Skip to main content
Article
Mechanics of Fiber-Reinforced Composites with Doubly Periodic Matrix Cracks
Theoretical and Applied Fracture Mechanics
  • Autar Kaw, University of South Florida
  • K.S. Gadi
Document Type
Article
Publication Date
1-1-1993
Digital Object Identifier (DOI)
https://doi.org/10.1016/0167-8442(93)90019-8
Abstract

A fracture model based on two dimensional plane stress/strain elasticity theory for the problem of doubly periodic interacting and regularly spaced matrix cracks in a unidirectional fiber reinforced brittle matrix composite is developed. The solution is obtained in terms of a singular integral equation. The stress intensity factors at the crack tips, the maximum crack opening displacement and the longitudinal stiffness of the composite are studied as a function of the elastic moduli of the constituents, fiber volume fraction, transverse crack spacing, and crack length. The crack spacing is found to be more dominant than the relative constituent stiffness properties and the fiber volume fraction in influencing the stress intensity factor and the crack opening displacements. The stiffness of the composite due to multiple cracking reduces with a decrease in the fiber crack spacing. The stress intensity factors from the current planar model are compared with the axisymmetric results available in the literature and show a considerable difference between the results.

Citation / Publisher Attribution

Theoretical and Applied Fracture Mechanics, v. 19, issue 3, p. 173-182

Citation Information
Autar Kaw and K.S. Gadi. "Mechanics of Fiber-Reinforced Composites with Doubly Periodic Matrix Cracks" Theoretical and Applied Fracture Mechanics Vol. 19 Iss. 3 (1993) p. 173 - 182
Available at: http://works.bepress.com/autar-kaw/80/