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Learning to Get Literal: Investigating Reference-Point Di�iculties
in Novice Programming

CRAIG S. MILLER, DePaul University
AMBER SETTLE, DePaul University

We investigate conditions in which novices make some reference errors when programming. We asked students
from introductory programming courses to perform a simple code-writing task that required constructing
references to objects and their a�ributes. By experimentally manipulating the nature of the a�ributes in the
tasks, from identifying a�ributes (e.g. title or label) to descriptive a�ributes (e.g. calories or texture), the study
revealed the relative frequencies with which students mistakenly omit the name of an identifying a�ribute
while a�empting to reference its value. We explain how these reference-point shi�s are consistent with the
use of metonymy, a form of �gurative expression in human communication. Our analysis also reveals how
the presentation of examples can a�ect the construction of the reference in the student’s solution. We discuss
plausible accounts of the reference-point errors and how they may inform a model of reference construction.
We suggest that reference-point errors may be the result of well practiced habits of communication rather
than misconceptions of the task or what the computer can do.
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1 INTRODUCTION
Human listeners e�ortlessly comprehend many forms of �gurative expression. For example,
consider the sentence: “Open the ice cream and serve two scoops.” Most people readily infer that
the speaker is asking for a container to be opened, not the ice cream itself. In this case, the �gurative
expression is an instance of metonymy, where the speaker indicates an item (ice cream) that is
related to the intended reference (container).

Metonymy has been extensively studied in the context of human language [14, 24]. While there
is some debate on the mechanistic properties that underlie metonymy [19, 28], the process arguably
draws upon knowledge of the domain in resolving the metonymic reference [8]. Returning to the
ice cream example, the listener needs to know that ice cream comes in a container, which then must
be opened in order to serve the ice cream. As in this case, the use of metonymy o�en facilitates
understanding by simplifying the wording (open the ice cream vs. open the container of ice cream)
and emphasizing the identifying element (e.g. serve ice cream instead of some other dessert).
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In contrast to the relative ease with which humans comprehend �gurative language such as
metonymy, it presents di�culties with human-to-machine communication, particularly in the
domain of programming. A previous study has shown how novice programmers mistakenly refer
to a whole object when they intend to reference an a�ribute belonging to the object and vice versa
[18]. Consistent with the use of metonymy, the incorrect shi� in reference more frequently occurs
among identifying a�ributes, such as a title a�ribute, than among descriptive a�ributes, such as
color. As an example, when the programming task calls for writing the title a�ribute of an object
(e.g. obj), a novice programmer may incorrectly omit the a�ribute and produce the following code:

w r i t e ( o b j )

In contrast, if the programming task calls for writing the color a�ribute of an object, a novice
programmer is more likely to correctly include the a�ribute with the reference:

w r i t e ( o b j . c o l o r )

Other computing education researchers have studied student errors in the context of human
communication and language. In many cases, students mistakenly draw upon the everyday use
of a term when using it in a programming context [4, 7, 21, 33]. More generally Tenenberg and
Kolikant [37] discuss how practices of human communication in�uence student understanding
of how computers interpret code. Finally, instructors have acknowledged student di�culty in
constructing precise expressions and have created classroom exercises where students practice
giving clear instructions to a human acting as a very literal robot [9, 15].

While previous study of novice programming has linked linguistic expression to student errors,
previous research has yet to systematically study any particular phenomenon in order to work out
theoretical underpinnings and o�er e�ective instructional strategies. Here we focus on reference-
point errors and explore how communication practices of �gurative expression may underlie the
errors. E�ective instruction would then promote practices that eschew the �gurative, metonymic
expression and aim for the literal construction required of human-to-computer communication. In
the next sections, we review previous theoretical work before we consider a study that systematically
explores the conditions under which reference-point errors occur.

1.1 Theoretical basis of reference-point errors
One theoretical analysis of reference-point errors [19] has outlined three possible knowledge
sources for why novice programmers produce reference-point errors that are consistent with the
use of metonymy:

• De�cient mental representation. A novice programmer’s mental representation of the
object may be lacking an explicit mention of any identifying a�ribute. For example an
identifying a�ribute, such as its name, may have a privileged status. Such status makes its
name (e.g. apple) interchangeable with the object itself when referencing either.
• Misunderstanding of what the system can do. A novice programmer may have an

incorrect understanding of the notional machine, that is, how the computer interprets and
processes the given code [10, 32]. In this case, a student may assume that the notional
machine can infer the programmer’s intention without explicit reference to the object’s
a�ribute.
• Reliance on implicit habits for communication. Correct knowledge for specifying the

complete reference may be missing or inaccessible, in which case, the novice programmer
relies on knowledge acquired and practiced in human communication, where metonymic
references are routinely used.
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Fig. 1. Knowledge sources for problem solving.

An alternate, yet complementary, approach for analyzing reference-point errors is to consider
the knowledge systems that novice programmers employ as they construct a reference. Figure 1
depicts potential knowledge sources and systems for applying them as students construct references
when programming. It draws upon the theoretical framework presented by Pirolli and Recker [25],
where problem solutions are constructed from two di�erent systems of knowledge application.
E�cient task-relevant knowledge is acquired from well-practiced prior experiences; it is fast and
generally not accessible for verbal presentation. In contrast, declarative task-speci�c knowledge
draws upon deliberate, interpretive processing, which includes instruction and examples; it is slow
and amenable to verbal re�ection. As Pirolli and Recker note, this theoretical framework is the basis
of well-established theories of human cognition and, in particular, the ACT* cognitive architecture
[1].1

For reference construction, unpracticed knowledge originating from examples and instruction �ts
the description of the declarative knowledge system. On the other hand, if the novice programmer
is drawing upon habits of communication such as metonymy, these well-practiced habits are
described by the e�cient, procedural knowledge system.

A reference-point error that arises from practiced habits may be similar to a Stroop e�ect [34].
Using one variant of a Stroop task, studies have shown that people are slower and more error-prone
in naming the color appearance (e.g. red) of a word when the word spells an incongruent color (e.g.
‘blue’) than when the word spells a congruent color (e.g. ‘red’). Prominent theories account for the
di�culty by acknowledging that the practiced habit of reading interferes with the task [16]. Similar
to the Stroop task, practiced habits of communication may give novice programmers di�culty
when constructing a reference.

Even though the Stroop task may engage di�erent perceptual and cognitive mechanisms than
reference construction, it provides a useful device for discussing whether a misconception underlies
the reference-point errors observed with novice programmers. Misconceptions are o�en de�ned as
a mistaken belief about a concept, the computing system (i.e. notational machine) or the computing
task (see Qian and Lehman [27] for a discussion on the diverse de�nitions). Misconceptions
have been frequently used to explain student di�culties [2, 7, 12, 31, 36]. As we have already
discussed, reference-point errors may arise from a misconception of how the object is represented
or from a misconception of what the notional machine can do. In contrast, if practiced habits
of communication are interfering with correct reference construction, the error is similar to a
1Kahneman [13] provides a broadly accessible overview of these two systems of thinking.

ACM Transactions on Computing Education, Vol. x, No. x, Article x. Publication date: x 2019.



x:4 Miller and Se�le

Stroop-e�ect error, which are not misconceptions of the task but rather skill-based slips. �e
distinction is important because it might call for di�erent instructional interventions. Instruction
and examples may be su�cient to correct misconceptions. However, correcting skill-based errors
might require teaching students strategies for noticing the error and practicing how to override
any interference.

1.2 Previous Study and Goals of this Study
We have already presented a study on reference construction di�culties in a broader programming
context [20]. �e purpose of that study was to understand the implications of the transparency of
the Python programming language when de�ning objects. We found that students had di�culty
aligning parameter references when constructing method de�nitions. Also noted, but not fully
explored, was the frequency of reference errors to objects. We found that reference-point errors
were a problem for participants and were more common in complex expressions than in simple
ones. Part of the experiment involved varying the type of a�ribute needed. While identifying
a�ributes were more frequently omi�ed, we suspect that our sample size was too small to yield a
statistically reliable result.

Here we add to our previous work [20] by drawing upon a larger sample, which allows us
to focus on factors that underlie the reference-point errors that we previously observed. As we
will see, our analysis provides stronger evidence that students are more likely to omit identifying
a�ributes than descriptive a�ributes. It also replicates similar results from previous studies [17, 18],
while demonstrating that these errors occur over a range of a�ributes, student populations, and
programming tasks.

An additional contribution of this current paper is our examination of how instructional examples
a�ect the construction of references by students. While not the focus of the original study, we will
see how the successful construction of references can be traced back to particular examples used in
the instructional text. Prior research has theorized how novice programmers draw upon examples,
o�en internalized as partial schemas or plans, for resolving problem-solving impasses [11, 25, 29].
For our analysis, we will draw upon the model that Pirolli and Recker [25] applied to account for
novice skill acquisition. �eir study also demonstrates bene�ts of re�ection and self-explanation
for learning, which we will consider when recommending e�ective instructional strategies.

Ultimately, given this paper’s focus on how students construct code-based references, we aim
to 1) identify and con�rm when reference-point errors occur, 2) suggest possible instructional
interventions to support student learning, and 3) provide some insights on how the observed
reference errors �t with a theoretical framework adopted from Pirolli and Recker.

2 STUDY OF REFERENCE ERRORS
As we have already noted, we originally conducted our study to explore the transparent elements of
Python’s object-oriented mechanisms on student learning [20]. �is paper describes the same study
and method but its �ndings draw upon a larger sample of participants. In our work we ask students
to write a new method to an already de�ned class (presented in the appendix). �is programming
task involves writing a “lookup” routine, whose solution requires a sequential search, an equality
test that accesses object a�ributes, and a return statement that also references an object a�ribute.

�e solution requires a�ribute references in the equality comparison and the return statement.
As already noted, previous research [12, 18] indicates that students are more likely to construct
an incorrect reference involving a�ributes with identifying labels (e.g. name, id, title) than with
descriptive labels (e.g. color, texture, shape). For example, a student is more likely to just reference an
object (e.g. obj) when the intention is to reference an identifying a�ribute that belongs to the object
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(e.g. obj.title).2 To verify this e�ect, the study randomly selects a�ributes from a set of identifying
and descriptive a�ributes for the programming task. By analyzing the relative frequencies by which
students correctly reference the a�ribute, we can test whether the type of a�ribute is a determining
factor for reference-point errors.

3 METHOD
3.1 Participants
We recruited 80 students from two �rst-year programming courses. One course is a second-quarter
Python course in a sequence designed for novice programmers. �e other course is an accelerated
Python course for students who have already taken at least one programming course. More
information about the topics and pacing for the two courses is provided in Section 7.1.

3.2 Programming Task
Students were presented a programming task through an online web application. �e online
presentation provided students with two class de�nitions: an Item class and a Catalog class. �e
exercise then instructed students to add a simple “lookup” method to the Catalog class.

�e Item class implements simple objects with a�ributes and values (e.g. name: ‘apple’, texture:
‘smooth’) and the Catalog class represents a list of these items and includes methods for adding
an item and obtaining the number of items in the list. �e Catalog class also provides a method
(has style), whose structure is similar to the method that they are asked to write (lookup). �e code
for the Item and Catalog classes is given in the appendix.

�e lookup method involves searching the catalog list for an object with a particular a�ribute
and then returning another speci�ed a�ribute for the matching object. �e complete instructions
for the programming task are presented in the next section.

�e web application systematically varied the targeted a�ribute and returned a�ribute. �e set
of a�ributes (e.g. name, texture) were chosen to invoke a grocery domain and used example values
accordingly (e.g. apple, smooth). �e complete set of possible a�ributes are calories, color, label,
name, shape, status and texture. While the web application randomly selected without replacement
all pairs of a�ributes, an accounting error in the so�ware produced nearly twice the number of
tasks where the name was the targeted a�ribute and calories were the returned a�ribute.

Below is a correct solution for the lookup method given shape as the targeted a�ribute and
name as the returned a�ribute.

d e f lookup ( s e l f , t a r g e t ) :
' r e t u r n s needed a t t r i b u t e '
f o r o b j i n s e l f . i t e m s :

i f o b j . shape == t a r g e t :
r e t u r n o b j . name

r e t u r n None

3.3 ProblemWording for Exercise
Below is an example set of instructions that were presented to students for the programming
problem. �is particular set asked the student to �nd the targeted shape a�ribute and return the
name a�ribute of the matching object.
2Like many object-based programming languages, Python uses dot-a�ribute notation to reference an a�ribute that belongs
to an object. For example, obj.color refers to the color value of the obj object. Specifying just the object (e.g. obj) refers to
the whole object.
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Exercise Problem
�e following is a short programming problem. Since we are interested in

learning about initial strategies and di�culties, we ask that you do not try to run
your code when providing your solution. A�er you submit your untested code,
you will see a correct solution and will be able to compare it to your code.

For this problem, Item and Catalog classes have been de�ned.
�e code for both the Item and the Catalog class can be viewed in this page.

Note: ’�is page’ links to the code presented in the appendix.
�e Item class creates objects consisting of a�ributes (e.g. ”style”) and values

(e.g. ”�at”). When a new Item object is created, an id a�ribute is automatically
assigned. Here’s an example of interacting with the class in a console:

>>> obj = Item()
>>> obj.id
102
>>> obj.style = "flat"
>>> obj.style
'flat'
>>>

Note that Python allows a�ributes to be assigned values with an assignment
statement. In addition to id and style, possible a�ributes for the Item class include
calories, color, label, name, shape, status and texture.

�e Catalog class produces objects that contain a collection of items. Here’s an
example of interacting with the Item and Catalog class:

>>> listing = Catalog()
>>> listing.add(obj)
>>> listing.has_style("flat")
True
>>> listing.has_style("twisted")
False
>>> listing.size()
1

Problem: Write a method for the Catalog class called lookup. �is method
should take a string as an argument to �nd the �rst object that matches its shape
a�ribute. �e method should then return the name of the matching Item object.

For example, consider that listing is a Catalog object that has an Item with shape
of ’round’ and name of ’apple’. �en, this call:

listing.lookup('round')

would return

'apple'

If there is no matching object, the method should return the Python keyword
None.

Using just the editing space below, write your de�nition of the lookup method
so that it works as described above. When you have �nished, click on the submit
bu�on below the editor.
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3.4 Procedure
Students were provided with a URL for the pages containing the code wri�en by the authors and
the programming task instructions. Students who wished to participate completed the consent
form on the �rst page. A second page collected demographic information including age, gender, and
the number of prior programming courses. A subsequent page presented the exercise instructions
and related code. �is page included an embedded editor with syntax-aware forma�ing for Python.
Students used this editor to submit their de�nition of the lookup method. �e online application
recorded the time each student took to read the instructions to the programming task and submit
their solution. A�er submi�ing their solution they were provided with the correct solution and
asked to comment on their submission.

For our previous study we recruited 36 participants [20]. For this work we recruited additional
participants to produce a total of 80 submissions. Our analysis suggested that a larger sample
would produce statistically reliable di�erences.

4 RESULTS
4.1 Demographics
Of the 80 students who participated in the study, the median reported age was 20 (mean = 22.2)
with 14 students identifying as female and 66 as male. �e median reported number of prior
programming courses was 2 (mean = 2.3).

4.2 Coding
For our analysis, we focus on the expressions contained in the if comparison and the return
statement. If the required a�ribute (e.g. name, color, id) was explicitly coded in the expression, the
expression was categorized as an explicit reference. We were able to employ a computer script that
automatically coded the student responses according to the examples and principles presented
below.

Here is one student answer that correctly references the color a�ribute to �nd the matching
object and then literally references the status a�ribute in the return value:

d e f lookup ( s e l f , c o l o r ) :
f o r o b j i n s e l f . i t e m s :

i f o b j . c o l o r == c o l o r :
r e t u r n o b j . s t a t u s

Here is an answer with some incorrect programming syntax yet it (correctly) employs an explicit
reference to the label a�ribute in the if comparison and to the shape a�ribute in the return statement:

d e f lookup ( s e l f , l a b e l ) :
i f s e l f . l a b e l ( ) == l a b e l :

r e t u r n s e l f . shape ( )

If the expression contained no reference to the a�ribute, the expression was categorized as an
implicit reference.

When determining whether the a�ribute is explicitly referenced, parameter references were
excluded from consideration. �is exclusion was operationally accomplished by removing the �rst
appearance of any reference that appears in the parameter list. For example, this student answer
has the variable color appearing in the parameter list:

d e f lookup ( s e l f , c o l o r ) :

ACM Transactions on Computing Education, Vol. x, No. x, Article x. Publication date: x 2019.
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f o r o b j i n s e l f . i t e m s :
i f c o l o r i n s e l f . i t e m s :

r e t u r n o b j . t e x t u r e
r e t u r n None

In this case, our analysis removed the color a�ribute from the expression in the if statement.
Since the expression has no other explicit reference to color, the if expression was coded as having
an implicit reference. �e return statement for this answer does contain an explicit reference to the
required a�ribute (i.e. obj.texture); consequently this expression was coded accordingly.

Student responses that did not contain an if statement or a return statement were coded as
missing for their respective expression.

Finally, we observed that many of the student responses explicitly referenced the style a�ribute
in both statements. �is was particularly common when the problem required a reference to the
texture a�ribute. �is occurred in 7 out of 14 texture cases, such as in the following student answer,
which asked for the texture of the object to be returned:

d e f lookup ( n ) :
f o r o b j i n s e l f . i t e m s :

i f o b j . c a l o r i e s == n :
r e t u r n o b j . s t y l e

e l s e :
r e t u r n None

In these cases, the explicit reference to the style a�ribute was coded as an explicit response.

4.3 Analysis
Table 1 presents the proportions of a�ributes that were explicitly referenced, broken down by
whether the expression appeared in the if statement or in the return statement. �e table in
the second column also indicates the example value (e.g. red for color) that was presented in
the instructions. As can be inferred from the table, the 80 student participants yielded 73 coded
responses from the if comparison and 74 coded responses from the return comparison.

Table 1. Frequency of Explicit Reference

If Comparison Return
Example % Explicit % Explicit

A�ribute Value N Reference N Reference
id 103 8 62.5 8 75.0
label a43 9 22.2 8 50.0
name apple 19 21.1 8 37.5
calories 95 7 57.1 16 56.3
color red 9 77.8 8 62.5
shape round 8 75.0 8 50.0
status fresh 7 57.1 10 70.0
texture smooth 6 66.7 8 75.0

Fisher’s exact test was applied to determine if the relative proportions of the a�ribute (e.g. label,
color, texture) are independent of whether they are explicitly referenced in the required expression.
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�e analysis revealed signi�cance of dependence for expressions appearing in the if statement
comparison (p = 0.028) but not for those appearing in the return statement (p = 0.769).

We also employed Fisher’s exact test to verify if the use of the style a�ribute occurred for tasks
calling for particular a�ributes. �e analysis revealed a signi�cance of dependence (p = 0.003)
across both the comparison and the return statement.

4.4 Discussion of Initial Analysis
We speculated that the student participants would consider the following a�ributes (with ex-
ample values) as identifying: id (103), label (a43) and name (apple). Consistent with the use of
metonymy, we anticipated that students would not explicitly reference these identifying a�ributes
(e.g. referencing obj instead of obj.name) when constructing expressions in their programming
code.

With the exception of the id a�ribute, the student reference constructions were consistent with
our metonymy-based predictions. Both the identifying name a�ribute and label a�ribute were
explicitly referenced less frequently than the putatively descriptive a�ributes. �is trend was
present in both the comparison expressions and the return expressions, although we only found
a statistically reliable dependence with the comparison expressions.

Our search for an explanation of the exceptional e�ect of the id a�ribute led us to the instructions
given the students. Of the experimentally-controlled a�ributes, only the id a�ribute was used
as an example in the task instructions. Our conjecture is that students drew upon this example
when constructing expressions referencing the object’s id. �is interpretation is consistent with the
appearance of style a�ribute in many of their expressions. Even though none of the experimental
tasks asked students to construct expressions using the style a�ribute, it nonetheless appeared
in many of the expressions. As we noted, it appeared most frequently in the tasks that called
for a reference to the texture a�ribute, presumably because its example value (smooth) could be
considered as a description of the object’s style. In any case, the unsolicited appearance of the
style a�ribute in the coded expressions provides evidence that students may mechanically use
expressions from an example in the construction of their coded solution. For tasks calling for the
construction of an expression with the texture a�ribute, the example leads to an incorrect solution
(albeit with the a�ribute explicitly referenced). For tasks calling for the id a�ribute, the example
leads to a solution that is correct with respect to both the explicit reference and the a�ribute itself.

4.5 Additional Analysis
To further test whether our hypothesized a�ribute categories lead to explicit references, we merged
the a�ributes into three categories: identifying (i.e. name and label), descriptive (i.e. calories, color,
shape, status and texture) and example-supported (i.e. id). We then constructed a mixed e�ects
generalized linear model that included a�ribute category and statement type (i.e. comparison vs.
return statement) as �xed e�ects. �e participant was included as a random e�ect. To account
for categorical prediction (explicit reference vs. implicit), the linear model used a logit function
and assumed a binary distribution. �e a�ribute category yielded a signi�cant �xed e�ect, F(2, 67)
= 5.82, p = 0.0047 while the statement type did not yield a signi�cant e�ect, F(1, 67) = 0.38, p =
0.540. Finally, we performed pairwise tests for the a�ribute categories. Table 2 shows resulting
t statistics for each of the three comparisons, revealing that both example-supported a�ributes
and descriptive a�ributes have a signi�cant e�ect over identifying a�ributes when it comes to
producing an explicit reference in the coded solutions.3

3We report unadjusted p values. We note that our analysis yields signi�cant di�erences even when adjusted using a post-hoc
Bonferroni treatment.
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Table 2. Comparative E�ects of A�ribute Type

A�ribute Category t (DF = 67) p
Identifying vs. Descriptive 3.20 .0021
Descriptive vs. Example-supported 0.42 .6763
Identifying vs. Example-supported 2.43 .0178

5 GENERAL DISCUSSION
�e goals of our study were to 1) identify when reference-point errors occur, 2) o�er instructional
strategies for addressing them and 3) provide additional insights on theoretical sources for these
errors. In this section we revisit these goals and address them.

5.1 When reference-point errors occur
Our results show that students more frequently specify the a�ribute if it is used in an instructional
example. For tasks calling for the id a�ribute, which was used in an example, they more frequently
included the a�ribute in the reference. Even when the task did not call for the style a�ribute, also
used in an example, it frequently appeared as an a�ribute in the solution, particularly for tasks
involving a�ributes (e.g. texture) semantically related to style. �is interpretation is consistent
with prior research that theorized how students draw upon code examples to produce the solution
[11, 25, 29]. For example, Pirolli and Recker [25] found that their subjects produced fewer errors
when working on novel tasks that were supported by examples than on tasks that were not. For our
study, the supporting examples made it more likely that the student provided the explicit a�ribute,
even if it was not the a�ribute required for the task.

For cases without a supporting example, our results produced errors consistent with the use
of metonymy [18, 19], previous empirical results [17, 18], and less formal observations of student
errors [9, 12, 15]. So far, studies have revealed a prevalence of these reference-point errors for
novice programming. Consistent with previous studies, the students in our study were novices,
reporting a median of two prior programming courses. To our knowledge, there is no study on the
occurrence of reference-point errors for skilled programmers. �e prevalence of these errors may
incrementally decrease with practice or there may be an abrupt transition when reference-point
errors all but disappear.

5.2 Learning Implications and Instructional Strategies
One concern with the use of examples is that they may not necessarily support learning. Students
may substitute segments of example code to produce the solution without any re�ection. In these
scenarios, students are constructing a “literal” reference, not by a deliberate strategy, but by a
rote copy and paste of a working solution. Since this form of mechanistic construction is done
without a�ending to relevant relations for transferable learning, this form of problem-solving may
not yield useful schema acquisition. �is analysis is consistent with cognitive load theory, where
the overhead of problem-solving detracts from learning [35]. On the other hand, students may
choose to engage in learning behaviors that are not intrinsic to solving the problem or, in this
case, constructing a correct reference. Such behaviors include re�ecting on the example or self-
explaining how the example works in the problem-solving context. �eoretical work and empirical
studies have shown how these behaviors promote learning [5]. Moreover, Pirolli and Recker report
that verbal protocol analysis of study participants reveals fewer errors among participants with
more events of self-explanation and re�ection. Additional research on self-explanation shows
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that coaching students to self-explain produces increased learning [6]. With respect to forming
correct references, instructors may want to coach students to explain their reference constructions.
A possible device for eliciting explanations may involve teaching students about metonymy and
asking them to use it as a structure for explaining how they need to construct a “literal” reference
required for correct code.

As an alternative to eliciting explanations while coding, instructor-led explanations of worked
examples may provide be�er support to learning, particularly if done with explicit reference
to all a�ributes. Guided instruction may also include explaining how metonymy operates in
human communication yet yields incorrect references for the computer. Such instruction could
be integrated with live coding, which has been shown to facilitate student learning [30]. Other
forms of guided instruction such as subgoal labeling [22] may also be e�ective here. For reference
construction, it could include explicit checks on whether the literal construction is present.

Finally, while not emphasized in this paper, there may be some bene�t to asking students to
compare their answer with a correct solution. As we reported elsewhere [20], some students noticed
their mistake when presented a correct solution and then indicated that they forgot to explicitly
mention the a�ribute (e.g. “I also forgot the .label”). �is re�ective component may prompt the
necessary knowledge acquisition and conscious avoidance of the pitfalls of metonymy necessary
for successfully instantiating the full reference in the future.

5.3 Sources of di�iculty
In the introduction, we surveyed multiple knowledge sources and systems that might account
for the reference-point errors found in student-constructed references. While our results do not
conclusively rule out any of these sources, we o�er some interpretations that account for some of
the di�erences among the conditions.

One possibility is that students conceptually misrepresent the object, con�ating its identifying
a�ribute with the object itself. �is interpretation immediately explains why the identifying
a�ribute is omi�ed when constructing a reference. We can also understand how the identifying
a�ribute then appears in the reference when it draws upon a supporting example: the student may
just be copying relevant code into the solution. Less clear is whether this interpretation explains
why the identifying a�ribute might appear more frequently in some contexts but not others.
Whether the context concerns complexity or the coding construct (e.g. conditional statement vs.
return statement), drawing upon an impoverished mental representation should produce incorrect
references with equal frequency.

We have also considered the possibility that students have a misconception of what the notional
machine can do. �ey may believe that the system can resolve reference-point shi�s, just like
humans. While we have not seen any evidence of this understanding in student explanations, it
does explain why students would omit the identifying a�ribute, thinking that the system will be
able to infer that they intend to refer to the a�ribute and not the object itself. �is interpretation
is also consistent with the observation that identifying a�ributes appear in references that have
supporting examples. Rather than require the system to do the work, they may just �nd it easier to
copy in some working code. Most problematic for this interpretation is that reference-point errors
may appear more frequently in some coding contexts. While it is possible to construct models of a
notational machine that work in one particular way for some coding contexts and a di�erent way
for other contexts, it requires a less parsimonious theory.

�e third possibility for explaining the observed reference-point errors is that students are
relying on well-practiced habits of communication. Drawing on this knowledge explains why
identifying a�ributes are omi�ed, a practice consistent with metonymy. For tasks that draw on
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examples, students may simply use the example code and thus circumvent application of the habits
of communication—an explanation of why identifying a�ributes sometimes appear in the code.
Finally, it o�ers an explanation why a�ributes may be omi�ed under di�erent coding contexts. One
possibility, as an e�ect of cognitive load, is that the complexity of the expression inhibits application
of the less e�cient deliberate knowledge system and, in its absence, the more e�cient practiced
knowledge applies. Another possibility is that the di�erent semantics of the conditional statement
and the return statement elicits di�ering likelihoods that knowledge in the e�cient system applies.
In any case, this interpretation suggests that reference-point errors are not misconceptions, that is,
mistaken beliefs about the task or notional machine, but procedural habits that novice programmers
have practiced throughout their lives. Just as a Stroop error is not a problem of understanding the
task (subjects know that they need to identify the color) or missing competencies (subjects know
how to recognize colors and say their name), constructing a literal reference may not involve any
misconceptions. Instead, it involves skill-based slips that are the result of years of practice. With
this interpretation, “learning to get literal” may not require correcting misconceptions but rather
introducing strategies for noticing errors and allowing enough practice so that e�ective, literal
reference construction happens with minimal e�ort.4

At this time, the evidence for a prevalence of reference errors in complex expressions is incon-
clusive. While we observed more errors in the more complex condition, the di�erence was not
statistically reliable. It is also possible that it is not the complexity of the statement but rather
the type of statement that inhibits whether practiced habits apply. For example, a student may
interpret the if statement as having a certain selectional semantics for which just referencing the
object is appropriate. On the other hand, other work [18] also found a higher incidence of errors
in the more complex expressions even though the di�erence was not systematically explored and
analyzed. Stronger evidence of a complexity e�ect could be obtained by conducting studies that
systematically vary statement types and expression complexity to see where reference-point errors
are most likely to occur.

We may also want to look at student comments for insight on whether they are working with a
misconception or simply slipping on habits of communication. For example, some students may
report their mistake as a lapse of thinking (e.g. “I forgot the .label”) as opposed to a misunderstanding
of the object (e.g. “I didn’t realize that the object has its own ‘title’ a�ribute”) or what the notional
machine can do (e.g. “I thought the program would understand that I was really referring to
the name”). While we do not expect students to have access to their practiced, proceduralized
knowledge, their explanations may provide some indications (e.g. ‘forgot’ vs. ‘didn’t realize’) as to
whether they are habits of practiced routines or explicit misunderstandings of the task or system.

Our long-term goal is to further explore factors that yield reference errors in the context of a
predictive process-oriented model. At this point, we conjecture that its operational knowledge
incorporates the following:

• Procedures that draw upon example segments.
• Procedures for correctly constructing the a�ribute reference but are more likely to be

inaccessible for more complex expressions.
• Default communication procedures that use whole objects to represent identifying at-

tributes.
Future work calls for its development as a working computational model, possibly representing

the above knowledge as productions in the context of a cognitive architecture such as ACT-R [1] or

4Interestingly, Besner, Stolz and Boutilier [3] report a variant of the Stroop task where human subjects are able to improve
their relative performance on incongruent tasks.
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Soar [23]. �e development of the model may draw upon a previous modeling e�ort which applied
verbal reasoning knowledge for solving syllogisms [26].

6 CONCLUSION
In this paper we explored factors that yield reference-point errors in novice programming. Drawing
upon the study presented in this paper and previous analysis [18, 20], we hypothesize that reference-
point errors occur more frequently for the following conditions:

• �e relevant a�ribute is an identifying a�ribute (consistent with the use of metonymy).
• �e relevant a�ribute lacks a supporting example.
• �e relevant a�ribute is used in a relatively complex expression.

�e present study revealed statistically reliable evidence that supports the �rst two factors. With
respect to the third factor, we seek further con�rmation that an expression’s complexity yields
more reference errors.

�eoretically, we have considered knowledge sources that underlie the observed reference-point
di�culties. Our experimental results do not allow us to rule out any of the candidate sources. In
fact, a novice programmer may draw upon any one of them given that person’s prior practice,
instruction, and the context of the task. However, we suggest that a novice programmer’s reliance
on well-practiced habits of communication may account for a large proportion, if not the majority,
of such di�culties. �is theory accounts for all observed behavior and is consistent with established
theories of human cognition.

Practically, we have have o�ered instructional strategies for addressing reference-point errors.
Regardless of the theoretical source of the di�culty, these strategies should be e�ective in that they
all support the student noticing the errors and o�er opportunities to practice working on them.
�ese strategies are also well supported in prior research for diverse di�culties.

An open question is whether a model of reference construction in computer code will employ the
same mechanisms as those that underlie metonymy in human-to-human communication. Another
question is whether we can produce an operational method for determining whether an a�ribute
plays an identifying role. A study of such methods may be useful for investigating the extent to
which the construction of reference-point errors in computer programming parallels the use of
metonymy in human communication. A �nal direction for future exploration is whether reference-
point errors occur in other areas of human-to-computer communication that are not code-based.
For many user interfaces, a user must specify the object of an action. If the point of reference
(e.g. tree or branch) is ambiguous given the action (e.g. change color), we might see reference errors
that are similar to what we observed with novice Python programming.
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Table 3. Week-by-week outline for the first-quarter Python course

Week Topics
1 Intro to CS, expressions, basic data types
2 Basic Input and output, Control �ow: If

statement and simple for loops, calling and
de�ning functions

3 Lists and strings, type conversions, modules
4 File input/output: Writing, reading, and appending

to �les, errors and debugging
5 Review and midterm
6 Exceptions: catching exceptions, raising exceptions,

and using exceptions
7-8 Programming pa�erns: accumulator loops, indexed loops,

nested loops, multidimensional loops, while loops
9 More types: Dictionaries, sets, tuples
10 Namespaces: Program stack and scope: local/global variables

[36] Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. 2018. Programming Misconceptions for School Students. In
Proceedings of the 2018 ACM Conference on International Computing Education Research. ACM, 151–159.
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NY, USA, 99–106. DOI:h�p://dx.doi.org/10.1145/2632320.2632351

7 APPENDIX
7.1 Courses

Students were recruited from two courses required in programming-intensive undergraduate
degrees at our institution. It should be noted that our institution has 11-week quarters, with ten
weeks for instruction and one week for �nal exams. �e �rst course is the second in a sequence
designed for novices. It has as a prerequisite a �rst-quarter Python course, which is a procedural
problem-solving course. �e �rst-quarter Python course has no prerequisites and has a week-by-
week outline as given in Table 3.

�e main goal of the second-quarter Python course for novices is to teach object-oriented
programming. Several applications of object-oriented programming are shown in addition to
recursion. �e week-by-week outline of the second-quarter Python course is provided in Table 4.

An accelerated Python course is the second course from which students were recruited for this
study. �e accelerated Python course covers the majority of topics in the �rst- and second-quarter
novice Python courses but condensed into a single 11-week quarter. Students are required to have
completed one course in a high-level programming language which allows for the accelerated pace
of the course. �e week-by-week outline for the accelerated Python course is provided in Table 5.

�e object-oriented programming topics in the second-quarter Python course and the accelerated
Python course discuss de�ning classes, including a�ributes and methods, as well as inheritance
and its implications for overloaded methods. In the second-quarter Python course the de�nition of
operators for classes are covered, although there is not su�cient time in the accelerated Python
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Table 4. Week-by-week outline for the second-quarter Python course

Week Topics
1 Namespaces and scope; an introduction to

object-oriented programming
2 Object-oriented programming, including inheritance
3 Object-oriented programming
4 Graphical-user interfaces
5 Recursion and the midterm
6 Recursion, sorting, and searching
7 Recursion
8 An introduction to HTML and

WWW application development
9 WWW application development
10 WWW application development and

optional topics (databases, evaluation of function e�ciency, etc.)

Table 5. Week-by-week outline for the accelerated Python course

Week Topics
1 Basic data types (including lists, strings),

basic input, de�ning functions, basic for loops,
basic control structures

2 File input/output, forma�ed output, modules,
introduction to programming pa�erns: iterated and indexed loops

3 More programming pa�erns: accumulator loops, nested loops,
multidimensional loops, while loops

4 More programming pa�erns: in�nite loops, and exceptions
5 Modules, more types: dictionaries, and the midterm
6 More types: sets, tuples, and recursion
7 Recursion
8 Recursion and object-oriented programming
9 An introduction to HTML and WWW application development
10 WWW application development

course to do the same thing. In the second-quarter Python course multiple applications of object-
oriented programming, including both GUIs and web crawlers are discussed. In the accelerated
Python course there is only time to discuss web crawlers.

If advised correctly, students in the second-quarter Python course and the accelerated Python
class should have no more than one previous programming course at the time of the study. But
some of these students have experience from secondary school, so the number provided in the
responses to the question on the study about previous programming courses was higher than might
be expected.

Students were recruited for the study near the end of the quarter, so that both the second-quarter
Python students and the accelerated Python students would have seen how to write classes in
Python prior to the study.
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7.2 Code
Below is the code for the Item and Catalog classes. �e students were asked to write a lookup
method for the Catalog class.
c l a s s I tem :

' an I tem c l a s s f o r the c a t a l o g '
i n t e r n a l i d = 100
d e f i n i t ( s e l f ) :

I tem . i n t e r n a l i d += 1
s e l f . i d = I tem . i n t e r n a l i d
s e l f . q u a n t i t y = 0

c l a s s C a t a l o g :
' a s i m p l e C a t a l o g c l a s s '
d e f i n i t ( s e l f ) :

' the c o n s t r u c t o r '
s e l f . i t e m s = [ ]

d e f add ( s e l f , i t em ) :
' add an i tem t o the c a t a l o g '
r e t u r n s e l f . i t e m s . append ( i tem )

d e f h a s s t y l e ( s e l f , d e s i r e d s t y l e ) :
' ' ' r e t u r n s t r u e i f c a t a l o g has an

i tem o f the g iven s t y l e ' ' '
f o r o b j i n s e l f . i t e m s :

i f o b j . s t y l e == d e s i r e d s t y l e :
r e t u r n True

r e t u r n F a l s e

d e f s i z e ( s e l f ) :
' ' ' r e t u r n the number o f i t e m s

i n the c a t a l o g ' ' '
r e t u r n l e n ( s e l f . i t e m s )
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