Skip to main content
Generating Classification Rules from Training Samples
Computer Science Faculty Publications and Presentations
  • Arun D. Kulkarni, University of Texas at Tyler

In this paper, we describe an algorithm to extract classification rules from training samples using fuzzy membership functions. The algorithm includes steps for generating classification rules, eliminating duplicate and conflicting rules, and ranking extracted rules. We have developed software to implement the algorithm using MATLAB scripts. As an illustration, we have used the algorithm to classify pixels in two multispectral images representing areas in New Orleans and Alaska. For each scene, we randomly selected 10 per cent of the samples from our training set data for generating an optimized rule set and used the remaining 90 per cent of samples to validate the extracted rules. To validate extracted rules, we built a fuzzy inference system (FIS) using the extracted rules as a rule base and classified samples from the training set data. The results in terms of confusion matrices are presented in the paper.

This article was originally published in the Internation Journal of Advanced Computer Science and Applications (IJACSA), under a Creative Commons Attribution 4.0 International License. DOI:
The Science and Information Organization
Date of publication
Persistent identifier
Document Type
Subject Categories
Publisher Citation
Arun D. Kulkarni, “Generating Classification Rules from Training Samples” International Journal of Advanced Computer Science and Applications(IJACSA), 9(6), 2018.
Citation Information
Arun D. Kulkarni. "Generating Classification Rules from Training Samples" (2018)
Available at: