Skip to main content
Fast, Localized, Orthonormal Virtual Orbitals which Depend Smoothly on Nuclear Coordinates
Journal of Chemical Physics
  • Joseph E. Subotnik, University of California, Berkeley
  • Anthony D. Dutoi, University of California, Berkeley
  • Martin Head-Gordon, University of California, Berkeley
Document Type
Publication Date
We present here an algorithm for computing stable, well-defined localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The algorithm is very fast, limited only by diagonalization of two matrices with dimension the size of the number of virtual orbitals. Furthermore, we require no more than quadratic (in the number of electrons) storage. The basic premise behind our algorithm is that one can decompose any given atomic-orbital (AO) vector space as a minimal basis space (which includes the occupied and valence virtual spaces) and a hard-virtual (HV) space (which includes everything else). The valence virtual space localizes easily with standard methods, while the hard-virtual space is constructed to be atom centered and automatically local. The orbitals presented here may be computed almost as quickly as projecting the AO basis onto the virtual space and are almost as local (according to orbital variance), while our orbitals are orthonormal (rather than redundant and nonorthogonal). We expect this algorithm to find use in local-correlation methods.
Citation Information
Joseph E. Subotnik, Anthony D. Dutoi and Martin Head-Gordon. "Fast, Localized, Orthonormal Virtual Orbitals which Depend Smoothly on Nuclear Coordinates" Journal of Chemical Physics Vol. 123 Iss. 11 (2005) p. 114108-1 - 114108-9 ISSN: 0021-9606
Available at: