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Gauge-invariant de Gennes model

A. R. Day and T. C. Lubensky
Department ofPhysics, Uniuersity ofPennsylvania, Philadelphia, Pennsyluania 19066

(Received 20 January 1984)

A gauge-invariant formulation of the de Gennes model for the nematic —to—smectic-A transition
is presented. In this formulation the energy associated with the gauge field A reduces to the Frank
elastic energy with the application of the constraint no A=O where no is the uniform equilibrium
director and A is to be identified with deviations 5n of the director from equilibrium. It is shown
that thermodynamic quantities and renormalization-group recursion relations are gauge invariant.
All gauge dependence appears in the exponent g describing order-parameter correlations. The gauge
invariance of a negative dielectric anisotropy smectic- A in an external electric field is also studied.

I. INTRODUCTION

The de Gennes model' for the nematic —to—smectic-A
(N A) trans-ition of liquid crystals introduces a coupling
between the smectic order parameter g(x) and the direc-
tor n(x) similar to the coupling between the complex or-
der parameter 4 and the vector field A in the Landau-
Ginzberg model for the superconducting transition. This
similarity has been commented on by many authors' '

but it seemed that, unlike the superconductor, the liquid
crystal was not gauge invariant because splay distortions
of the director from its uniform equilibrium value no con-
tribute a term K&(V n) to the free energy density.
Terms of this form are usually associated with gauge fix-
ing. In this case, however, the splay energy merely parti-
cipates in determining the nature of fluctuations of
5n(x) =n(x)—no and does not fix the gauge. This is be-
cause the de Gennes model is already written in a specific
gauge ( called the liquid crystal or LC gauge ) where fluc-
tuations 5n(x) are explicitly forbidden in the direction
parallel to no . This could be achieved by the addition of
a term —B(5n no) with 8= oo in a Hamiltonian with
unrestricted variations in 5n(x) or via the constraint
(gauge choice) no 5n =0 . In this paper we will construct
a generalization of the de Gennes model that is gauge in-
variant and that reduces to the original model when the
constraint n0.5n =0 is imposed.
Because of this gauge invariance, the thermodynamic

quantities should be gauge independent, as in the
Landau-Ginzberg model for the superconducting transi-
tion. In particular, the critical exponents a and v should
be gauge independent. The correlation functions and
hence the critical exponent g are gauge dependent. These
cannot be measured in superconductivity or electro-
dynamics but can be measured, in the LC gauge, in liquid
crystals.
We explore the consequences of this in the e expansion.

We show that all the gauge dependence is contained in the
exponent ri=risc+bq(8) where 8 is a parameter used to
sPecify the gauge and gsc is the minimum value of 7)
evaluated in the so-called superconducting (SC) gauge
where the divergence of the gauge-transformed director

II. GAUGE-INVARIANT MODEL

We start by defining the de Gennes model for the 1V-A
transition. In the nematic phase the orientation of the
bar-like molecules is given by the unit vector, n(x). It
has small local variations 5n(x) from its uniform equili-
brium value no.

n(x)=no + 5n(x) . (2.1)

The energy of small, nonuniform distortions of n(x) is
described by the reduced Frank Hamiltonian'

PH„= J d x [ K, (V n) + E2(n. V Xn)
+ K,(nx(Vxn))'], (2.2)

where K~, E2, and E3 are the Frank elastic constants for
splay, twist, and bend. We choose the 1 axis to be along
the no direction and for small fluctuations we have

5n(x) no ——0. (2.3)

Under this constraint and extending to d dimensions, we
have

field A is 0 (V.A=O). b,71(8) diverges in the LC gauge
(8=0) indicating the destruction of long-range order. The
other critical exponents are shown to be gauge invariant
as are the renormalization-group (RG) recursion relations
for the thermodynamic potentials.
We also consider the case of the 1V-A transition in an

external field which suppresses fluctuations of 5n(x) in
all but one direction. Once again the Hamiltonian can be
written in a gauge-invariant form: the thermodynamic
critical exponents and the RG recursion relations are
gauge independent while g =qsc+Ag(8) is not. However,
because of the external field, hq(8) no longer diverges and
long-range order exists. We further note that this transi-
tion is in the same universality class as the N-3 transition
in. the absence of a field when the twist elastic constant
K2 is infinite.
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+ ( K2qi + K3q~~ )(~~);(~i), l

x 5n;(q)5nj( —q), (2.4)

d~pH„= 2 f " „[( K,q', + K3q~~ )(e$)i(e$)(2~)"
where PJ ( q ) =5,J —q; qj /q is the projection operator
onto directions perpendicular to q. In other words, the
transformations defined in Eqs. (2.7) to (2.9) represent
simply a change of variables from P and 5n to f' and A.
In three dimensions A has two independent components
just as 5n . Defining eo to be the vector normal to q in
the e i -ei plane ( see Fig. 1 ) we have A =3Oe0+A, e, and

where 5n(q) is the Fourier transform of 5n(x) and ei
and e, are defined in Fig. 1. The order parameter for the
smectic phase is the complex amplitude g(x) of a mass
density wave. The reduced Hamiltonian for P in the de
Gennes model is

5n, =A, ,

5nq —— Ap .q
(2.10)

pHg ——fd x [ rl@l + l(V —iq05n ) gl
+ ~& ICl']. (2.5)

Thus, the de Gennes model in this gauge is

pHA+ f d'& [r I
(("

I
'+

I ( V —iqOA)4'
I

'
The full de Gennes Hamiltonian describing the N and A
phases is thus + z& lf'I'] (2.11)

(2 6) wherePH=PH„+ PHp .
The de Gennes model for liquid crystals closely resem-

bles the Landau-Ginzberg model for the superconducting
transition and gauge transformations of the form

(2.7a)
and

3

pH& ——f 3 [ Kiq (eo);(eo)1+K,q (e, );(e, )J ](2n )

x&;(q)&,(—q) (2.12)

A=5n+ VL (2.7b)

2V A=0=V.5n+V L . (2.8)

can be introduced. PH~ is invariant under this transfor-
mation but pH„as defined in Eq.(24) is not manifestly
so. However, it is already written in a particular gauge,
called the liquid crystal (LC) or physical gauge, where
n0.5n=0. To derive a gauge-invariant form of the de
Gennes model we first perform a gauge transformation of
the original model to the superconducting (SC) gauge de-
fined via

qzE=E, +k
2 2E,=X2q, + SC3q~I .

Using eo——e, xq and e, =qxeo where q=ql
I q I, we

obtain immediately

d3pH„= f [ Ki(e, );(e, )J + K,(eo);(eo)J ](2~)

This and Eq. (2.7b) define a unique relation between A
and 5n:

x(qxA);(qxA),

A;(q) =PJ(q)5n)( —q), (2.9) = fd xK,,(VXA);(VXA), (2.13)

(e 7r)
„e,=no

e (8)

e (e=—)

FIG. 1. Bases used in the no—q plane. e, is orthogonal to
this plane.

and so pHA depends only on V X A. If we now lift the
constraint that V.A=O and treat A as an unconstrained
three-component vector, pH is gauge invariant just as are
electrodynamics and the Landau-Ginzberg model for su-
perconductivity. The original de Gennes model is re-
gained by imposing the constraint e&.A=O.
Though we have cast the original de Gennes model in a

gauge-invariant form, it is worth emphasizing a difference
between it and the more familiar Landau-Ginzberg model
for a superconductor. The elastic constant Ki is highly
anisotropic and highly singular. In particular, it diverges
as q~t 0 for nonzero Ki and qi. Thus, fluctuations in
Ao(q~~ ——0, qi) are effectively excluded from the model.
In practice, this presents no problems in field theoretic
calculations in infinite systems but it can lead to some
problems in finite-size lattice systems. "
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III. RG RECURSION RELATIONS
IN AN ARBITRARY GAUGE

A. Gauge transformation

In this section we will discuss the a=4—d expansion
for the continuum of gauges, introduced by Dunn and Lu-
bensky, parametrized by a single variable 0(0(m./2.
0=0 is what we have called the LC gauge and 0=m. /2 is
the SC gauge. We set L =L (8) and introduce the gauge
condition

where q~~ and qi are components of the wave vector q
parallel and perpendicular to no.
We perform the renormalization-group calculation in

the normal manner, ' allowing for anisotropic rescaling.
First we integrate out all fluctuations with wave vector q
in the momentum shell between

~ q ~

= 1 and the ellipsoid
qz +q ~~e"'+"'=1.We then rescale the lengths anisotropi-
cally, qz ~qze, q~~ q ~e ",to regain the unit Bril-—I —I( I+p)
louin zone. f(q) and A(q) rescale so that G(q) and
Dj(q) obey the homogeneity relations, and rj and /M are
chosen such that

v (q).A (q)=0,
where

(3.1)
(3.10a)

v (q) =eicos8 + iqsin8 . (3.2) and

From these conditions and Eq.(2.7b) we can derive a
transformation matrix

8 G '(k) =1. (3.10b)

Pj(q) = (5;~ f(—8,q)q;/Ij),
where

sin8
sln8 —lq I cos8

such that

(3.3)

(3.4)

(3.5)

We choose qz ——e—p so that qo remains constant under
rescaling.
If 1 is an infinitesimal this procedure generates differen-

tial recursion relations for the potentials. The diagrams
that contribute are shown in Fig. 2. Note that diagrams
6—8 do not contribute in the SC gauge. In other gauges,
they are necessary to ensure gauge invariance. These are
evaluated an arbitrary gauge 8 in the Appendix and yield
the following recursion relations:

The propagators Dj(q)= (A;(q)Aj( —q)) satisfy

D,J(q) =P;/, (q)P/j( —q)D/, /(q), (3.6)

where from Eq.(2.4) we have

Dj(q) = (ei);(ei)j( Kiqi + Kiq~~ )

+ (e, );(e, ) (jK2qi + K&q~~ ) (3.7)

We note that the perpendicular part of this propagator
diverges when q~~

——0 and EI ——0.
We will now use these propagators to evaluate the RG

recursion relations as a function of 8. We will show how
all the gauge dependence is contained in the critical ex-
ponent g: The RG recursion relations for the thermo-
dynamic potentials ( and hence all the other critical ex-
ponents ) are gauge invariant.

B.Recursion relations

Near the critical point, we expect the propagators to
obey the following homogeneity relations:~

G(q, t,K/) = e "G(e '+"'q, e qi, e 't, e 'Ki),
(3.8)

(3.9)

10

FIG. 2. Diagrams contributing to the renormalization of the
potentials to first order in e . A wiggly line represents the propa-
gator D;J(q) and a solid line represents the propagator G(q).
The three-point vertex is (2k +q ); . Diagrams 1, 2, and 3 renor-
malize r, diagrams 4 through 8 renormalize u, and diagrams 9
and 10 renormalize K2 and I( 3. Diagram 3 fixes q and p.
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dl' 1 Q

dl
=(2—gsc)r+ —,(n+2)C4 1+r

2 1 4 1+C4qp 2+(QK, +QK3)' QK, QK, +QK3
dQ 1 2

dl
=(e p——2gsc)u — (n—+8)C4u2

—2C 1 2
QK, (QK, ++K, )' QK,K,'"

tion. As in the previous case, we find that all gauge depen-
dence is in b,g(8). However, in this case b,q(8) is not
divergent even in the LC gauge.

A. Model

The dielectric tensor —e n;nj + e&5,& is anisotropic in
liquid crystals, providing a coupling between an external
electric field E and the director described by the Hamil-
tonian

dEi
dl
=—(e—p)Ki, PH, „, = —,e f d x(E n) (4.1)

dE2 2

dl
(e p)K—,+—nC4q, —,6

dI( 3 2

dI
=—«+V)K3+ 6~4qo

3+K,++K,
gsc( I )=—4C4q o » (QK, ++K, )'

4 1+-
)/K'i(1/K2 + 1/K3 )

K3
3 (QK, ++K, )'p, (1)=—2C4q0

(3.11)

which suppresses fluctuations of 5n along the direction
parallel to E. To generalize this Hamiltonian to d dimen-
sions, we follow Halsey and Nelson and specify that the
effect of E is to suppress fluctuations of 5n in d —2
directions perpendicular to np leaving a single easy direc-
tion in all dimensions. Thus choosing np along the 1 axis
and the easy direction of 5n to be along the 2 axis, we ob-
tain

d
PH,„, = ,'E E g—fd x(5n;)

l =3
(4.2)

Other generalizations of Eq. (4.1) are possible, such as one
in which there are d —2 easy directions rather than a sin-
gle easy direction. The full Hamiltonian is then

4 1

/K2 ( /K2 + 1/ K3 )
PHz ——PH& + PH„+ PH, „, . (4.3)

dA4
hil(8, l)=qo f ~ [1 f(8,q)f (8,q)]-

(2m. )

For this Hamiltonian only 5n2 is hydrodynamic, and the
only critical propagator is

sin yX
E3cos y+K~sin y

DJ(q) = 5;25Jz(Kiqz + K2qz + K3qi), (4.4)

gg(l) =e—p(l),
where C4——1/8' and dQ4 is the differential of solid
angle in four dimensions.
The recursion relations for the gauge-independent quan-

tities are the same as those obtained by Lubensky and
Chen in the SC gauge with 8=m/2. We refer the reader
to Ref. 5 for a detailed analysis of the fixed points of
these equations. The gauge-dependent exponent hg(8) is
zero at 8=~/2. When 8=0, 1—

~ f ~

=1 and bg(0)
diverges as E~ as E&~0. E~ ——0 at the critical point
with no anisotropy in the correlation-length exponents.
Thus, at this critical point, G(q) does not exhibit simple
power-law behavior in

~ q ~

. A detailed analysis of the
behavior of G in the LC gauge is given in Ref. 7.

where q =q &+q2+qE . For computational convenience
we set K2 K3——K . This——does not affect our results be-
cause we can show that they are driven to the same value
under the RG. pHE can be cast in a gauge-invariant form
by following exactly the same steps outlined in Sec. II:
Change variables from P and 5n to g' and A and then re-
lax the constraint V' A=O. The resulting A-dependent
term in PH@ will depend only on V )& A but with a cou-
pling that is more complicated and anisotropic than the
K,~. of Eq. (2.13). Gauge-dependent critical properties can
now be calculated in exactly the same way as in Sec. II
with D;J satisfying Eq.(3.6) with D;1 given by Eq.(4.4).

B.Recursion relations

IV. N-A TRANSITION IN A FIELD

Recently Halsey and Nelson discussed the N-A transi-
tion in a negative dielectric anisotropy system with the
external field E perpendicular to no . In this section we
will discuss the gauge-dependent properties of this transi-

We proceed exactly as in Sec. III A except that we use a
slightly different anisotropic rescaling procedure: qi
scales as e "+"'while q~ and qE scale as e '. This new
definition of p requires ilz ——e+p for qo to remain con-
stant under rescaling. The recursion relations are evaluat-
ed in the Appendix and we obtain
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dl' Q

dl
=(2—gsc)r + —,(n+2)C4 1+r

2+K, +vK+ C4qo' 'VSC(&K, +vK)' '

dQ 1 2

dh
=(e—2gsc+tu)u — (—n+ 8)C4u2

. 1/2
4—qO~4

2 E) E(
v K (QK, +v K )' 1+3

cussed in Ref. 7. Since they are so similar to those for
K2& oo, we will not discuss them here.
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3 3+Ki+v Kqsc T 4'qo (~K ~K )3
' 1/2

Ki Ki
tu(1) =—4C4q0 3

—,+ +
( Ki+ IC )

dEi
dl
=—(q~ +2p)K&,

dK
dI
=—ggE+ —nC4qo,

r1~ (1)=e+p(1),
bi)(8, 1)=qo f [1 f(O,q)f—(O,q)](2~)

(4.5)

APPENDIX

D,J(q) =Pf (q)PIJ~( —q) (ei)k(el )i
( K(q3 + K3q)) )

1+ (e, );(e, )J 2
( K3qi + K3q)) )

(Al)

G(q)= 1

1+q
where

(A2)

5;3=no;noj+(ei );(ei)1+(e,);(e, )1 (A3)

The diagrams that contribute to the renormalization of
the potentials are shown in Fig. 2. The propagators are

X cos p
E~cos y+Esin y

The gauge-invariant recursion relations above are the
same as those obtained by Halsey and Nelson in the LC
gauge. We refer the reader to Ref. 9 for an analysis of the
fixed points of these equations. Note that

b i)(8=0)= +qoCq2 1

( K)+ K) (4.6)

is perfectly finite when K&——0. This explains why it is
possible to carry out all calculations directly in the LC
gauge when E&0 whereas it is not when E=0.
r)sc+ b r1(8=0) is identical to r1i c calculated in Ref. 9.
Note that the recursion relations for r, u, gsc, p, and

K3 in Eqs. (3.1 1) with K2——oo and K&——0 (K~——ce ) are
identical to those for r, u, gsc, tu, and K in Eqs. (4.5)
when K&——0 (Ki ——oo). Since Ki ——0 or K&——oo at the
only accessible fixed points, the N-A transition of the neg-
ative anisotropy de Gennes model in an external field is in
the same universality class as that of the fieldless de
Gennes model with X2——m. They have the same thermo-
dynamic exponents vi and v))

——(1+@,)v3. Correlations of
the physical order parameter in the LC gauge differ, how-
ever, in the two cases when K&——0. For the transition in
a field, q=3)sc+hr) is perfectly finite, and G(x,O) de-
cays algebraically at the critical point. For the E2——oo

transition with E=0, hil(0) is infinite and G does not ex-
hibit power-law decay. Instead, it decays exponentially
with an exponent controlled by the dangerous irrelevant
variable Ki as for the case with K2 finite. ' The proper-
ties of G in the N and A phases and at the critical point
for Kz——oo can be calculated using the techniques dis-

with

q =(cosy, siny cosp, siny sinp cosa, siny sinpsina),
ei =(O,cosP, sinPcosa, sinPsina),

e, =(0,—sinP, cosP cosa, cosP sina ),
e, '=(0,0,—sina, cosa)

{A4)

X cos y sin "y cos pp
{K3cos y+Kisin y)' (A6)

The method of evaluating integrals of this form and most
of those that we need in this calculation are given in Ref.

We take the momentum of the external legs to be
k =(ki, k2, 0,0) . Then the integrals IJ corresponding to
the diagram j of Fig. 2 are

=1L, (K3,Ki )+21L i (K3 K2) 1M f (OgK3)K) ),
(Aj)

in four dimensions. y and P run from zero to n and a
runs from zero to 2m .
All diagrams can be evaluated in terms of the general

integrals

dQ 2' ' 2tl 2p
Lmnp(K K ) f 4 cos y sill y cos p (A5)

(2m. ) (K3cos y+K&sin y)'

and

Q4
M, "P(O,K, ,K, )= J f(O, q)f (O,q)

(2m. )
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d4qI3 —— " 2k +q 'Dj'q 2k +q jG k+'(2m)

=lL ] (K3,K] )—1M]
' (K3 K] ) 1+r

—lk [L ]' (E3,E, )—M ]' (K],K] )]
+41k2[L, '(K3,K])+L] (K3pK2) L] (K3yKQ)]

The first term in the expression for ]1 is just ]lsc calculat-
ed by Lubensky and Chen and we define the second term
to be b, ]1(8). If we substitute for ]1 in equations a through
f and expand 1/(1+ r )= 1 —r( correct to order e) we find
that all the 8-dependent parts vanish. Evaluation of the
integrals gives the recursion relations of Sec. III B.
In the presence of an external field the propagators are

g g ~ g —+ 1
D;, =I';k(q)I'], ( q—)e2ke21 2 p 2K&q2+K2q~+&3q ~

+41k ]L ]' (K3,K] ),
d q gq;D;;(q)q,e '(2~)'-

(K3,K, )—lM] (K3 K])

(A8)

G(q)= 1

r+q

~e make the new definition

(A12)

(A13)

4
D,j q D;j q + q D;j q qj' (2m. )

—2D~~1( q )q,D;k( q )qk

=lL2 (K3pK] )+21L2 (K3yK2), (A 10)

q =(siny cosp, cosy, —siny sinP cosa, —siny sinP sina )

(A14)

and set the external momentum to k =(kl&k2&k3& 4) .
we set E2——E3——K the analysis proceeds exactly as be-
fore. The diagrams are all the same and the recursion rela-
tions obtained are

where I =I6+I7—2I8 and where we have only retained
terms to O(k ),O(l), and 1/(1+r ) . The 4-point function
is evaluated at zero external momentum. These integrals
and the procedure outlined in Sec. III lead to the follow-
ing recursion relations:

dI
=(2—g)r + ,'(n+2)C4-1+r

=(2—]1)r+ —,C4(n+2) 1+K

qo [L—] (K],K)—M] (E],K)],1+r
+qo[L ] (K],K)—M] (E],K)] (A15a)

+ qo[L] (K3,K])—M] (K3,K])+2L] (K3,Kp)]

—qo [L,' (K3,K])—M]' (K3,K])], (Alla)1+r
dQ Q

d
=(e—2g—p)u + —,(n+8)C4 1+r

dQ 1 2
dI
=(e—2g—p )u — (n +8)C4—u2

+2uq(][L ] (K],E)—M] (K],K)]

—2qoL 2 (K],K), (A15b)

+ 2uqo[L] (K3 K])—M] (K3 K])]

—2qo[L, (K3 K]) + 2L] (K3 K2)],

dpi
dl
=—(e—p)K],

dEC2 2
dj
=—(e—p)k2 + nC4qo, —

6

dK3 2
dl
=—(e—p)k3 + nC4qo, —

6

(A 1 lb)

(A 1 1c)

(A 1 ld)

(A 1 le)

dKi
dl
=—(]lg +2p)K],

dE
dl
=—

gal%+

—nC4qp,

rl+2P =—qo[4L ] (K],K) 9L] (K],K)—
+M] (K],K)+4L ] (K],K)],

qo[M] (K],E) —L] (K],K))—

(A15c)

(A15d)

(A15e)

(rl+2p) =qo[M]' (K3 K] ) L ] (K3 K] )]
+ 4qoL] (K3,K]), (A 1 1f)

(Al lg)

r1=4qo[L'] '(K3,K, )+L ] (K3 KQ) L] (E3 K2)]
+q(][M] (K3,K])—L] (E3,E])] . '

, qoL] (K],K) . — (A15f)

The last term in the expression for g is what we call gsc
and the rest of the expression is b,rl(8) . If we substitute
for g in equations (A15a) through (A15e) and expand
1/(1+r)=1 rwe again f—ind that all the 8 dependence
vanishes. The evaluation of the integrals leads to the re-
cursion relations of Sec. IV B.
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