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Nusselt number for flow perpendicular to arrays of cylinders in the limit
of small Reynolds and large Peclet numbers

Wei Wang and Ashok S. Sangani
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse,
New York 13244

~Received 7 November 1996; accepted 31 January 1997!

The problem of determining the Nusselt numberN, the nondimensional rate of heat or mass
transfer, from an array of cylindrical particles to the surrounding fluid is examined in the limit of
small Reynolds numberReand large Peclet numberPe. N in this limit can be determined from the
details of flow in the immediate vicinity of the particles. These are determined accurately using a
method of multipole expansions for both ordered and random arrays of cylinders. The results for
N/Pe1/3 are presented for the complete range of the area fraction of cylinders. The results of
numerical simulations for random arrays are compared with those predicted using effective-medium
approximations, and a good agreement between the two is found. A simple formula is given for
relating the Nusselt number and the Darcy permeability of the arrays. Although the formula is
obtained by fitting the results of numerical simulations for arrays of cylindrical particles, it is shown
to yield a surprisingly accurate relationship between the two even for the arrays of spherical
particles for which several known results exist in the literature suggesting thereby that this
relationship may be relatively insensitive to the shape of the particles. ©1997 American Institute
of Physics.@S1070-6631~97!00606-5#

I. INTRODUCTION

We consider the problem of determining the rate of heat
or mass transfer from particles to the surrounding fluid. Al-
though considerable work has been done on the problem of
transfer from a single particle, there are very few studies that
treat rigorously the case of multiparticle systems. Sorensen
and Stewart1 used a collocation technique to determine the
heat transfer rates in a cubic array of fixed spheres at small
Reynolds numberRe and finite Peclet numberPe. The re-
sults of numerical computations were supplemented with an
asymptotic analysis for large Peclet numbers in a separate
study.2 Here,Re5aU/n andPe5aU/D, a being the radius
of the particles,n the kinematic viscosity of the fluid,U the
superficial velocity of the fluid through the array, andD the
mass or heat diffusivity—the latter being related to the ther-
mal conductivity k, density r, and specific heatcp by
D5k/(rcp). Sangani and Acrivos

3 used a somewhat differ-
ent collocation technique to determine the heat transfer rates
in square and hexagonal arrays of infinitely long cylinders,
while Acrivos et al.4 examined the case of dilute random
arrays of spherical particles. Both of these studies were con-
cerned with the case of vanishingly smallRe and small but
finite Pe.

In the present study we shall be interested in the opposite
limit of Pe, i.e., in the limit of largePe, the Reynolds num-
ber being vanishingly small. Since the Peclet number is a
product of the Reynolds number and the Prandtl number
s5n/D, the above conditions are usually satisfied when the
Prandtl number is large. This situation is very common in
mass transfer applications, e.g., in mass transfer across the
walls of hollow membranes, but it could also occur in heat
transfer applications involving viscous oils. Note that the
Prandtl and Nusselt numbers in mass transfer applications
are sometimes referred to as, respectively, the Schmidt and

Sherwood numbers. In what follows we shall consider the
heat transfer problem, but the results will be equally appli-
cable to the mass transfer problem.

WhenPe@1, the heat transfer by convection dominates
over that by conduction on a length scale comparable toa.
Consequently, the temperature along most streamlines is
constant. Near the surface of heated particles there exists a
thermal boundary layer ofO(aPe21/3) thickness in which
the heat transfer by conduction as well as convection are
comparable in magnitude and the temperature along a
streamline is generally not constant. The net rate of heat
transfer can then be determined from the analysis of this
thermal boundary layer. Since this analysis depends only on
the fluid stress in the immediate vicinity of the particles, the
heat transfer rates in the largePe limit can be determined
rather easily if the velocity field near each particle is avail-
able. We have used the numerical technique described by
Sangani and Yao5 to determine this velocity field and the

FIG. 1. A sketch of flow past a representative particle in a random array.
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heat transfer rates from heated particles to the surrounding
fluid. The results for the nondimensional heat transfer coef-
ficient, Nusselt numberN, are presented for both periodic
and random arrays of cylinders. The results for random ar-
rays compare well with those predicted by effective-medium
approximations. A simple formula is given that accurately
relates the Nusselt number to the Darcy permeability of the
arrays for a wide range of volume fractions over which the
permeability varies by several orders of magnitude. The for-
mula is also shown to be surprisingly accurate even when
applied to the arrays of spherical particles for which several
known results exist in the literature.

II. THEORY

A. Role of open versus closed streamline regions

Before we begin with the detailed analysis of the prob-
lem, it is useful to discuss the role of open and closed
streamline regions in determining the leading-order contribu-
tions toN in the limit of largePe. It is well known from the
studies of heat transfer from a single particle thatN can vary
significantly depending upon whether the flow in the imme-
diate vicinity of a particle is a part of open streamlines or
closed streamlines. Thus, for example, when the flow around
a single particle is due to uniform streaming at infinity,
which has no regions of closed streamlines,N increases as
Pe1/3 in the limit of largePe,6,7 while for a particle freely
suspended in a shear flow, for which there exists a region of
closed streamlines surrounding the whole particle,N ap-
proaches anO(1) constant.8,9 Since the flow around indi-
vidual particles in a random array of cylinders can be quite
complex and may include regions of closed streamlines, we
must first determine if the heat transfer from the closed
streamline region will be significant.

Let us consider then a flow around a representative par-
ticle in a fixed array. The flow is illustrated in Fig. 1 where
we have assumed that there are several stagnation points
along the surface of the particle and that some of these stag-
nation points arise from the regions of closed streamlines in
the vicinity of the particle. Note that the number of stagna-
tion points must be an even integer. We expect the tempera-
ture along each streamline to be constant in the limit
Pe→` except in the thin thermal boundary layer regions.
Let the temperature of the open streamline shown in Fig. 1
beTo and that of a closed streamline in the immediate vicin-
ity of the particle beTc . The rate of heat transfer from the
particle surface maintained atTs to the fluid in the open
streamline region will be proportional to (Ts2To)Pe

1/3, and
that to the fluid in the closed streamline region will likewise
be proportional to (Ts2Tc)Pe

1/3. The heat removed by the
closed streamline must in turn be rejected into the open
streamline region whose temperature, as mentioned above, is
To . Since the boundary dividing the regions of open and
closed streamlines is a free surface where the velocity is
nonzero, and since the heat transfer rates across free surfaces
increase asPe1/2 ~see, for example, Leal10!, the rate at which
the heat is exchanged between the two regions is propor-
tional to (Tc2To)Pe

1/2. Thus, at steady state we must have
that

~Tc2To!Pe
1/25const ~Ts2Tc!Pe

1/3. ~1!

In other words,Tc2To5const (Ts2Tc)Pe
21/6, indicating

thereby that to leading order the temperatures of the open as
well as the closed streamlines in the immediate vicinity of
the particle are equal and different from that of the particle
surface.11 As a consequence, we expectN to increase as
Pe1/3, with the next term in the expansion beingO(Pe1/6) in
magnitude.

The above argument is based on two assumptions. The
first is that the number of stagnation points around each par-
ticle is nonzero. If this number is zero for some particles, as
is the case for the freely suspended particles in a simple
shear flow, the rate of heat transfer from such particles will
beO(1) instead ofO(Pe1/3). The heat transfer contribution
from such particles must be neglected since they will not
contribute to the leading,O(Pe1/3), term that is of interest to
us in the present study.

The second assumption is that the open streamline com-
ing close to the surface of the heated particle has not come in
contact previously with another heated particle as in the case
shown in Fig. 2. In this case the capacity to remove heat
from the second particle is greatly reduced since the fluid
near the surface of the second particle is already heated due
to its contact with the first particle. This situation would
occur in the case of a periodic array when the mean flow is
along a principal lattice direction. Indeed, as pointed out by
Sorensen and Stewart,2 the thermal boundary layer would
continue to grow in such a case and the thickness of the
thermal boundary layer would eventually become compa-
rable to the particle radius sufficiently downstream of the
flow. Consequently,N would beO(1) for far downstream
regions of the array. The results we shall present here there-
fore apply only to heat transfer from a single active particle
in a periodic array. It should be noted that this is a particu-
larly severe restriction only in the case of periodic arrays.
For random arrays it does not pose a serious restriction be-
cause the probability that a streamline emanating from a
given heated particle will come in contact with another
heated particle in its vicinity is small. Since the volume oc-
cupied by the fluid is proportional to 12f, and that occu-
pied by the thermal boundary layers near each particle is
proportional tofPe21/3, the probability that the heat re-
moved from a heated particle and carried away along an
outgoing streamline will be dispersed into the fluid is
(12f)Pe1/3/f times greater than the probability that it will
affect the boundary layer behavior of another particle. Thus
N in random arrays will beO(Pe1/3) even in the far down-
stream regions of the array. The situation described here is

FIG. 2. A sketch of flow around two particles oriented in the direction of the
flow. The heat transfer from the second particle is reduced due to the fact
that the fluid in its contact is already heated by the first particle.
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analogous to that observed for heat transfer in tubes. The
Nusselt number at largePe is O(1) at large distances into
the tube when the flow is laminar, for which the same fluid
elements continue to stay in contact with the heated tube
walls, compared withN that scales approximately asR0.8

when the flow is turbulent which continuously exposes the
heated wall to fresh, unheated fluid from the bulk of the flow.

B. An expression for the Nusselt number

Since the thermal boundary layers are much thinner than
the particle radii, it will suffice to consider the energy equa-
tion in its simplified form,

Ytw
]T

]x
2
1

2
Y2tw8

]T

]Y
5

]2T

]Y2 1O~Pe21/3!, ~2!

whereY5(r21)Pe1/3 is the scaled distance normal to the
surface of a representative particle,r being nondimensional-
ized by the particle radiusa, x is the distance measured
along the surface of the particle withx50 representing an
incoming stagnation point~defined as a point where the
streamline is along the radial direction and pointing into the
particle surface, cf. Fig. 1!, T is the temperature of the fluid,
tw[tw(x)5(]u/]r )w is the radial derivative of the tangen-
tial componentu of the velocity evaluated at the particle
surface, and the prime denotes differentiation with respect to
the argument of a function, e.g.,tw8 5dtw /dx. In writing ~2!
we have made use of the fact that for small distances from
the particle surface the velocity components parallel and nor-
mal to the surface of the particle are approximately given by
tw(x)(r21) and2tw8 (r21)2/2, respectively.

The solution of~2! by the similarity transformation is
relatively well known. TakingT5To1(Ts2To) f (s) with
s5Y/g(x) andY5(r21)Pe1/3 yields

f 913s2f 850 ~3!

and

g2g8tw1
1

2
g3tw8 53, ~4!

together with the boundary conditionsf (0)51 and
f (`)50. The boundary condition forg will be discussed
later. The solution forf is, of course, straightforward and
given by

f5
1

G~4/3!Es
`

e2t3dt, ~5!

whereG(4/3)50.892 97 . . . is thegamma function of 4/3.
Since ~4! can be rewritten as (g3tw

3/2)859tw
1/2, we obtain,

upon integrating,

g3~x!59tw
23/2~x!E

0

x

tw
1/2~ t !dt1Atw

23/2~x!, ~6!

whereA is a constant of integration. Now the usual argument
for estimatingA consists of requiring thatg be finite at the
incoming stagnation point (x50). Sincetw50 atx50, this
argument givesA50. This result is correct provided that the
incoming fluid at the stagnation point has not come in con-
tact with the particle previously as is the case with the point

D shown in Fig. 3. In the situation shown in Fig. 3, the fluid
detaches at point B and reattaches at point D and hence the
boundary layer thickness, which is proportional tog, atD is
expected to be thicker than what it would have been if D
were a stagnation point corresponding to fresh, unheated
fluid. To obtain the proper conditions for determiningA
then, we must use the overall energy balance. Since all the
heat lostQ(x) by the particle up to some distancex from the
stagnation point A must be equal to the net gain in the en-
thalpy of the fluid, we have that

Q~x!5rcpPe
21/3E

0

`

u~T2To!dY, ~7!

where u[u(x,Y) and T[T(x,Y). Substituting
u5Ytw(x)Pe

21/3 and T2To5(Ts2To) f , and performing
the integration in the term on the right-hand side of the above
equation, we obtain

E
0

`

u~T2To!dY5
Ts2T0

6Pe1/3G~4/3!
g2tw~x!. ~8!

Substituting in~7! we have

g2tw~x!5
6Pe2/3G~4/3!Q~x!

rcp~Ts2To!
. ~9!

Now, rewriting ~6! as

g2tw~x!5F9E
0

x

tw
1/2~ t !dt1AG2/3 ~10!

and comparing it with~9!, we see thatA can be related to the
heat gained by the fluid up to a given stagnation point. Thus
we find that one must takeA50 to determineg along the arc
AB in Fig. 3, but not along the arc DB or DE. LetQAB ,
QDB , andQDE be the rate of heat transfer along the arcs AB,
DB, and DE, respectively. The heatQDB gained by the re-
circulating fluid along DB is rejected and hence gained by
the fluid just outside the recirculating region along the arc
BCD. As a result, the fluid approaching the point D from the
open region has gained a total heat equal toQAB1QDB , and
consequently,

A2/35
6G~4/3!Pe2/3~QAB1QDB!

rcp~Ts2To!
~11!

FIG. 3. A sketch illustrating detachment and reattachment of flow inducing
a region of closed streamline. The heat lost by the particle along ABDE is
carried away by the fluid leaving the particle at E.
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for determiningg along DE. Likewise, in determiningg
along DB we must use

A2/35
6G~4/3!Pe2/3QAB

rcp~Ts2To!
. ~12!

It may be noted thatg is not symmetric around all incoming
stagnation points. For points such as A, the thermal boundary
layer thickness on either side of the stagnation point is the
same, while for the reattachment points such as D the ther-
mal boundary layer thickness on the recirculation side is
thinner than that on the open streamline side. Finally, it
should also be noted that while the thermal boundary layer
thickness increases along the arc BCD on the open stream-
line side, that on the closed streamline side decreases as a
result of the heat transfer across BCD.

Now it is easy to show that the net rate of heat transfer
per unit depth of a representative cylindera is given by

Qa5
3

2

1

91/3G~4/3!
ka~Ts

a2To!Pe
1/3

3(
i

H E
0

Li
utwu1/2~x!dxJ 2/3, ~13!

whereTs
a is the temperature of particlea. The summation

index i in the above expression refers to thei th pair of ad-
jacent incoming-outgoing stagnation points~e.g., points A
and E in Fig. 3!, andLi is the arc length between the two
stagnation points normalized by the particle radius. Note that
the stagnation points such as B and D are not to be consid-
ered as the incoming or outgoing stagnation points. The
above expression is in agreement with that given by So-
rensen and Stewart,2 who, as mentioned earlier, considered
the case of heat transfer in periodic arrays of spheres at large
Pe. Note, however, that these investigators made no mention
of the possibility that there may be more than two stagnation
points per particle and that the stagnation points correspond-
ing to regions of closed streamlines must be treated differ-
ently than the other stagnation points.

Now the Nusselt number in an array containingNp par-
ticles ~per unit cell! is defined as

N5
1

Np
(
a51

Np Qa

2pak~^Ts&2^Tf&!
, ~14!

where^Ts& and^Tf& are the average solid and fluid tempera-
tures. The average temperature in the fluid phase may be
defined in several ways, the two most common choices being
the spatial average of the fluid temperature and the fluid ve-
locity weighted average temperature, the so-called mixing-
cup temperature. In the limitPe→` both temperatures be-
come equivalent and equal toTo with an error of
O(Pe21/6) ocurring from the temperature in the closed
streamline being different from that in the open streamline
region.

Even though there is no ambiguity in defining^Tf&, we
should note that two different values ofN are possible, de-
pending upon whether we specifyQa among all the particles
to be the same or specifyTs

a to be the same for all particles.
Let NQ and NT be the Nusselt numbers corresponding to

these two different situations. It is easy to show that, in the
limit Pe→`, NT<NQ with the equality sign valid for peri-
odic arrays, i.e.,Np51. In the extreme case, where some of
the particles have no stagnation points,NQ will be O(1)
even thoughNT remainsO(Pe

1/3).

C. The numerical method

From the preceding discussion we see that to determine
the Nusselt numbers we need to determine the stagnation
points andtw for each cylinder. We used the method of
multipole expansion outlined in Sangani and Yao5 for this
purpose. The streamfunctionc expressed in terms of a polar
coordinate system with its origin at the center of particlea is
given by

c5 (
n50

`

hn
a~r !cosnu1h̃n

a~r !sin nu, ~15!

where r and u are defined by x12x1
a5r cosu and

x22x2
a5r sinu, (x1

a ,x2
a) being the coordinates of the center

of particlea, h̃0
a(r )[0, and

hn
a~r !5H C0

a ln r1E0
a1F0

ar 2, n50

C1
ar211D1

a~r ln r2r /2!1E1
ar1F1

ar 3, n51

Cn
ar2n1Dn

ar 22n1En
ar n1Fn

ar n12, n>2.
~16!

Similar relations hold forh̃n
a(r ). The no-slip boundary con-

dition at r51 gives

hn
a~1!5hn

a8~1!5h̃n
a~1!5h̃n

a8~1!50 ~17!

except forh0(1), which equals the value of streamfunction
at the surface of the particle. The method of multipole ex-
pansion is outlined in detail in Sangani and Yao.5 In this
method,c at any point in the fluid is expressed in terms of
derivatives of periodic singular solutions of biharmonic
equations. The coefficients of these derivatives are directly
related to the coefficients of the singular terms in~16!, i.e., to
Cn

a , Dn
a , C̃n

a , andD̃n
a . When the summation in~15! is trun-

cated ton<Ns , these represent a total of (4Ns11)Np un-
knowns in this global expansion ofc. The coefficients of the
regular terms, i.e.,En

a , Fn
a , etc. in the local expansion~15!

and ~16! near each particle are related tonth-order deriva-
tives of the regular part ofc at x5xa and can therefore be
expressed in terms of coefficientsCn

a , etc., through the glo-
bal expansion ofc. Application of~17! for n<Ns then gives
a total of (4Ns11)Np linear equations in the same number
of unknowns. These equations are solved numerically to de-
termineCn

a , Dn
a , C̃n

a , andD̃n
a . The coefficients of the regu-

lar terms in~16! are subsequently determined using~17!.
Now since the tangential component of the velocity is

given byuu52]c/]r , tw is evaluated using
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tw56S ]uu

]r D
r51

56 (
n50

` F S d2hnadr2 D
r51

cosnu1S d2h̃na
dr2

D
r51

sin nuG . ~18!

The plus sign must be used in the term on the extreme right-
hand side of the above expression when the curve joining an
incoming stagnation point to an outgoing stagnation point is
along the direction of decreasingu.

The stagnation points on the surface of particlea are
determined by solvingtw(u)50. The zeros oftw were de-
termined by evaluatingtw in small increments ofu and by
using linear interpolation between two successive values of
u for which tw changed its sign. Now, to determine the
Nusselt number we need to differentiate between those stag-
nation points where either the fresh unheated fluid comes in
contact with the particle or the heated fluid leaves the par-
ticle and those stagnation points corresponding to the regions
of closed streamlines. This is done by a two-step procedure.

First, we determine whether a given pair of stagnation
points lies in the open streamline region or the closed
streamline region using the following criteria:~1! If the arc
length between the two stagnation points is greater than
p/3 we treat the pair as corresponding to an open region
because it is very unlikely that closed streamline regions
greater than this arc length would form around a particle;~2!
for pairs with arc length less thanp/3 we estimate an ap-
proximate radial distanced from the surface of the particle at
which the tangential component of the velocity changes its
sign for a value ofu exactly halfway between the two stag-
nation points.d is estimated by assuming thatuu is ad-
equately given by the first two terms in the Taylor series
expansion:

uu~r !52~r21!
]2c

]r 2
~1!2

~r21!2

2

]3c

]r 3
~1!. ~19!

The above expansion yieldsd522(] rrc/] rrr c) where ] r
stands for a partial derivative with respect tor . The pair of
stagnation points was regarded as corresponding to a closed
streamline region provided that 0,d,0.2.

Once each pair of stagnation points was labeled as cor-
responding to either a closed or an open streamline region,
the next task is to determine the stagnation points such as A
and E in Fig. 3 where either the fresh fluid enters or the
heated fluid leaves the particle. We shall refer to these as
‘‘open’’ stagnation points. We used the following procedure
to identify them:~1! If a stagnation point is surrounded on
either side by open streamline regions, then that point is
labeled as an ‘‘open’’ stagnation point;~2! if fewer than two
stagnation points meet this criterion for a given particle, then
we must have situations such as those sketched in Fig. 4. In
such cases we choose the stagnation point with an equal
number of closed streamline regions around it as an ‘‘open’’
stagnation point. This procedure will label A and B as the
‘‘open’’ stagnation points for the situations sketched in Fig.
4. This is a somewhat arbitrary procedure, but it is at least
appropriate for the case of periodic arrays with the mean
flow along a principal lattice direction. For most cases in-

volving either oblique flows in periodic arrays or for random
arrays the second scenario occurred with much less fre-
quency and therefore we believe that this somewhat arbitrary
scheme used in determining the ‘‘open’’ stagnation points
will not affect significantly the results to be presented in the
next section.

Qa was determined by evaluating the integral in~13!
over all pairs of ‘‘open’’ stagnation points using Simpson’s
rule. NT was determined by averagingQa over all the par-
ticles in the array whileNQ was determined by taking the
harmonic mean ofQa over all the particles,Ts2To being
taken to be unity in both cases. In what follows we shall
present results for the coefficients ofO(Pe1/3) in the expres-
sion for the Nusselt numbers,

NQ,T5CQ,TPe
1/31O~Pe1/6!, ~20!

and the coefficient of Darcy permeability,

K[
k

a2
5

pm^u&
f^F&

. ~21!

Here,k is the Darcy permeability of the array,m is the fluid
viscosity, ^u& is the superficial velocity,f is the area frac-
tion of cylinders, and̂F& is the average drag force per unit
length of cylinders.

III. RESULTS

A. Periodic arrays

We first present results for periodic arrays in which the
centers of the cylinders coincide with a square lattice, which
corresponds toNp51. The permeability is independent of
the orientationu0 of the mean flow with respect to the prin-
cipal lattice direction aligned along thex1 axis. This, how-
ever, is not the case withN which is a function ofu0 . In this
rather specialized geometry one must also be concerned
about the fact that if tanu0 is a rational number then the
cylinders sufficiently downstream of the flow will always be
in a thermal wake of cylinders ahead of it. As mentioned
earlier, the thermal boundary layers on the downstream

FIG. 4. Two representative situations for which the choice of ‘‘open’’ stag-
nation points is not obvious. The points indicated by A and B were chosen
as the ‘‘open’’ stagnation points in such situations.
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heated cylinders will become comparable to the particle ra-
dius and, consequently,N for such particles will beO(1).
The results presented here will therefore apply only to either
the first row of cylinders or to the heat or mass transfer from
a single active particle in a periodic array.

Table I shows the convergence ofK[(k/a2) andC as a
function ofNs for several different values of the orientation
angleu0 and the cylinder area fractionf. The resistance to
flow increases and henceK decreases asf increases. Simi-
larly, one expects the Nusselt number, and henceC, to in-
crease withf. The results for the permeability are in perfect
agreement with those obtained using a boundary collocation
method by Sangani and Acrivos.3 We see that in general
there is a rapid convergence of bothK andC with Ns . Also
shown in the table are the total number of stagnation points
Nstag~including the closed as well as open stagnation points!
for various values ofu0 . We foundNstag52 for most values
of u0 , except foru0 close to 0. Interestingly, atf50.7 and
u050°, we foundNstag to be as high as 18. The number of
‘‘open’’ stagnation points was 2 in all the cases considered
here, and the procedure outlined above for determining the
open stagnation points ensured that the Nusselt number var-
ied smoothly asu0 is varied even though the total number of
stagnation points varied abruptly from as high as 18 to 2 for
some values ofu0 andf. The fact that the total number of
stagnation points in the square arrays of cylinders is very
sensitive to the orientation of the mean flow has been noted
earlier by Larson and Higdon.12 These investigators have
illustrated the changes in the flow field through detailed
streamline plots. In particular, their streamline plots at area
fraction of 0.4 clearly show six stagnation points when the
mean flow is almost parallel to one of the principal lattice
directions and two stagnation points otherwise. This is in
agreement with our calculations for the number of stagnation

points as a function of the orientation of the mean flow.
Since tw scales approximately linearly with the total

drag force experienced by a particle, and since the drag force
is proportional to 1/(fK), we expectCf1/3K1/3 to remain
approximately constant over a wide range off values. This
is confirmed by the results shown in Table I where
Cf1/3K1/3 is seen to vary only by a factor of about 2 asf is
varied from 0.01 to 0.7. The corresponding changes infK
andC are by factors of 104 and 5, respectively. It is easy to
show from the analysis of a thermal boundary layer around a
single cylinder thatCf1/3K1/3 should approach 0.365 as
f→0. This is in reasonable agreement with the results of
numerical simulations shown in Table I.

Table II gives the detailed results forC as a function of
f for selected values ofu0 . These results for square arrays
of cylinders are also shown in Fig. 5. We see thatC, and
hence the Nusselt number, increases monotonically withu0
as the latter is varied from 0° to 45°.

B. Random arrays

Results for random arrays are shown in Table III and
Figs. 6 and 7. The random configurations of hard disks were

TABLE I. Convergence of numerical results for permeability and Nusselt
number for square arrays of cylinders.

f Orientation Ns K C Cf1/3K1/3 Nstag

0.01 0° 9 39.36 0.50 0.36 2

0.1 0° 5 1.27 0.68 0.34 2
9 1.27 0.68 0.34 2

0.1 45° 5 1.27 0.72 0.36 2
9 1.27 0.72 0.36 2

0.5 0° 5 1.18E-2 1.27 0.23 6
9 1.18E-2 1.27 0.23 6
15 1.18E-2 1.27 0.23 6

0.5 45° 5 1.18E-2 1.59 0.29 2
9 1.18E-2 1.59 0.29 2
15 1.18E-2 1.59 0.29 2

0.7 0° 9 3.44E-4 2.38 0.15 10
19 3.32E-4 2.26 0.14 14
23 3.32E-4 2.26 0.14 18

0.7 10° 19 3.32E-4 2.69 0.17 2
27 3.32E-4 2.69 0.17 2

0.7 45° 19 3.32E-4 3.00 0.18 2
27 3.32E-4 3.00 0.19 2

TABLE II. Results forK andC for square arrays of cylinders at various
f and mean flow orientations.

f K

C

0° 15° 30° 45°

0.01 39.96 0.50 0.50 0.50 0.50
0.05 15.56 0.60 0.61 0.62 0.62
0.10 1.27 0.68 0.70 0.71 0.72
0.20 0.30 0.80 0.85 0.88 0.90
0.30 0.10 0.91 1.02 1.06 1.08
0.40 3.60E-1 1.06 1.22 1.28 1.30
0.50 1.18E-2 1.27 1.49 1.57 1.59
0.60 2.97E-2 1.57 1.90 2.01 2.05
0.70 3.32E-3 2.72 2.79 2.95 3.00

FIG. 5. Nusselt number as a function of the orientation of mean flow for
various area fractionsf of cylinders.
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generated by a usual molecular dynamics code. The results
shown were obtained by averaging over 20 independent
hard-disk configurations for eachf. Forf50.5 and 0.6 we
started from a square array of cylinders with random initial
velocities and allowed roughly 104 collisions per particle be-
fore selecting the arrays for computations. For smaller values
of f, the particles were given initially nonoverlapping ran-
dom positions and velocities and were allowed to undergo
about 5000 collisions per particle before selecting arrays for
computations. The computations were made using a single
IBM SP2 processor, and since the equations were solved
using anO(N3) algorithm we limited calculations to moder-
ate values ofNs as indicated in Table III. Convergence tests
with few representative configurations for eachf indicated
that the chosen values ofNs were adequate for determining
permeability and the Nusselt number within about 10% ac-
curacy.

Unlike the case of square arrays, we expect thatN will
depend on whether the flux from each particle or the tem-
perature of the particle is specified. The results are presented
for bothCQ andCT . We note that the difference between the
two is relatively small for all values off. Also shown in the
table are the results forK, the permeability coefficient, and
Nstag, the average number of total stagnation points per cyl-

inder, as a function off. The average permeability coeffi-
cient was determined by first determining the average force
exerted on cylinders over all the configurations and then us-
ing K5pmU/f^F&, U being unity for all the configura-
tions. Note that this will usually give estimates ofK that are
different from those obtained by fixing the net pressure drop
across the array and determining the average ofU among all
the configurations, as has been done, for example, by
Ghaddar.13

We first discuss the results forK. Table III shows a
comparison with the results obtained by previous investiga-
tors. Sangani and Mo14 used a low-order multipole expan-
sion (Ns52), but explicitly accounted for lubrication effects
between pairs of particles. Here, by lubrication effects we
mean the large pressure drop that occurs in the fluid as it
moves through a narrow gap between a pair of particles. We
see that there is generally good agreement between the re-
sults obtained by that method and with those obtained in the
present study, with a notable difference occurring only for
f50.5. Ghaddar13 used a finite element technique to deter-
mine K. He kept the unit cell size approximately constant
and variedf and Np . Thus, for example, he used only
Np53 for f50.05. As a result, his results for lowf deviate
significantly from the results obtained here. For reference,

TABLE III. Results for hard-disk, random configurations.K is the permeability coefficient computed in the
present study whileKSM , KKL , andKG represent the results for the same obtained by, respectively, Sangani
and Mo~Ref. 13!, Koch and Ladd~Ref. 14!, and Ghaddar~Ref. 12!. KSQ represents the permeability of square
arrays of cylinders obtained by Sangani and Acrivos~Ref. 3!. CQ andCT are the coefficients of the leading,
O(Pe1/3), term in the Nusselt number andNstag is the average number of stagnation points per cylinder.

f Np Ns K KSM KKL KG KSQ CT CQ Nstag

0.05 64 7 5.64 5.63 3.89 4.01 0.53 0.53 2.14
0.1 64 9 1.70 1.67 1.68 1.45 1.27 0.60 0.59 2.23
0.3 64 9 8.94E-2 9.33E-2 1.08E-1 9.70E-2 1.02E-1 0.95 0.93 2.43
0.5 64 10 7.49E-3 8.28E-3 9.56E-3 7.87E-3 1.18E-2 1.50 1.40 2.77
0.6 49 11 1.85E-3 1.90E-3 1.87E-3 2.97E-3 1.83 1.75 3.57

FIG. 6. A comparison of various effective medium-approximations and the
computed values of the permeability coefficientK for the random arrays of
cylinders.

FIG. 7. A comparison of the effective-medium approximations and the com-
puted values of theO(Pe21/3) coefficientC.
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we have also tabulatedK for square arrays of cylinders
which correspond toNp51. It may be noted thatK deter-
mined by Ghaddar forf50.05 is closer to the result for
square arrays than for random arrays. Koch and Ladd15 used
a lattice-Boltzmann technique for determiningK. These in-
vestigators usedNp564 for smaller f and Np532 for
f50.5 and 0.6. They obtained their results by averaging
over ten configurations at smallerf and five for largerf.
We see a very good agreement between our results and the
results obtained by these investigators, except forf50.5;
the reason for the observed discrepancy at thisf is unknown
to us.

Also shown in Table III are the results for the coeffi-
cients of theO(Pe1/3) term in the Nusselt number. As men-
tioned earlier, we expectCT , the coefficient based on an
assumption of sameT for all the particles, to be greater than
CQ , the coefficient based on same heat flux for all the par-
ticles. The difference, however, is small at allf. As in the
case of square arrays, we see thatCT or CQ increases with
f.

Finally, Table III also shows the average number of stag-
nation points per particle in random arrays. We did not ob-
serve a single case in which any of the particles was com-
pletely surrounded by the region of closed streamlines. Thus
we conclude that all particles contribute significantly to the
overall heat transfer coefficient. It is interesting to note that
the maximum in averageNstag, which occurs atf50.6, is
only 3.5, indicating that there are far fewer regions of closed
streamlines in random arrays than observed in square arrays
with the mean flow oriented along the principal lattice direc-
tion.

C. Comparison with approximate methods

It is interesting to compare the results obtained here with
those predicted by approximate methods. There are, of
course, numerousad hocmethods and we shall not attempt

to cover them all. Instead, we have chosen two methods for
detailed comparison. The first is based on the effective-
medium approximation while the second is based on a con-
cept of hydraulic diameter commonly used in the design of
heat exchangers.

The effective-medium approximations attempt to esti-
mate various properties by analyzing a model system in
which a particle of radiusa is surrounded by fluid up to a
radius aR and an effective-medium beyond it. Different
effective-medium theories vary in their choices ofR, the
most popular choices beingR5f21/2 andR51. Recently,
Dodd et al.16 determined various hydrodynamic coefficients
~self- and collective translational and rotational mobilities!
for random arrays of cylinders and found that the results of
numerical simulations were generally in good agreement
with an effective-medium theory in whichR was defined in
terms of a zero-wave-number structure factor of the array:

R25
12S~0!

f
. ~22!

The structure factor is defined by

S~0!5nE @g~r u0!21#dVr , ~23!

wheren5f/(pa2) is the number density of particles and
ng(r u0) is the pair probability density, i.e., probability of
finding a particle with its center in the vicinity ofr given that
a particle is present at the origin. Note thatng equals a delta
function atr50 and thatg→1 asr→`. The rationale for
choosingR based on~22! may be found in Doddet al.16 and
Mo and Sangani,17 where it is shown that the conditionally
averaged velocity field far from a given particle in sediment-
ing suspensions is correctly represented whenR is defined by
~22!. For random, hard-disk systemsS(0) is given by Chae
et al.:18

S~0!5
~121.9682f10.9716f2!2

110.0636f20.5446f220.4632f320.1060f410.0087f5 . ~24!

It should be noted thatS(0)→124f as f→0 so that
R→2 asf→0. According to this model then the effective-
medium in very dilute arrays extends beyondR52 as com-
pared withR5f21/2→` in the usual effective-medium ap-
proximation. Thus one expects that, at least for dilute
random arrays, the estimates based on~22! will be more
accurate than those based onR5f21/2. This was indeed
shown to be the case in the calculations of~1! the hydrody-
namic mobilities;16 ~2! the diffusion-controlled reaction rates
in arrays of cylinders;19 and ~3! the effective elastic proper-
ties of composite materials containing spherical inclusions.20

Thus it is natural to inquire if this simple model also gives
reasonably accurate estimates ofK andN.

To obtain effective-medium estimates ofN and K we

solve the following problem for the conditionally averaged
velocity fieldu:

m¹2u5¹p, ¹•u50, a,r,aR, ~25!

m¹2u5¹p1a2mu, ¹•u50, r.aR. ~26!

Thus the fluid motion satisfies the Stokes equations for
r,aR and Brinkman’s equations forr.aR. The Brinkman
viscosity is taken to be the same as the fluid viscosity.a2 is
the inverse of permeability to be determined as a part of the
solution. The numerical scheme for determininga2, and
hencek, then consists of solving~25! and ~26! subject to
boundary conditionsu50 at r5a andu5U asr→` for an
assumed value ofa, the velocity and traction being continu-
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ous atr5aR. Once the velocity field is evaluated, the force
F on the particle is evaluated and a new estimate ofa is
obtained from

a2a25
fF

pmU
. ~27!

This process is repeated until the results forF anda con-
verge to desired accuracy.

Taking U to be a unit vector along thex1 axis anda
equal to unity, and expressing the velocity in terms of
streamfunctionc, we have for 1,r,R,

c5@Er1Fr 31D~r logr2r /2!1Gr21#sin u. ~28!

The no-slip boundary condition at r51 gives
E522G1D and F5G2D/2. The force on the particle,
and hencea, is related toD by a254fD. Now the wall
stress function is evaluated from

tw52S ]uu

]r D
r51

5S ]2c

]r 2 D
r51

5~8C22D !sin u. ~29!

Substituting in~14! we obtain

N5
61/3

2pG~4/3! S E0p~sin u!1/2du D 2/3D1/3S 4GD 21D 1/3Pe1/3
50.58D1/3S 4GD 21D 1/3Pe1/3. ~30!

The above result can be expressed in terms ofK by making
use of ~27! and relationsF54pmD and K51/(a2a2) to
obtain

N50.365~fK !21/3S 4GD 21D 1/3Pe1/3. ~31!

Table IV shows a comparison between the results of
numerical predictions and the effective-medium approxima-
tions. We have chosen three different values ofR:
R25@12S(0)#/f; R251/f; andR51. These are referred
to as, respectively, the EM I, EM II, and EM III approxima-
tions. This comparison is also shown in Fig. 6. We see that
K is best approximated by EM III at lowf, but this approxi-
mation gives unrealistic negative values forf greater than
about 0.4. The EM I approximation, on the other hand, is
reasonably accurate at smallf and remains positive for the
complete range off. It also gives a better estimate than EM
II for the whole range off. Considering that it only gives an
error by at most a factor of 2 asfK varies by four orders of

magnitude, it should be regarded as reasonably accurate.
Also shown in Table IV and Fig. 7 are the comparisons for
the coefficientC of the leadingO(Pe1/3) term inN and for
C(fK)1/3. We have takenC5CT . We see that the effective-
medium approximations give very good estimates forC,
with the maximum error for the EM I approximation being
only about 6%. The coefficientC(fK)1/3 is proportional to
(4G/D21)1/3 in ~31!. We see that EM I and EM II give
approximately the same estimate for this quantity, and hence
the difference in the estimates ofC from these approxima-
tions arises due to different estimates ofK.

It is also interesting to compare the results forC ob-
tained here with those predicted by the correlations for Nus-
selt numbers in heat exchangers available in the standard
heat transfer textbooks. For example, Weltyet al.21 suggest
the following procedure based on a concept of equivalent
hydraulic radius. First,N for flow transverse to a single cyl-
inder is estimated from

N50.623Pe1/3 ~32!

for 0.2,Re,20. It should be noted that the lower limit on
Re does not extend to zero, because of the well-known
Stokes paradox according to which there is no steady solu-
tion to Stokes flow past an infinitely long cylinder in an
unbounded medium. Next, to account for finitef, it is sug-
gested thatRe be evaluated based on an equivalent radius
determined from

aeq5
23flow area

wetted perimeter
5a

12f

f
. ~33!

Thus, according to this recipe, the coefficientC is given by

Ceq50.623S 12f

f D 1/3. ~34!

For f50.05, 0.3, and 0.6, the above expression predictsC
equal to, respectively, 1.66, 0.83, and 0.54. In contrast, our
calculations for smallRe give C equal to 0.54, 0.94, and
1.88, respectively. Thus we conclude that the use of the
equivalent radius concept may give quite an erroneous esti-
mate of the effect off on the heat transfer coefficients for
flow past cylinders in heat exchangers.

IV. AN APPROXIMATE RELATION

SinceN in the limit of largePe andK at smallRe are
governed by the stress distribution on the surface of the par-

TABLE IV. Comparison with the predictions of effective-medium approximations: EM I, EM II, and EM III
correspond, respectively, toR25@12S(0)#/f, R251/f, andR51. The results of numerical simulations are
denoted by Ex.

K C Cf1/3K1/3

f Ex EM I EM II EM III Ex EM I EM II Ex EM I EM II

0.05 5.64 5.36 4.48 5.54 0.53 0.55 0.59 0.35 0.36 0.36
0.1 1.70 1.57 1.41 1.68 0.60 0.64 0.67 0.35 0.34 0.35
0.3 8.94E-2 9.21E-2 1.10E-1 8.58E-2 0.95 1.00 0.98 0.28 0.30 0.31
0.5 7.49E-3 1.07E-2 1.32E-2 -ve 1.50 1.49 1.43 0.23 0.26 0.27
0.6 1.85E-3 3.58E-3 4.13E-3 -ve 1.83 1.84 1.79 0.19 0.24 0.24
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ticles, it is useful to attempt to correlate the two. Our results
for random arrays of cylinders may be satisfactorily corre-
lated by means of a simple expression

C5~0.3720.24f!~fK !21/3. ~35!

This correlation appears to be satisfactory even for the case
of spherical particles as shown in Table V, where we have
compared it with various known results. For spherical par-
ticles, the permeability is related to the average drag force
and mean velocity by

1

fK
5
9

2

F

6pmUa
. ~36!

For isolated particles, i.e., forf→0, ~35! with fK52/9
yields C50.61, which is in very good agreement with the
exact resultC50.6245 . . . .6 As mentioned in the introduc-
tion, Sorensen and Stewart2 determinedC for simple cubic
and face-centered cubic arrays at their maximum volume
fractions off 5 0.5236 and 0.7405, respectively. For the
case of simple cubic array, they evaluatedC for two orien-
tations of the mean flow: for~0,0,1! and (1,1,1) directions,
the principal lattice directions being along the three coordi-
nate axes. The corresponding values ofC reported by these
investigators are 1.29 and 1.46. The nondimensional drag
force F/(6pmUa) for periodic arrays of spheres has been
accurately evaluated by Zick and Homsy22 and Sangani and
Acrivos.23 Using their value of 42.1 for packed simple cubic
arrays~35! and~36! yieldsC51.41 in very good agreement
with the result obtained by Sorensen and Stewart for the
(1,1,1) direction. Next, we consider the face-centered cubic
array withf50.7405 for which Sorensen and Stewart ob-
tainedC52.83. The mean flow in this calculation was along
the ~0,0,1! direction which is oriented at 45° to a principal
lattice direction~0,1,1!, of the array. As mentioned by these
investigators their result forC agrees to within 2 per cent of
the experimental value forC reported by Karabelaset al.24

who conducted electrochemical measurements for a single
active sphere in a packed face-centered cubic array. Using
F/(6pmUa)5438 for this array, ~35! and ~36! yield
C52.41 which agrees within about 20% with the exact value
of 2.83. Finally,C for packed random arrays of spheres may
be estimated from the mass transfer correlation of Wilson
and Geankoplis,25 according to which

N5
0.69

12f
Pe1/3. ~37!

The above correlation for dumped, packed beds of spheres is
expected to apply forRe,55, Pe.50, and 0.25,f
,0.65. We shall use this correlation to obtainC for packed
equal-size spheres withf50.62. The well-known Kozeny
equation,

F

6pmUa
510

f

~12f!3
, ~38!

yields a nondimensional drag of approximately 113. This
compares well with the results of numerical simulations by
Mo and Sangani17 and with careful experimental measure-
ments of the same for monodispersed packed beds by Phil-
ipse and Pathmamanoharan.26 Substituting this value in~35!
and~36!, we obtainC51.86, which compares very well with
C51.77 obtained from~37! with f50.62.

In summary we find that~35! appears to be remarkably
accurate for the arrays of both cylinders and spheres for a
wide range range of values off over whichfK varies by
three orders of magnitude.
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