Skip to main content
Article
A Small Change in the Design of a Slit Bioaerosol Impactor Significantly Improves Its Collection Characteristics
Journal of Environmental Monitoring (2007)
  • Sergey A. Grinshpun, University of Cincinnati
  • Atin Adhikari, Georgia Southern University
  • Seung-Hyun Cho, University of Cincinnati
  • Ki-Youn Kim, University of Cincinnati
  • Taekhee Lee, University of Cincinnati
Abstract
While several methods are available for bioaerosol monitoring, impaction remains the most common one, particularly for collecting fungal spores. Earlier studies have shown that the collection efficiency of many conventional single-stage bioaerosol impactors falls below 50% for spores with an aerodynamic diameter between 1.7 and 2.5 μm because their cut-off size is 2.5 μm or greater. The cut-off size reduction is primarily done by substantially increasing the sampling flow rate or decreasing the impaction jet size, W, to a fraction of a millimetre, with both measures often impractical to implement. Some success has recently been reported on the utilization of an ultra-low jet-to-plate distance, S (S/W < 0.1), in circular impactors. This paper describes a laboratory evaluation and some field testing of two single-stage, single-nozzle, slit bioaerosol impactors, Allergenco-D and Air-O-Cell, which feature the same jet dimensions and flow rate but have some design configuration differences that were initially thought to be of low significance. The collection efficiency and the spore deposit characteristics were determined in the laboratory using real-time aerosol spectrometry and different microscopic enumeration methods as the test impactors were challenged with the non-biological polydisperse NaCl aerosol and the aerosolized fungal spores of Cladosporium cladosporioides, Aspergillus versicolor, and Penicillium melinii. The tests showed that a relatively small reduction in the jet-to-plate distance of a single-stage, single-nozzle impactor with a tapered inlet nozzle, combined with adding a straight section of sufficient length, can significantly decrease the cut-off size to the level that is sufficient to efficiently collect spores of all fungal species. Furthermore, it appears that the slit jet design may improve the application of partial spore counting methodologies with respect to those applied to circular deposits. Data from a demonstration field study, conducted with the two samplers in environments containing a variety of fungal species, supported the laboratory findings.
Keywords
  • Slit bioaerosol impactor,
  • Collection characteristics
Publication Date
June 4, 2007
DOI
10.1039/B702743E
Citation Information
Sergey A. Grinshpun, Atin Adhikari, Seung-Hyun Cho, Ki-Youn Kim, et al.. "A Small Change in the Design of a Slit Bioaerosol Impactor Significantly Improves Its Collection Characteristics" Journal of Environmental Monitoring Vol. 9 Iss. 8 (2007) p. 855 - 861 ISSN: 1464-0333
Available at: http://works.bepress.com/atin_adhikari/108/