Queue length and delay estimation at signalized intersections using detector data

Helen Thomas, Indian Institute of Technology Madras
S. P. Anusha, Indian Institute of Technology Madras
Lelitha Devi, Indian Institute of Technology Madras
Anuj Sharma, University of Nebraska - Lincoln
QUEUE LENGTH AND DELAY ESTIMATION
AT SIGNALIZED INTERSECTIONS USING
DETECTOR DATA

Helen Thomas, Masters student, Department of Civil Engineering, IIT Madras, Chennai
Anusha S.P., Doctoral student, Department of Civil Engineering, IIT Madras, Chennai
Dr. Lelitha Devi, Associate Professor, Department of Civil Engineering, IIT Madras, Chennai
Dr. Anuj Sharma, Assistant Professor, Department of Civil Engineering, University of Nebraska Lincoln, USA
INTRODUCTION

• Measures of Performance for Signalized intersections
 – v/c ratio
 – Control delay
 – Max. queue length
 – Level of service
 – Fuel consumption
 – Number of stops
INTRODUCTION

- Measures of Performance for Signalized Intersections
 - v/c ratio
 - Control delay
 - Max. queue length
 - Level of Service
 - Fuel Consumption
 - Number of stops
METHODOLOGY

• INPUT
 - Stop bar detections
 - Signal timing information

• Development of Queue polygon

• Measure Max. Queue length and delay for each cycle
STUDY SITE

- This method requires signal timing information—difficult to get in India
- Study sites selected are 17 G and 27G Cornhusker in Lincoln, Nebraska, USA
DATA COLLECTION

• Micro loop detectors placed just after stop line
• Digitalized data generated as vehicles arrive and leave
• Signal timing information obtained
• Actual values extracted manually from video
• One hour each from 17G intersection and 27G Cornhusker in peak and off-peak hour
Start

Get Phase Data
- Cycle Start Time (CST)
- End of Red (ER)
- End of Green (EG)

Get Exit Detector Data for a given lane (ExitDetLnA) subject to CST < ExitDetLnA < EG

Get time headway from Exit Detector Data for a given lane (ExthdwayLnA)

ExthdwayLnA < saturation headway and first headway lies in green time of that cycle?

Yes
Queue is not cleared

No

6
Queue clearance time = Time stamp of start of green - time stamp of the first headway greater than saturation headway

Numqueue = Count of number of vehicles leaving before queue clearance time

Generate queue polygon with
 Arrival rate = Numqueue / Red duration
 Departure rate = Numqueue / queue clearance time

Vehicles coming after queue clearance time in that cycle departs in green and so no queue
Delay t_d at a time instant $k+1$ is given as

$$t_d(k+1) = \int_{k}^{k+1} N \, dt = \left(\frac{N(k) + N(k+1)}{2} \right) \times h$$

where $N(k)$ is the number in queue at k^{th} instant of time, h is the duration of analysis period from k to $k+1$.
RESULTS

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Queue (veh)</th>
<th>Delay (veh-sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17G off-peak</td>
<td>1.2</td>
<td>0.12</td>
</tr>
<tr>
<td>17G peak</td>
<td>1.3</td>
<td>0.18</td>
</tr>
<tr>
<td>27 G off-peak</td>
<td>1.5</td>
<td>0.32</td>
</tr>
<tr>
<td>27 G peak</td>
<td>1.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>
CONCLUSION

• Simple and effective scheme to determine performance measures at signalized intersections

• Developed for under-saturated conditions

• Uses minimal data - stop bar detection and signal timing
REFERENCES

REFERENCES (cont.)

THANK YOU