ h1; mfj ~Sj1; mii � ~Sa; (45)

Equation (44) becomes

�a�f � �i ’ ��̂a�f � �̂ai þ
i

2m2
a

~Sa � ~p2 � ~p1

þ 1

2m2
a

ð�̂a�f � ~p2�̂
a
i � ~p1 þ �̂a�f � ~p1�̂

a
i � ~p2Þ (46)

Dropping the last term here, which isOðv2=c2Þ, we find the
nonrelativistic amplitude in the CM frame

1Mtot
2�ðqÞ ’

�q2

12ma

�
ð6maS�

b
E þ Lð11�bE þ 5�bMÞÞ�̂a�f � �̂ai �i þ

i

2m2
a

~Sa � ~p2 � ~p1

�
3
ma

mb

Sðma�
b
E þ ðma þmbÞ�bMÞ

þ 1

2mb

Lðð8ma � 3mbÞ�bE þ ð8ma þ 3mbÞ�bMÞ
�
þ 1

m2
a

q:Ta:qð�bEð4L� 3maSÞ � �bMð20Lþ 27maSÞÞ
�
;

(47)

where

q:Ta:q � �̂a�f � ~q�̂ai � ~q� 1
3
~q2�̂a�f � �̂ai ¼ �h1; mfj ~S � ~q ~S � ~q� 2

3
~q2j1; mii (48)

involves the quadrupole moment. Taking the Fourier transform we find the effective potential
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1VðrÞ ¼
Z d3q

ð2�Þ3
1=2

Mtot
2�ðqÞe�i ~q� ~r

¼
�
� 1

2

��bE
r4

þ ð11�bE þ 5�bMÞ�@
4�mar

5

�
�̂a�f � �̂ai �

1

2m2
a

~Sa � ~pCM � ~r
�

�

4mbr
4
ðma�

b
E þ ðma þmbÞ�bMÞ

� �@

8�mbmbr
5
ðð8ma � 3mbÞ�bE þ ð8ma þ 3mbÞ�bMÞ

�
þ 1

m2
a

~r:Ta: ~r
�
�

4r4
ð�bE þ 9�bMÞ þ

�@

ma�r
5
ð�bE � 5�bMÞ

�

¼
�
� 1

2

��bE
r4

þ ð11�bE þ 5�bMÞ�@
4�mar

5

�
�̂a�f � �̂ai �

1

2m2
amb

~Sa � ~L
�
�

r6
ðma�

b
E þ ðma þmbÞ�bMÞ

� 5�@

8�mar
7
ðð8ma � 3mbÞ�bE þ ð8ma þ 3mbÞ�bMÞ

�
þ 1

m2
a

~r:Ta:~r

�
24�

r8
ð�bE þ 9�bMÞ þ

35�@

ma�r
9
ð�bE � 3�bMÞ

�
: (49)

We see then that the potential in the case of spin 0-spin 1
scattering consists of three components. The first is a spin-
independent form which is identical to that found earlier in
the case of spin 0-spin 0 and spin 0-spin 1=2 scattering.
This piece is accompanied by a shorter range spin-orbit
potential identical to that found in the case of spin 0-spin
1=2 scattering. Thus both the spin-independent and spin-
orbit components are seen to be universal, in that they have
identical forms, independent of spin. There exists in the
case of spin 1 an even shorter range quadrupole interaction,
which we suspect is also universal in nature.

D. Nonzero spin neutral particle-spinless charged
particle

A final possibility is that the charged particle is spinless
but the neutral system carries spin. In this case, the neutral
system is characterized not only in terms of the electric and
magnetic polarizabilities but also in terms of the four spin
polarizabilities defined in Eq. (14) The calculation pro-
ceeds as in the case of a spinless neutral particle, but the
two-photon vertex Eq. (15) is used. The resulting diagrams
yield

0Ma
2�ðqÞ ¼ � �q2

12ma

�
�bEð15Lþ 6maSÞhSa;mafjSa;maii

þ i

mamb

�����p
�
1p

�
3 q

�S�aðð10Lþ 3maSÞ�bE1
� 2L�bM1 þ ð26Lþ 9maSÞ�bE2
� ð14Lþ 6maSÞ�bM2Þ

�
;

0Mb
2�ðqÞ ¼ � �q2

12ma

ð�4�bE þ 5�bMÞLhSa;mafjSa;maii;
(50)

where we have defined S ¼ �2=
ffiffiffiffiffiffiffiffiffiffi�q2p

. Adding, we find

0Mtot
2�ðqÞ ¼ � �q2

12ma

�
ð6maS�

b
E þ Lð11�bE þ 5�bMÞÞ

� hSa;mafjSa;maii
þ i

mamb

�����p
�
1p

�
3 q

�S�aðð10Lþ 3maSÞ�bE1
� 2L�bM1 þ ð26Lþ 9maSÞ�bE2
� ð14Lþ 6maSÞ�bM2Þ

�
: (51)

The effective potential is found as usual by taking the
nonrelativistic limit and Fourier transforming

0VðrÞ ¼
�
� 1

2

��bE
r4

þ ð11�bE þ 5�bMÞ�@
4�mar

5

�
hSa;mafjSa;maii

þma þmb

mambr
9
~Sa � ~Lðð10Lþ 3maSÞ�bE1 � 2L�bM1

þ ð26Lþ 9maSÞ�bE2 � ð14Lþ 6maSÞ�bM2Þ: (52)

IV. CONCLUSIONS

Above we have examined the long range electromag-
netic interaction between particles with and without spin.
This is not a new issue—the interaction between two
neutral but polarizable particles was examined in 1948
by Casimir and Polder using old-fashioned perturbation
theory [8], while that between a neutral and charged sys-
tem was treated by Bernabeu and Tarrach in the mid-1970s
using dispersive methods [10]. A definitive dispersive
analysis of both problems was given somewhat later by
Feinberg and Sucher [9,11]. Here we examined both prob-
lems using ideas from effective field theory and included
the complications associated with spin. The basic idea of
the EFT approach is that the long range component of the
interaction is generated from the very low momentum
transfer region, specifically from terms which are nonana-
lytic in q2. One can straightforwardly isolate such terms
from a relativistic Feynman diagram calculation and the
resulting Fourier transform yields the effective potential.
The method is direct and generally much easier to imple-
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ment than that used in earlier treatments. In this way we
have easily rederived the results of previous authors. Also,
we have included the effect of spin, which leads to a spin-
orbit interaction. In the case of a neutral particle, we have
used spin polarizabilities to characterize the structure,
while in the case of a charged particle we have used the
usual electromagnetic interaction. Such spin-dependent
effects are shorter range compared to the leading spin-
independent terms, but they can be identified due to their
characteristic spin dependence. In higher order, if both
particles carry spin then there exists an even shorter range
spin-spin correlation. However, we end our discussion
here.
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APPENDIX A: ONE LOOP INTEGRATION IN EFT

In this section we sketch how our results were obtained.
The basic idea is to calculate the Feynman diagrams shown
in Figs. 3(a) and 3(b). For simplicity we shall assume
spinless scattering. Thus for Fig. 3(b) we find

Amp ½3b� ¼ 1

2!

Z d4k

ð2�Þ4
�ð2Þ�ðp2; p1Þ������ð2Þ��ðp4; p3Þ

k2ðk� qÞ2 ;

(A1)

while for Fig. 3(a)

Amp ½3a� ¼
Z d4k

ð2�Þ4
1

k2ðk� qÞ2ððk� p1Þ2 �m2
aÞ
�ð2Þ�ðp4; p3Þ������ð1Þ� ðp2; p1 � kÞ�ð1Þ� ðp1 � k; p1Þ: (A2)

Here the various vertex functions are listed in Sec. III, while for the integrals, all that is needed is the leading nonanalytic
behavior. Thus we use

IðqÞ ¼
Z d4k

ð2�Þ4
1

k2ðk� qÞ2 ¼
�i
32�2

ð2Lþ . . .Þ;

IðqÞ ¼
Z d4k

ð2�Þ4
k

k2ðk� qÞ2 ¼
i

32�2
ðqLþ . . .Þ;

I�ðqÞ ¼
Z d4k

ð2�Þ4
kk�

k2ðk� qÞ2 ¼
�i
32�2

�
qq�

2

3
L� q2��

1

6
Lþ . . .

�
;

I��ðqÞ ¼
Z d4k

ð2�Þ4
kk�k�

k2ðk� qÞ2 ¼
i

32�2

�
�qq�q� L2 þ ð��q� þ ��q� þ ���qÞ 112Lq

2 þ . . .

�
(A3)

with L ¼ log�q2 for the ‘‘bubble’’ integrals and

Jðp; qÞ ¼
Z d4k

ð2�Þ4
1

k2ðk� qÞ2ððk� pÞ2 �m2Þ ¼
�i

32�2m2
ðLþmSÞ þ . . . ;

Jðp; qÞ ¼
Z d4k

ð2�Þ4
k

k2ðk� qÞ2ððk� pÞ2 �m2Þ ¼
i

32�2m2

�
p

��
1þ 1

2

q2

m2

�
L� 1

4

q2

m
S

�
� q

�
Lþm

2
S

�
þ . . .

�
;

J�ðp; qÞ ¼
Z d4k

ð2�Þ4
kk�

k2ðk� qÞ2ððk� pÞ2 �m2Þ ¼
i

32�2m2

�
�qq�

�
Lþ 3m

8
S

�
� pp�

q2

m2

�
1

2
Lþm

8
S

�

þ q2��

�
1

4
Lþm

8
S

�
þ ðqp� þ q�pÞ

��
1

2
þ 1

2

q2

m2

�
Lþ 3

16

q2

mS

�
;

J��ðp; qÞ ¼
Z d4k

ð2�Þ4
kk�k�

k2ðk� qÞ2ððk� pÞ2 �m2Þ ¼
�i

32�2m2

�
qq�q�

�
Lþ 5m

16
S

�
þ pp�p�

�
� 1

6

q2

m2
L

�

þ ðqp�p� þ q�pp� þ q�pp�Þ
�
1

3

q2

m2
Lþ 1

16

q2

m
S

�
þ ðqq�p� þ qq�p� þ q�q�pÞ

�
��
� 1

3
� 1

2

q2

m2

�
L� 5

32

q2

m
S

�
þ ð��p� þ ��p� þ ���pÞ

�
1

12
q2L

�
þ ð��q� þ ��q� þ ���qÞ

�
�
� 1

6
q2L� 1

16
q2mS

��
þ . . . ; (A4)
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where S ¼ �2=
ffiffiffiffiffiffiffiffiffiffi�q2p

for their ‘‘triangle’’ counterparts. Similarly higher order forms can be found, either by direct
calculation or by requiring various identities which must be satisfied when the integrals are contracted with p, q or ��.

APPENDIX B: FOURIER INTEGRALS

Here we collect the integrals used to calculate the long range electromagnetic potentials. For the classical effects we use

Z d3q

ð2�Þ3 e
�i ~q� ~rj ~qj ¼ � 1

�2r4
;

Z d3q

ð2�Þ3 e
�i ~q� ~rqjj ~qj ¼

4irj

�2r6
;

Z d3q

ð2�Þ3 e
�i ~q� ~rj ~qj3 ¼ 12

�2r6
;

Z d3q

ð2�Þ3 e
�i ~q� ~rqjj ~qj3 ¼

�i72rj
�2r8

;

(B1)

while for the quantum case we utilize

Z d3q

ð2�Þ3 e
�i ~q� ~r ~q2 log ~q2 ¼ 3

�r5
;

Z d3q

ð2�Þ3 e
�i ~q� ~rqj ~q2 log ~q2 ¼

i15rj

�r7
;

Z d3q

ð2�Þ3 e
�i ~q�~r ~q4 log ~q2 ¼ � 60

�r7
;

Z d3q

ð2�Þ3 e
�i ~q� ~rqj ~q4 log ~q2 ¼

i420rj

�r9
:

(B2)
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