Skip to main content
Article
Propagation of optical spatial solitary waves in bias-free nematic-liquid-crystal cells
Faculty of Informatics - Papers (Archive)
  • Antonmaria A Minzoni, Universidad Nacional Autonoma de Mexico
  • Luke W. Sciberras, University of Wollongong
  • Noel F Smyth, University of Edinburgh
  • Annette L Worthy, University of Wollongong
RIS ID
39250
Publication Date
1-1-2011
Publication Details

Minzoni, A., Sciberras, L., Smyth, N. & Worthy, A. (2011). Propagation of optical spatial solitary waves in bias-free nematic-liquid-crystal cells. Physical Review A - Atomic, Molecular, and Optical Physics, 84 (4), 043823-1-043823-11.

Abstract
The propagation of a bulk optical solitary wave in a rectangular cell filled with a nematic liquid crystal—a nematicon—is mathematically modelled. In order to overcome the Freédricksz threshold the cell walls are rubbed to pretilt the nematic. A modulation theory, based on a Lagrangian formulation, is developed for the (2+1)-dimensional propagation of the solitary wave beam down the cell. This modulation theory is based on two different formulations of the director distribution. The relative advantages and disadvantages of these two methods are discussed. A previously unexplored method based on images is found to possess significant advantages. Excellent agreement with full numerical solutions of the nematicon equations is found for both methods. Finally, the implications of the results obtained for some widely used approximations to the nematicon equations are discussed, particularly their use in comparisons with experimental results.
Citation Information
Antonmaria A Minzoni, Luke W. Sciberras, Noel F Smyth and Annette L Worthy. "Propagation of optical spatial solitary waves in bias-free nematic-liquid-crystal cells" (2011) p. 043823-1 - 043823-11
Available at: http://works.bepress.com/aworthy/2/