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Nusselt number for flow perpendicular to arrays of cylinders in the limit
of small Reynolds and large Peclet numbers

Wei Wang and Ashok S. Sangani
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse,
New York 13244

(Received 7 November 1996; accepted 31 January)1997

The problem of determining the Nusselt numb¢y the nondimensional rate of heat or mass
transfer, from an array of cylindrical particles to the surrounding fluid is examined in the limit of
small Reynolds numbdRe and large Peclet numbée. N in this limit can be determined from the
details of flow in the immediate vicinity of the particles. These are determined accurately using a
method of multipole expansions for both ordered and random arrays of cylinders. The results for
N/Pe'® are presented for the complete range of the area fraction of cylinders. The results of
numerical simulations for random arrays are compared with those predicted using effective-medium
approximations, and a good agreement between the two is found. A simple formula is given for
relating the Nusselt number and the Darcy permeability of the arrays. Although the formula is
obtained by fitting the results of numerical simulations for arrays of cylindrical particles, it is shown
to yield a surprisingly accurate relationship between the two even for the arrays of spherical
particles for which several known results exist in the literature suggesting thereby that this
relationship may be relatively insensitive to the shape of the particlesl9€r American Institute

of Physics[S1070-663197)00606-3

I. INTRODUCTION Sherwood numbers. In what follows we shall consider the
heat transfer problem, but the results will be equally appli-
We consider the problem of determining the rate of heatable to the mass transfer problem.
or mass transfer from particles to the surrounding fluid. Al-  WhenPe> 1, the heat transfer by convection dominates
though considerable work has been done on the problem afver that by conduction on a length scale comparabla. to
transfer from a single particle, there are very few studies thaConsequently, the temperature along most streamlines is
treat rigorously the case of multiparticle systems. Sorenseaonstant. Near the surface of heated particles there exists a
and Stewart used a collocation technique to determine thethermal boundary layer ob(aPe ) thickness in which
heat transfer rates in a cubic array of fixed spheres at smahe heat transfer by conduction as well as convection are
Reynolds numbeRe and finite Peclet numbdPe. The re- comparable in magnitude and the temperature along a
sults of numerical computations were supplemented with astreamline is generally not constant. The net rate of heat
asymptotic analysis for large Peclet numbers in a separateansfer can then be determined from the analysis of this
study? Here,Re=aU/v andPe=aU/D, a being the radius thermal boundary layer. Since this analysis depends only on
of the particlesy the kinematic viscosity of the fluid) the the fluid stress in the immediate vicinity of the particles, the
superficial velocity of the fluid through the array, abdthe  heat transfer rates in the lardg&e limit can be determined
mass or heat diffusivity—the latter being related to the ther+ather easily if the velocity field near each particle is avail-
mal conductivity x, density p, and specific heat, by  able. We have used the numerical technique described by
D=«/(pcp). Sangani and Acrivdsused a somewhat differ- Sangani and Yabto determine this velocity field and the
ent collocation technique to determine the heat transfer rates
in square and hexagonal arrays of infinitely long cylinders,
while Acrivos et al* examined the case of dilute random
arrays of spherical particles. Both of these studies were con-
cerned with the case of vanishingly smRle and small but o

finite Pe.
In the present study we shall be interested in the opposite _To O
limit of Pe, i.e., in the limit of largePe, the Reynolds num-

ber being vanishingly small. Since the Peclet number is a

product of the Reynolds number and the Prandtl number
o=v/D, the above conditions are usually satisfied when the Q

To

Prandtl number is large. This situation is very common in

mass transfer applications, e.g., in mass transfer across the

walls of hollow membranes, but it could also occur in heat

transfer applications involving viscous oils. Note that the N

Prandtl and Nusselt numbers in mass transfer applications

are sometimes referred to as, respectively, the Schmidt armG. 1. A sketch of flow past a representative particle in a random array.
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fluid. The results for the nondimensional heat transfer coef-

ficient, Nusselt numbeN, are presented for both periodic

and random arrays of cylinders. The results for random ar- O

rays compare well with those predicted by effective-medium N
approximations. A simple formula is given that accurately

relates the Nusselt number to the Darcy permeability of the:G. 2. A sketch of flow around two particles oriented in the direction of the
arrays for a wide range of volume fractions over which theflow. The heat transfer from the second particle is reduced due to the fact
permeability varies by several orders of magnitude. The forlhat the fluid in its contact is already heated by the first particle.

mula is also shown to be surprisingly accurate even when

applied to the arrays of spherical particles for which several

known results exist in the literature. (T.— T, Pe?=const (T,—T,)Pe (1)

heat transfer rates from heated particles to the surrounding L N S

In other words,T,—T,=const (Ts— T.)Pe 8, indicating

Il. THEORY thereby that to leading order the temperatures of the open as
well as the closed streamlines in the immediate vicinity of
the particle are equal and different from that of the particle

Before we begin with the detailed analysis of the prob-surface'! As a consequence, we expedtto increase as
lem, it is useful to discuss the role of open and closedPe!, with the next term in the expansion beifgP e in
streamline regions in determining the leading-order contribumagnitude.
tions toN in the limit of largePe. It is well known from the The above argument is based on two assumptions. The
studies of heat transfer from a single particle tRatan vary first is that the number of stagnation points around each par-
significantly depending upon whether the flow in the imme-ticle is nonzero. If this number is zero for some particles, as
diate vicinity of a particle is a part of open streamlines oris the case for the freely suspended particles in a simple
closed streamlines. Thus, for example, when the flow aroundhear flow, the rate of heat transfer from such particles will
a single particle is due to uniform streaming at infinity, be O(1) instead ofO(Pe*®). The heat transfer contribution
which has no regions of closed streamlinBisincreases as from such particles must be neglected since they will not
Pe3 in the limit of large Pe,®” while for a particle freely  contribute to the leading)(Pe'?), term that is of interest to
suspended in a shear flow, for which there exists a region afis in the present study.
closed streamlines surrounding the whole partidleap- The second assumption is that the open streamline com-
proaches arO(1) constanf:® Since the flow around indi- ing close to the surface of the heated particle has not come in
vidual particles in a random array of cylinders can be quitecontact previously with another heated particle as in the case
complex and may include regions of closed streamlines, wehown in Fig. 2. In this case the capacity to remove heat
must first determine if the heat transfer from the closedrom the second particle is greatly reduced since the fluid
streamline region will be significant. near the surface of the second particle is already heated due

Let us consider then a flow around a representative paro its contact with the first particle. This situation would
ticle in a fixed array. The flow is illustrated in Fig. 1 where occur in the case of a periodic array when the mean flow is
we have assumed that there are several stagnation poirafong a principal lattice direction. Indeed, as pointed out by
along the surface of the particle and that some of these stagorensen and Stewdrtthe thermal boundary layer would
nation points arise from the regions of closed streamlines iontinue to grow in such a case and the thickness of the
the vicinity of the particle. Note that the number of stagna-thermal boundary layer would eventually become compa-
tion points must be an even integer. We expect the temperaiable to the particle radius sufficiently downstream of the
ture along each streamline to be constant in the limitflow. ConsequentlyN would beO(1) for far downstream
Pe—x except in the thin thermal boundary layer regions.regions of the array. The results we shall present here there-
Let the temperature of the open streamline shown in Fig. Tore apply only to heat transfer from a single active particle
beT, and that of a closed streamline in the immediate vicin-in a periodic array. It should be noted that this is a particu-
ity of the particle beT.. The rate of heat transfer from the larly severe restriction only in the case of periodic arrays.
particle surface maintained i, to the fluid in the open For random arrays it does not pose a serious restriction be-
streamline region will be proportional td'{(—T,)Pe'3, and cause the probability that a streamline emanating from a
that to the fluid in the closed streamline region will likewise given heated particle will come in contact with another
be proportional to Ts— T.)Pe'®. The heat removed by the heated particle in its vicinity is small. Since the volume oc-
closed streamline must in turn be rejected into the opercupied by the fluid is proportional to-1¢, and that occu-
streamline region whose temperature, as mentioned above,pged by the thermal boundary layers near each particle is
T,. Since the boundary dividing the regions of open andproportional to $Pe 3 the probability that the heat re-
closed streamlines is a free surface where the velocity isnoved from a heated particle and carried away along an
nonzero, and since the heat transfer rates across free surfaceggoing streamline will be dispersed into the fluid is
increase afe? (see, for example, LeX), the rate at which  (1— ¢)Pe'¥/ ¢ times greater than the probability that it will
the heat is exchanged between the two regions is propogffect the boundary layer behavior of another particle. Thus
tional to (T.— T,)Pe*? Thus, at steady state we must haveN in random arrays will bed(Pe'3) even in the far down-
that stream regions of the array. The situation described here is

A. Role of open versus closed streamline regions
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analogous to that observed for heat transfer in tubes. The
Nusselt number at largee is O(1) at large distances into
the tube when the flow is laminar, for which the same fluid
elements continue to stay in contact with the heated tube
walls, compared withN that scales approximately @8
when the flow is turbulent which continuously exposes the
heated wall to fresh, unheated fluid from the bulk of the flow.

B. An expression for the Nusselt number

Since the thermal boundary layers are much thinner than
the particle radii, it will suffice to consider the energy equa-
FIG. 3. A sketch illustrating detachment and reattachment of flow inducing

tion in its S|mpI|f|ed form, a region of closed streamline. The heat lost by the particle along ABDE is
JT 1 IT 82T carried away by the fluid leaving the particle at E.

RV S ~1/3
Tw o 2Y Twoy (9Y2+O(Pe ), (2
whereY=(r—1)Pe* is the scaled distance normal to the

surface of a representative partictebeing nondimensional- 5 shor\]/vn in Fig. 3. In thg S|tuat|or:1 shown in Fig. 3atue fdeh
ized by the particle radius, x is the distance measured etaches at point B and reattaches at point D and hence the

boundary layer thickness, which is proportionatoat D is
expected to be thicker than what it would have been if D
gwere a stagnation point corresponding to fresh, unheated
fluid. To obtain the proper conditions for determinidg
then, we must use the overall energy balance. Since all the
heat lostQ(x) by the particle up to some distangdrom the
étagnation point A must be equal to the net gain in the en-
thalpy of the fluid, we have that

along the surface of the particle with=0 representing an

incoming stagnation pointdefined as a point where the
streamline is along the radial direction and pointing into th
particle surface, cf. Fig.)1T is the temperature of the fluid,
Tw=Tw(X)=(dul/dr),, is the radial derivative of the tangen-
tial componentu of the velocity evaluated at the particle
surface, and the prime denotes differentiation with respect t
the argument of a function, e.gy,=d7,/dx. In writing (2)

we have made use of the fact that for small distances from o

the particle surface the velocity components parallel and nor-  Q(X)=pcyPe" 1/3fo u(T—T,)dY, @)
mal to the surface of the particle are approximately given by

Tw(X)(r—1) and— 7, (r — 1)%/2, respectively. where u=u(x,Y) and T=T(x,Y). Substituting

The solution of(2) by the similarity transformation is U=Yr,(xX)Pe *® and T—T,=(T,—T,)f, and performing
relatively well known. TakingT=T,+(Ts—T,)f(s) with  the integration in the term on the right-hand side of the above

s=Y/g(x) andY=(r—1)Pe' yields equation, we obtain
f74352f' =0 (3) Jw __TsTo 5
and 0 U(T_TO)dY_ 6Pel 31—*(4/3) g TW(X)' (8)
, 1 . Substituting in(7) we have
! + — r_ 4
0’9’ 7wt 56°7,=3, @ , 6P (4/3)Q(X)
: - 9 Tw(X) = = ©)
together with the boundary conditiong(0)=1 and pCp(Ts—To)
f()=0. The b.oundary. condition fog wiII_ be discussed Now, rewriting (6) as
later. The solution forf is, of course, straightforward and o3
: X
given by 927,(X) = 9] oAt dt+A (10
1 (= 0
f= f e dt, (5) o
I'(4/3))s and comparing it witl{9), we see thaf can be related to the

. . heat gained by the fluid up to a given stagnation point. Thus
wherel'(4/3)=0.892¢ ... is thegar,nma I‘,Jant'on of /3. \ye find that one must také=0 to determiney along the arc
Since (4) can be rewritten asglr2?)' =972, we obtain, AB in Fig. 3, but not along the arc DB or DE. L&@,g,

upon integrating, Qpg, andQpe be the rate of heat transfer along the arcs AB,
. ap X ap DB, and DE, respectively. The he@pg gained by the re-
9°(x) =97, (X) Jo Ty (Ddt+ AT, 74(X), (6)  circulating fluid along DB is rejected and hence gained by

the fluid just outside the recirculating region along the arc
whereA is a constant of integration. Now the usual argumentBCD. As a result, the fluid approaching the point D from the
for estimatingA consists of requiring thag be finite at the open region has gained a total heat equadjg + Qpg, and
incoming stagnation pointx=0). Sincer,,=0 atx=0, this  consequently,
argument give®\=0. This result is correct provided that the

/3
incoming fluid at the stagnation point has not come in con-  p2/3_ 6I"(4/3)Pe*(Qpg + Qos) (11)
tact with the particle previously as is the case with the point pCp(Ts—To)
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for determiningg along DE. Likewise, in determining these two different situations. It is easy to show that, in the
along DB we must use limit Pe—, Ny=<Ng with the equality sign valid for peri-

213 odic arrays, i.e.N,=1. In the extreme case, where some of
_6I'(4/3)Pe™Qpp (120  the particles have no stagnation pointé, will be O(1)
pCy(Ts—To) even thoughiN; remainsO(Pe'd).

It may be noted thag is not symmetric around all incoming

stagnation points. For points such as A, the thermal boundary

layer thickness on either side of the stagnation point is the. The numerical method
same, while for the reattachment points such as D the ther-
mgl boundary layer thickness on the r.eC|rCl.JIat|on. side 'She Nusselt numbers we need to determine the stagnation
thinner than that on the open streamline side. Finally, it

should also be noted that while the thermal boundary Iayepom.ts andr for_each c_yllndc_er. we usgd the methqd of
. . multipole expansion outlined in Sangani and Ydor this
thickness increases along the arc BCD on the open stream- : .
. . . ) urpose. The streamfunctiahexpressed in terms of a polar
line side, that on the closed streamline side decreases as a ' o L L
coordinate system with its origin at the center of partielis
result of the heat transfer across BCD.

Now it is easy to show that the net rate of heat transfer? V" by
per unit depth of a representative cylinders given by

2/3

From the preceding discussion we see that to determine

3 1 = he he(r)si 1
a2 a_ 13 U “(r)cosn@+h&(r)sinne, (15)
Q 2 91/31‘*(4/3) Ka(TS TO)Pe n=0

L. 2/3
X D {f I|TW|1/2(X)dX] , (13y Wwhere r and ¢ are defined byx;—xj=r cos¢ and
i 0 Xo—X3=Tr sin 6, (x{,x3) being the coordinates of the center

. gL
whereT¢ is the temperature of particle. The summation ©f Particlea, hg(r)=0, and

indexi in the above expression refers to thb pair of ad-
jacent incoming-outgoing stagnation poinesg., points A CsInr+ES+Fgr2, n=0
and E in Fig. 3, andL; is the arc length between the two . — o o o _
stagnation pgoints normlalized by the pgrticle radius. Note thaltn(") = Cir t+DI(r Inr—r2)+Efr +Fird, n=1
the stagnation points such as B and D are not to be consid- Clr "+D&r? "+EN"+FI"2, n=2.
ered as the incoming or outgoing stagnation points. The (16)
above expression is in agreement with that given by So-
rensen and Stewa?rtwho,.as mentioned earlier, considered gjmijar relations hold foh“(r). The no-slip boundary con-
the case of heat transfer in periodic arrays of spheres at lar%ﬁtion atr=
Pe. Note, however, that these investigators made no mention
of the possibility that there may be more than two stagnation _ _
points per particle and that the stagnation points correspond- hf(1)= hﬁ'(l)z hp(1)= hﬁ'(l) =0 17)
ing to regions of closed streamlines must be treated differ-
ently than the other stagnation points.

Now the Nusselt number in an array containidg par-
ticles (per unit cel) is defined as

1 gives

except forhy(1), which equals the value of streamfunction
at the surface of the particle. The method of multipole ex-
pansion is outlined in detail in Sangani and Yam this
P Q* method,# at any point in the fluid is expressed in terms of
(14)  derivatives of periodic singular solutions of biharmonic
equations. The coefficients of these derivatives are directly
where(T,) and(T;) are the average solid and fluid tempera- related to the coefficients of the singular termg1), i.e., to
tures. The average temperature in the fluid phase may be,, Dy, C;, andDy. When the summation iL5) is trun-
defined in several ways, the two most common choices beingated ton<Ng, these represent a total of g+ 1)N, un-
the spatial average of the fluid temperature and the fluid veknowns in this global expansion gf. The coefficients of the
locity weighted average temperature, the so-called mixingregular terms, i.eE7, F, etc. in the local expansiofl5)
cup temperature. In the limPe— o~ both temperatures be- and(16) near each particle are related rith-order deriva-
come equivalent and equal td@, with an error of tives of the regular part ofy at x=x“ and can therefore be
O(Pe %) ocurring from the temperature in the closed expressed in terms of coefficier®s, etc., through the glo-
streamline being different from that in the open streamlinebal expansion ofy. Application of(17) for n<Ng then gives
region. a total of (4Ns+1)N, linear equations in the same number
Even though there is no ambiguity in definig@;), we  of unknowns. These equations are solved numerically to de-
should note that two different values bff are possible, de- termineC;, Dy, C;, andD, . The coefficients of the regu-
pending upon whether we speci®)* among all the particles lar terms in(16) are subsequently determined usifig).
to be the same or specifif to be the same for all particles. Now since the tangential component of the velocity is
Let No and Nt be the Nusselt numbers corresponding togiven byu,= —dil/dr, 7, is evaluated using

1N

= N_pazl 2mar((Ts)=(Tr))
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lS
3 (th:;‘) , dzﬁﬁ) nnsl. @8 =
== 7 cosné+ nneoj.
| \arz) o igz) S

The plus sign must be used in the term on the extreme right-

hand side of the above expression when the curve joining an
incoming stagnation point to an outgoing stagnation point is H H
along the direction of decreasirg

The stagnation points on the surface of partialeare E E

determined by solving,(6)=0. The zeros ofr,, were de-

termined by evaluating,, in small increments of and by

using linear interpolation between two successive values ofiG. 4. Two representative situations for which the choice of “open” stag-
0 for which 7, changed its sign. Now, to determine the nation points is not obvious. The points indicated by A and B were chosen
Nusselt number we need to differentiate between those stads the “open” stagnation points in such situations.

nation points where either the fresh unheated fluid comes in

contact with the particle or the heated fluid leaves the par-

ticle and those stagnation points corresponding to the regiong,ying either oblique flows in periodic arrays or for random

of closed streamlines. This is done by a two-step procedurgyays the second scenario occurred with much less fre-
_First, we determine whether a given pair of stagnationg ,ency and therefore we believe that this somewhat arbitrary

points lies in the open streamline region or the closedscheme ysed in determining the “open” stagnation points

streamline region using the following criteriet) If the arc i not affect significantly the results to be presented in the
length between the two stagnation points is greater thaRayt section.

/3 we treat the pair as corresponding to an open region Q® was determined by evaluating the integral (t8)

because it is very unlikely that closed streamline _region%ver all pairs of “open” stagnation points using Simpson’s
greater than this arc length would form around a parti@®; e N; was determined by averagir@® over all the par-

for pairs with arc length less than/3 we estimate an ap- icjes in the array whileNo, was determined by taking the
proximate radial distancé& from the surface of the particle at 1,5 monic mean oD over all the particlesT.— T, being

which the tangential component of the velocity changes it§5ken to be unity in both cases. In what follows we shall

sign for a value off exactly halfway between the two stag- yresent results for the coefficients@fPel’3) in the expres-
nation points.s is estimated by assuming that, is ad-  gion for the Nusselt numbers

equately given by the first two terms in the Taylor series

expansion: No 1=Cq rPe"*+0(Pe'), (20
Y (r—1)% 3%y and the coefficient of Darcy permeability,
U(N=—r- -z -—F—53(D). (19
_kmu(u)
The above expansion yield8= —2(d,, ¥/ d,; ) where g, K=2= H(F) (2D)

stands for a partial derivative with respectrtoThe pair of

stagnation points was regarded as corresponding to a clos&lfre K is the Darcy permeability of the array, is the fluid
streamline region provided that05<0.2. viscosity,(u) is the superficial velocity¢ is the area frac-

Once each pair of stagnation points was labeled as cofion Of cylinders, andF) is the average drag force per unit
responding to either a closed or an open streamline regiof€ndth of cylinders.
the next task is to determine the stagnation points such as A
and E in Fig. 3 where either the fresh fluid enters or the
heated fluid leaves the particle. We shall refer to these ag|. RESULTS
“open” stagnation points. We used the following procedure
to identify them:(1) If a stagnation point is surrounded on
either side by open streamline regions, then that point is We first present results for periodic arrays in which the
labeled as an “open” stagnation poiri®) if fewer than two  centers of the cylinders coincide with a square lattice, which
stagnation points meet this criterion for a given particle, thercorresponds tdN,=1. The permeability is independent of
we must have situations such as those sketched in Fig. 4. the orientationd, of the mean flow with respect to the prin-
such cases we choose the stagnation point with an equalpal lattice direction aligned along thg axis. This, how-
number of closed streamline regions around it as an “open’ever, is not the case wit which is a function of9,. In this
stagnation point. This procedure will label A and B as therather specialized geometry one must also be concerned
“open” stagnation points for the situations sketched in Fig.about the fact that if tad, is a rational number then the
4. This is a somewhat arbitrary procedure, but it is at leastylinders sufficiently downstream of the flow will always be
appropriate for the case of periodic arrays with the mearin a thermal wake of cylinders ahead of it. As mentioned
flow along a principal lattice direction. For most cases in-earlier, the thermal boundary layers on the downstream

A. Periodic arrays
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TABLE I. Convergence of numerical results for permeability and NusseltTABLE Il. Results forK and C for square arrays of cylinders at various

number for square arrays of cylinders. ¢ and mean flow orientations.
) Orientation ~ Ng K C CHY*KM™®  Ngag C
0.01 0° 9 39.36 050 0.36 2 & K 0° 15° 30° 45°
0.1 0° 5 1.27 0.68 0.34 2 0.01 39.96 0.50 0.50 0.50 0.50
9 1.27 0.68 0.34 2 0.05 15.56 0.60 0.61 0.62 0.62
. 0.10 1.27 0.68 0.70 0.71 0.72
01 45 5 1.27 0.72 0.36 2 0.20 0.30 0.80 0.85 0.88 0.90
9 1.27 0.72 0.36 2 0.30 0.10 0.91 1.02 1.06 1.08
05 o5 1mE2 127 0z 6 g0 0D 10 T T 1
o 11882 127 0.23 6 0.60 2.97E_2 1.57 1.90 2.01 2.05
15  1.18E-2 1.27 0.23 6 : etal : : : :
0.70 3.32E-3 2.72 2.79 2.95 3.00
0.5 45° 5  118E-2 159 0.29 2
9 1.18E-2 1.59 0.29 2
15  1.18E-2 1.59 0.29 2

07 o o sa4E4 238 0.15 10 point; as a function of the qrientatior_1 of the mean flow.
: 19 33%E4 296 0.14 14 Since 7, scales approximately linearly with the total
23 3.32E4 226 0.14 18 drag force experienced by a particle, and since the drag force
is proportional to 1/¢K), we expectC¢**k* to remain

0.7 10° 19 332E4 2,69 0.17 2 approximately constant over a wide rangegotalues. This
27  3.32E4 269 0.17 2 . ) -
is confirmed by the results shown in Table | where
07 45° 19 33264 3.00 0.18 2 C¢¥™ s seen to vary only by a factor of about 2 @ds
27  332E-4 3.00 0.19 2

varied from 0.01 to 0.7. The corresponding changeglt
andC are by factors of 1Dand 5, respectively. It is easy to
show from the analysis of a thermal boundary layer around a

heated cylinders will become comparable to the particle rasingle cylinder thatC$*K** should approach 0.365 as

dius and, Consequenﬂw for such partides will be()(]_) (ﬁ—>0 This is in reasonable agreement with the results of

The results presented here will therefore apply only to eithepumerical simulations shown in Table I.

the first row of cylinders or to the heat or mass transfer from ~ Table Il gives the detailed results far as a function of

a single active particle in a periodic array. ¢ for selected values of,. These results for square arrays
Table | shows the convergenceloi (k/a?) andC as a of cylinders are also shown in Fig. 5. We see tfiatand

function of N for several different values of the orientation hence the Nusselt number, increases monotonically #jth

angle 6, and the cylinder area fractiot. The resistance to as the latter is varied from 0° to 45°.

flow increases and hendé decreases ag increases. Simi-

larly, one expects the Nusselt number, and he@i¢go in-  B. Random arrays

crease withg. The results for the permeability are in perfect Results for random arrays are shown in Table Ill and

agreement with those obtained using a boundary collocatiogjgs g and 7. The random configurations of hard disks were
method by Sangani and AcrivdsWe see that in general

there is a rapid convergence of bd€¢handC with Ng. Also

shown in the table are the total number of stagnation points 0s
Nstag (including the closed as well as open stagnation ppints

for various values of);. We foundNg,5=2 for most values

0.7

of 6y, except foré, close to 0. Interestingly, ap=0.7 and i
0p=0°, we foundNg,4to be as high as 18. The number of
“open” stagnation points was 2 in all the cases considered 5L ]

here, and the procedure outlined above for determining the
open stagnation points ensured that the Nusselt number var-
ied smoothly ad, is varied even though the total number of ~¥Pe™* 2
stagnation points varied abruptly from as high as 18 to 2 for
some values of); and ¢. The fact that the total number of
stagnation points in the square arrays of cylinders is very L
sensitive to the orientation of the mean flow has been noted o3 L
earlier by Larson and Higdoff. These investigators have IWWWHW
illustrated the changes in the flow field through detailed

streamline plots. In particular, their streamline plots at area

. . . . 0 5 10 15 20 25 30 35 40 45
fraction of 0.4 clearly show six stagnation points when the Orientation (degrees)

mean flow is almost parallel to one of the principal lattice
directions anfj two stagnat!on points otherwise. This is FIG. 5. Nusselt number as a function of the orientation of mean flow for
agreement with our calculations for the number of stagnationarious area fractiong of cylinders.
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TABLE lIl. Results for hard-disk, random configuratiort§.is the permeability coefficient computed in the
present study whil&gy, Kk, , andKg represent the results for the same obtained by, respectively, Sangani
and Mo(Ref. 13, Koch and LaddRef. 14, and GhaddafRef. 12. Kgq represents the permeability of square
arrays of cylinders obtained by Sangani and AcrivBsf. 3. Cq andCy are the coefficients of the leading,
O(Pe*®), term in the Nusselt number amdl.,qis the average number of stagnation points per cylinder.

¢ Np Ns K KSM KKL KG KSQ CT CQ Nstag
0.05 64 7 5.64 5.63 3.89 4.01 0.53 0.53 2.14
0.1 64 9 1.70 1.67 1.68 1.45 1.27 0.60 0.59 2.23

0.3 64 9 8.94E-2  9.33E-2 1.08E-1 9.70E-2 1.02E-1 0.95 0.93 2.43
0.5 64 10 7.49E-3  8.28E-3  9.56E-3 7.87E-3 1.18E-2 1.50 1.40 2.77
0.6 49 11 1.85E-3 1.90E-3 1.87E-3 2.97E-3 1.83 1.75 3.57

generated by a usual molecular dynamics code. The resulisder, as a function otp. The average permeability coeffi-
shown were obtained by averaging over 20 independertient was determined by first determining the average force
hard-disk configurations for each. For $=0.5 and 0.6 we exerted on cylinders over all the configurations and then us-
started from a square array of cylinders with random initialing K= 7pU/¢(F), U being unity for all the configura-
velocities and allowed roughly f@ollisions per particle be- tions. Note that this will usually give estimateskfthat are
fore selecting the arrays for computations. For smaller valuedifferent from those obtained by fixing the net pressure drop
of ¢, the particles were given initially nonoverlapping ran- across the array and determining the averagég aimong all
dom positions and velocities and were allowed to undergdahe configurations, as has been done, for example, by
about 5000 collisions per particle before selecting arrays foGhaddar:
computations. The computations were made using a single We first discuss the results fd¢. Table Il shows a
IBM SP2 processor, and since the equations were solvedomparison with the results obtained by previous investiga-
using anO(N?) algorithm we limited calculations to moder- tors. Sangani and M8 used a low-order multipole expan-
ate values ol as indicated in Table Ill. Convergence testssion (Ns=2), but explicitly accounted for lubrication effects
with few representative configurations for eaghindicated between pairs of particles. Here, by lubrication effects we
that the chosen values df; were adequate for determining mean the large pressure drop that occurs in the fluid as it
permeability and the Nusselt number within about 10% acimoves through a narrow gap between a pair of particles. We
curacy. see that there is generally good agreement between the re-
Unlike the case of square arrays, we expect dtatill sults obtained by that method and with those obtained in the
depend on whether the flux from each particle or the tempresent study, with a notable difference occurring only for
perature of the particle is specified. The results are presentefi=0.5. Ghadddr used a finite element technique to deter-
for bothCq andC+ . We note that the difference between the mine K. He kept the unit cell size approximately constant
two is relatively small for all values of. Also shown inthe and varied¢ and N,. Thus, for example, he used only
table are the results fdf, the permeability coefficient, and N,=3 for ¢=0.05. As a result, his results for log deviate
Nsiag: the average number of total stagnation points per cylsignificantly from the results obtained here. For reference,

T T T T T 9 . : : : :

Numerical <

EMT «-:= Numerical O
EMII —
EMIII - -- 18

EMIl — ¢
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0.01 0.6 |-
04 4
g 02 i

0001 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0 s 1 1 1 1
Area fraction [ 0.1 0.2 0.3 0.4 0.5 0.6

Area fraction

FIG. 6. A comparison of various effective medium-approximations and the
computed values of the permeability coefficighfor the random arrays of  FIG. 7. A comparison of the effective-medium approximations and the com-
cylinders. puted values of th©(Pe ?) coefficientC.
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we have also tabulatedl for square arrays of cylinders to cover them all. Instead, we have chosen two methods for
which correspond tdN,=1. It may be noted thakK deter- detailed comparison. The first is based on the effective-
mined by Ghaddar fokp)=0.05 is closer to the result for medium approximation while the second is based on a con-
square arrays than for random arrays. Koch and tadsied  cept of hydraulic diameter commonly used in the design of
a lattice-Boltzmann technique for determinikg These in- heat exchangers.
vestigators used\,=64 for smaller ¢ and N,=32 for The effective-medium approximations attempt to esti-
¢=0.5 and 0.6. They obtained their results by averagingnate various properties by analyzing a model system in
over ten configurations at smaller and five for largere. which a particle of radius is surrounded by fluid up to a
We see a very good agreement between our results and thadius aR and an effective-medium beyond it. Different
results obtained by these investigators, exceptdier0.5;  effective-medium theories vary in their choices Rf the
the reason for the observed discrepancy at¢his unknown most popular choices being= ¢ 2 and R=1. Recently,
to us. Dodd et al1® determined various hydrodynamic coefficients

Also shown in Table lll are the results for the coeffi- (self- and collective translational and rotational mobilities
cients of theO(Pe3) term in the Nusselt number. As men- for random arrays of cylinders and found that the results of
tioned earlier, we expedC, the coefficient based on an numerical simulations were generally in good agreement
assumption of same€ for all the particles, to be greater than with an effective-medium theory in whicR was defined in
Co, the coefficient based on same heat flux for all the parterms of a zero-wave-number structure factor of the array:
ticles. The difference, however, is small at &l As in the
case of square arrays, we see tfator C,, increases with R2— 1-3(0)
b. ¢

Finally, Table Ill also shows the average number of stag-
nation points per particle in random arrays. We did not ob-The structure factor is defined by
serve a single case in which any of the particles was com-
pletely surrounded by the region of closed streamlines. Thus S(O)=nJ’ [g(r|0)—1]dV,, (23
we conclude that all particles contribute significantly to the
overall heat transfer coefficient. It is interesting to note thaRN

the maximum in averagblg,, which occurs atp=0.6, is - : o L i
S : g(r|0) is the pair probability density, i.e., probability of
only 3.5, indicating that there are far fewer regions of Close(ﬁnding a particle with its center in the vicinity ofgiven that

streamlines in random arrays than observed in square arra)ésparticle is present at the origin. Note tinag equals a delta

vyith the mean flow oriented along the principal lattice direc-function atr=0 and thatg—1 asr—. The rationale for
tion. choosingR based or(22) may be found in Dodet al® and
Mo and Sangani/ where it is shown that the conditionally
averaged velocity field far from a given particle in sediment-

It is interesting to compare the results obtained here witling suspensions is correctly represented wWRes defined by
those predicted by approximate methods. There are, dR2). For random, hard-disk systen8§0) is given by Chae
course, numerouad hocmethods and we shall not attempt et al.;'8

(22

heren= ¢/(wa?) is the number density of particles and

C. Comparison with approximate methods

(1—1.9682p+0.9716p2)2
1+0.0636p— 0.5446p°— 0.46326°—0.10605*+ 0.008%°

S(0)= (24

It should be noted thatB(0)—1—-4¢ as ¢—0 so that solve the following problem for the conditionally averaged
R—2 as¢—0. According to this model then the effective- velocity field u:
medium in very dilute arrays extends beydRe-2 as com-
pared withR= ¢~ 12— in the usual effective-medium ap- uV?u=Vp, V.u=0, a<r<aR, (25
proximation. Thus one expects that, at least for dilute
random arrays, the estimates based (28 will be more
accurate than those based B ¢~ 2 This was indeed
shovyn to b'e. .the Gcase in the cglculationibfthe hy.drody— r<aR and Brinkman'’s equations far>aR. The Brinkman
hamlc m0b|I|t|e§'f (2) the dlffu3|on-c0ntrglled reagtlon rates viscosity is taken to be the same as the fluid viscosifyis
in arrays of cylinders? and (3) the effective elastic proper-  he inverse of permeability to be determined as a part of the
ties of composite materials containing spherical inclusfdns. sojution. The numerical scheme for determining, and
Thus it is natural to inquire if this simple model also gives hencek, then consists of solving25) and (26) subject to
reasonably accurate estimateskoiindN. boundary conditionsi=0 atr=a andu=U asr—« for an

To obtain effective-medium estimates Nf and K we  assumed value at, the velocity and traction being continu-

uVu=Vp+a?uu, V-u=0, r>aR. (26)

Thus the fluid motion satisfies the Stokes equations for
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TABLE IV. Comparison with the predictions of effective-medium approximations: EM |, EM Il, and EM Il
correspond, respectively, ®=[1—5(0)]/ ¢, R?=1/¢, andR=1. The results of numerical simulations are

denoted by Ex.

K C C¢1/3K1/3
¢ Ex EMI EM II EM Il Ex EMI EM II Ex EM I EM II
0.05 5.64 5.36 4.48 5.54 0.53 0.55 0.59 0.35 0.36 0.36
0.1 1.70 1.57 141 1.68 0.60 0.64 0.67 0.35 0.34 0.35
0.3 8.94E-2 9.21E-2 1.10E-1 8.58E-2 0.95 1.00 0.98 0.28 0.30 0.31
0.5 7.49E-3 1.07E-2 1.32E-2 -ve 1.50 1.49 1.43 0.23 0.26 0.27
0.6 1.85E-3 3.58E-3 4.13E-3 -ve 1.83 1.84 1.79 0.19 0.24 0.24

ous atr =aR. Once the velocity field is evaluated, the force magnitude, it should be regarded as reasonably accurate.

F on the particle is evaluated and a new estimatexab
obtained from

oF
2,2_
a“a v

(27)

This process is repeated until the results Foeand « con-
verge to desired accuracy.
Taking U to be a unit vector along the; axis anda

Also shown in Table IV and Fig. 7 are the comparisons for
the coefficientC of the leadingO(Pe*?) term inN and for
C(¢K)¥3. We have takelt=Cy. We see that the effective-
medium approximations give very good estimates @r
with the maximum error for the EM | approximation being
only about 6%. The coefficier@(#K)* is proportional to
(4G/D—1)*3 in (31). We see that EM | and EM Il give
approximately the same estimate for this quantity, and hence

equal to unity, and expressing the velocity in terms ofthe difference in the estimates 6f from these approxima-

streamfunctiony, we have for Kr <R,
y=[Er+Fr3+D(rlogr—r/2)+Gr~]sin 6.

no-slip  boundary

(28)

The condition atr=1 gives

E=—-2G+D and F=G-D/2. The force on the patrticle,

and henceu, is related toD by a?=4¢D. Now the wall
stress function is evaluated from

auy P
Tw= "\ Tor r:1_ ar?

Substituting in(14) we obtain

=(8C—2D)sin 6. (29
1

r=

61/3 - 2/3 4G 1/3
— ; 1/2, 3 - 1/3
N 277F(4/3)(f0 (sin 6) de) D ( D 1) Pe
4G 1/3
= 0.5831’3< - 1 Pel’s (30)

The above result can be expressed in termK dfy making

use of (27) and relationsF =47uD and K=1/(a?a?) to

obtain

1/3
Pells.

461
D

N=0.365 ¢K) 13 (31

tions arises due to different estimateskaf

It is also interesting to compare the results forob-
tained here with those predicted by the correlations for Nus-
selt numbers in heat exchangers available in the standard
heat transfer textbooks. For example, Wedtyal 2! suggest
the following procedure based on a concept of equivalent
hydraulic radius. FirstN for flow transverse to a single cyl-
inder is estimated from

N=0.62Pe! (32

for 0.2<Re<20. It should be noted that the lower limit on
Re does not extend to zero, because of the well-known
Stokes paradox according to which there is no steady solu-
tion to Stokes flow past an infinitely long cylinder in an
unbounded medium. Next, to account for finite it is sug-
gested thaRe be evaluated based on an equivalent radius
determined from

2Xflow area 1-¢
ed™ wetted perimete?a ¢

(33

Thus, according to this recipe, the coeffici€his given by

1— 1/3
Cem 0.62{ —¢) .

) (39

Table IV shows a comparison between the results of

numerical predictions and the effective-medium approxima

tions. We have chosen three different values Rf

For $=0.05, 0.3, and 0.6, the above expression predicts

equal to, respectively, 1.66, 0.83, and 0.54. In contrast, our

R2=[1—S(0)]/¢; R?=1/¢; andR=1. These are referred calculations for smalRe give C equal to 0.54, 0.94, and

to as, respectively, the EM I, EM Il, and EM Il approxima-

1.88, respectively. Thus we conclude that the use of the

tions. This comparison is also shown in Fig. 6. We see tha?quivalent radius concept may give quite an erroneous esti-

K is best approximated by EM 11l at low, but this approxi-

mation gives unrealistic negative values forgreater than

mate of the effect ofp on the heat transfer coefficients for
flow past cylinders in heat exchangers.

about 0.4. The EM | approximation, on the other hand, is
reasonably accurate at smalland remains positive for the V. AN APPROXIMATE RELATION

complete range of. It also gives a better estimate than EM
Il for the whole range ofp. Considering that it only gives an
error by at most a factor of 2 agK varies by four orders of

Phys. Fluids, Vol. 9, No. 6, June 1997

SinceN in the limit of largePe andK at smallRe are
governed by the stress distribution on the surface of the par-
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TABLE V. A comparison ofC estimated from(35) (C,,9 with various  The above correlation for dumped, packed beds of spheres is

known results C,,) for arrays of spheres. Dilute, sc, random, and fcc refer, xpected to apply forRe<55, Pe>50, and 0.25 ¢

respectively, to the case of isolated particle, simple cubic, face-centereg : b ' ’

cubic, and random packed arrays. <<0.65. We shall use this correlation to obt&nfor packed
equal-size spheres witth=0.62. The well-known Kozeny

F equation,
& Array 67ula Cex Capp
F
0 dilute 1 0.62 0.61 =10 ¢ 3, (39)
0.52 sc 42.1 1.29-1.46 1.41 6ruUa "~ (1-¢)
0.62 random 113 1.82 1.77 . . . . .
074 foc 438 283 21 yields a nondimensional drag of approximately 113. This

compares well with the results of numerical simulations by

Mo and Sanganl and with careful experimental measure-

ments of the same for monodispersed packed beds by Phil-

) o ipse and Pathmamanohar&rSubstituting this value i35)

ticles, it is useful to attempt to correlate the two. Our resultsand(%), we obtainC = 1.86, which compares very well with

for random arrays of cylinders may be satisfactorily corre-c_ 1 77 obtained from(37) with ¢=0.62.

lated by means of a simple expression In summary we find that35) appears to be remarkably
C=(0.37—0.24¢)(K) 13 (35) a<_:curate for the arrays of both cylinders and spheres for a

wide range range of values @f over which ¢K varies by

This correlation appears to be satisfactory even for the casaree orders of magnitude.

of spherical particles as shown in Table V, where we have

compared it with various known results. For spherical par-

ticles, the permeability is related to the average drag forcCKNOWLEDGMENTS
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